1
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Stress Reactivity, Susceptibility to Hypertension, and Differential Expression of Genes in Hypertensive Compared to Normotensive Patients. Int J Mol Sci 2022; 23:ijms23052835. [PMID: 35269977 PMCID: PMC8911431 DOI: 10.3390/ijms23052835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Although half of hypertensive patients have hypertensive parents, known hypertension-related human loci identified by genome-wide analysis explain only 3% of hypertension heredity. Therefore, mainstream transcriptome profiling of hypertensive subjects addresses differentially expressed genes (DEGs) specific to gender, age, and comorbidities in accordance with predictive preventive personalized participatory medicine treating patients according to their symptoms, individual lifestyle, and genetic background. Within this mainstream paradigm, here, we determined whether, among the known hypertension-related DEGs that we could find, there is any genome-wide hypertension theranostic molecular marker applicable to everyone, everywhere, anytime. Therefore, we sequenced the hippocampal transcriptome of tame and aggressive rats, corresponding to low and high stress reactivity, an increase of which raises hypertensive risk; we identified stress-reactivity-related rat DEGs and compared them with their known homologous hypertension-related animal DEGs. This yielded significant correlations between stress reactivity-related and hypertension-related fold changes (log2 values) of these DEG homologs. We found principal components, PC1 and PC2, corresponding to a half-difference and half-sum of these log2 values. Using the DEGs of hypertensive versus normotensive patients (as the control), we verified the correlations and principal components. This analysis highlighted downregulation of β-protocadherins and hemoglobin as whole-genome hypertension theranostic molecular markers associated with a wide vascular inner diameter and low blood viscosity, respectively.
Collapse
|
3
|
Motoo I, Nanjo S, Ando T, Yamashita S, Ushijima T, Yasuda I. Methylation silencing of ULK2 via epithelial-mesenchymal transition causes transformation to poorly differentiated gastric cancers. Gastric Cancer 2022; 25:325-335. [PMID: 34554345 DOI: 10.1007/s10120-021-01250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diffuse-type gastric cancers (DGC) typically have a poor prognosis related to their invasion and metastasis, in which the epithelial-mesenchymal transition (EMT) is the initiation step. ULK2 plays a role in the autophagy initiation, which might provide a survival advantage in cancer cells. Although knock-down of ULK2 reportedly induces autophagy and EMT in a lung cancer cell line, the mechanism of EMT via the down-regulation of ULK2, as well as its clinical significance, remains yet unclear. The present study, therefore, aims at clarifying this mechanism and its clinical significance in gastric cancers. METHODS We examined ULK2 mRNA expression in gastric cancer tissues and normal gastric tissues of healthy people. The effects of knock-downed ULK2 were examined in two gastric cancer cells, which were investigated in terms of their gene expression changes by the mRNA microarray. RESULTS ULK2 was strongly expressed in intestinal-type cancers but was scarcely expressed in DGC by immunohistochemical staining. Furthermore, we found that ULK2 was methylated in DGC and was unmethylated in corresponding adjacent normal tissues. Then, we validated whether knock-down of ULK2 could induce autophagy, cell migration, and EMT in NUGC3 and MKN45 cells. Using mRNA microarray analysis, we confirmed that knock-down of ULK2 changed expressions of oncogenic genes associated with cell migration and EMT. Autophagy inhibitor suppressed cell migration and EMT induced by knock-down of ULK2 in NUGC3 and MKN45. CONCLUSION Methylation silencing of ULK2 could induce cell migration and EMT by means of autophagy induction, causing transformation to poorly differentiated cancers.
Collapse
Affiliation(s)
- Iori Motoo
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sohachi Nanjo
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Takayuki Ando
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Ichiro Yasuda
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
4
|
Anuntakarun S, Larbcharoensub N, Payungporn S, Reamtong O. Identification of genes associated with Kikuchi-Fujimoto disease using RNA and exome sequencing. Mol Cell Probes 2021; 57:101728. [PMID: 33819568 DOI: 10.1016/j.mcp.2021.101728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Kikuchi-Fujimoto disease (KFD) is an extremely rare disease, and although it is reported to have a worldwide distribution, young Asian women are most likely to be affected. Although this disease is generally benign and self-limiting, distinguishing it from other diseases that cause lymphadenopathy (e.g., leukemia, lymphoma, and infectious diseases) is challenging. A lymph node biopsy is a definitive diagnostic technique for KFD and only requires skillful pathologists. There are no specific symptoms or laboratory tests for KFD, and more than 50% of KFD patients have suffered from being misdiagnosed with lymphoma, which leads to improper treatment. In this study, lymph node tissue samples from KFD patients were used to reveal their exomes and transcriptomes using a high-throughput nucleotide sequencer. Fourteen single nucleotide polymorphisms (SNPs) were identified as candidate KFD markers and were compared with a healthy lymph node exome dataset. The mutation of these genes caused disruptive impact in the proteins. Several SNPs associated with KFD involve genes related to human cancers, olfaction, and osteoblast differentiation. According to the transcriptome data, there were 238 up-regulated and 1,519 down-regulated genes. RANBP2-like and ribosomal protein L13 were the most up-regulated and down-regulated genes in KFD patients, respectively. The altered gene expression involved in the human immune system, chromatin remodeling, and gene transcription. A comparison of KFD and healthy datasets of exomes and transcriptomes may allow further insights into the KFD phenotype. The results may also facilitate future KFD diagnosis and treatment.
Collapse
Affiliation(s)
- Songtham Anuntakarun
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Carino A, Graziosi L, Marchianò S, Biagioli M, Marino E, Sepe V, Zampella A, Distrutti E, Donini A, Fiorucci S. Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential. Front Oncol 2021; 11:663771. [PMID: 34012923 PMCID: PMC8126708 DOI: 10.3389/fonc.2021.663771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy but the third leading cause of cancer-associated mortality worldwide. Therapy for gastric cancer remain largely suboptimal making the identification of novel therapeutic targets an urgent medical need. In the present study we have carried out a high-throughput sequencing of transcriptome expression in patients with gastric cancers. Twenty-four patients, among a series of 53, who underwent an attempt of curative surgery for gastric cancers in a single center, were enrolled. Patients were sub-grouped according to their histopathology into diffuse and intestinal types, and the transcriptome of the two subgroups assessed by RNAseq analysis and compared to the normal gastric mucosa. The results of this investigation demonstrated that the two histopathology phenotypes express two different patterns of gene expression. A total of 2,064 transcripts were differentially expressed between neoplastic and non-neoplastic tissues: 772 were specific for the intestinal type and 407 for the diffuse type. Only 885 transcripts were simultaneously differentially expressed by both tumors. The per pathway analysis demonstrated an enrichment of extracellular matrix and immune dysfunction in the intestinal type including CXCR2, CXCR1, FPR2, CARD14, EFNA2, AQ9, TRIP13, KLK11 and GHRL. At the univariate analysis reduced levels AQP9 was found to be a negative predictor of 4 years survival. In the diffuse type low levels CXCR2 and high levels of CARD14 mRNA were negative predictors of 4 years survival. In summary, we have identified a group of genes differentially regulated in the intestinal and diffuse histotypes of gastric cancers with AQP9, CARD14 and CXCR2 impacting on patients' prognosis, although CXCR2 is the only factor independently impacting overall survival.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Marino
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Quezada-Marín JI, Lam AK, Ochiai A, Odze RD, Washington KM, Fukayama M, Rugge M, Klimstra DS, Nagtegaal ID, Tan PH, Arends MJ, Goldblum JR, Cree IA, Salto-Tellez M. Gastrointestinal tissue-based molecular biomarkers: a practical categorisation based on the 2019 World Health Organization classification of epithelial digestive tumours. Histopathology 2020; 77:340-350. [PMID: 32320495 DOI: 10.1111/his.14120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Molecular biomarkers have come to constitute one of the cornerstones of oncological pathology. The method of classification not only directly affects the manner in which patients are diagnosed and treated, but also guides the development of drugs and of artificial intelligence tools. The aim of this article is to organise and update gastrointestinal molecular biomarkers in order to produce an easy-to-use guide for routine diagnostics. For this purpose, we have extracted and reorganised the molecular information on epithelial neoplasms included in the 2019 World Health Organization classification of tumours. Digestive system tumours, 5th edn.
Collapse
Affiliation(s)
- Javier I Quezada-Marín
- Precision Medicine Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
- Molecular Pathology Laboratory, Anatomical Pathology Service, Puerto Montt Hospital, Puerto Montt, Chile
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Atsushi Ochiai
- Exploratory Oncology Research and Clinical Trial Centre, National Cancer Centre, Kashiwa, Japan
| | | | - Kay M Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Massimo Rugge
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - David S Klimstra
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Puay-Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, Western General Hospital, Edinburgh, UK
| | - John R Goldblum
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
- Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
7
|
Li Y, Wang JS, Zhang T, Wang HC, Li LP. Identification of New Therapeutic Targets for Gastric Cancer With Bioinformatics. Front Genet 2020; 11:865. [PMID: 33014013 PMCID: PMC7461879 DOI: 10.3389/fgene.2020.00865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
We aimed to identify new targets affecting gastric cancer (GC) prognosis. Six target genes were identified from hub genes based on their relationship with important factors affecting tumor progression, like immune infiltration, purity, tumor mutation burden (TMB), and tumor microenvironment (TME) score. The effect of target genes' somatic mutations and copy number alteration (CNA) was examined to determine their effect on GC prognosis. Six target genes (FBN1, FN1, HGF, MMP9, THBS1, and VCAN) were identified. Reduced expression of each target gene, except MMP9, indicated better prognosis and lower grade in GC. FBN1, THBS1, and VCAN showed lower expression in stage I GC. Non-silencing mutations of the six genes played a role in significantly higher TMB and TME scores. THBS1 mutation was associated with earlier stage GC, and VCAN mutation was associated with lower grade GC. However, patients with target gene CNA displayed higher tumor purity. MMP9, THBS1, and VCAN CNA was associated with lower grade GC, while FBN1 CNA reflected earlier T stage. Additionally, the target genes may affect GC prognosis by influencing multiple oncogenic signaling pathways. FBN1, FN1, HGF, MMP9, THBS1, and VCAN may be new GC prognostic targets by affecting tumor purity, TMB, TME score, and multiple oncogenic signaling pathways.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Shen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Hong-Chang Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Le-Ping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
You W, Liu X, Yu Y, Chen C, Xiong Y, Liu Y, Sun Y, Tan C, Zhang H, Wang Y, Li R. miR-502-5p affects gastric cancer progression by targeting PD-L1. Cancer Cell Int 2020; 20:395. [PMID: 32821248 PMCID: PMC7429713 DOI: 10.1186/s12935-020-01479-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Studies have shown that miR-502-5p functions as a tumor suppressor and is associated with tumor growth and metastasis. This study intends to uncover the potential mechanism of miR-502-5p functioning as a tumor suppressor in gastric cancer. Methods Expression levels of miR-502-5p and PD-L1 were measured by using qRT-PCR. Cell proliferation abilities were examined by EDU incorporation assay. Cell migration, invasion and cell cycle analysis of cells were determined by transwell assay, transwell-matrigel assay and flow cytometry, respectively. The relationship between miR-502-5p expression and the overall survival of xenograft tumor mice was statistically analyzed. Bioinformatics analysis and luciferase reporter assays were applied to analyze the relationship between miR-502-5p and CD40, STAT3 or PD-L1. Expressions of CD40, STAT3 and PD-L1 at protein level were detected by western blot. Results The results showed that miR-502-5p was significantly downregulated in gastric cancer tumor tissues compared with adjacent normal tissues. Overexpression of miR-502-5p significantly attenuated the proliferation, migration/invasion and induced the G1 phase arrest of gastric cancer cells. Consistently, miR-502-5p suppressed tumor growth and metastasis in vivo. Mechanically, we demonstrated that miR-502-5p had inhibited the malignant behaviour of gastric cancer by down-regulating PD-L1 expression at transcriptional level and post-transcriptional levels. Conclusions These findings suggest that miR-502-5p acts as a tumor suppressor in gastric cancer (GC). MiR-502-5p/PD-L1 may be a novel therapeutic target in GC treatment.
Collapse
Affiliation(s)
- Wendao You
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Xiaoyu Liu
- Yulin No.2 Hospital, Yulin, 719000 China
| | - Yang Yu
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Chen Chen
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Yujia Xiong
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Yiting Liu
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Yibin Sun
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Chenhuan Tan
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | | | | | - Rui Li
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| |
Collapse
|
9
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Luo Y, Xu T, Xie HQ, Guo Z, Zhang W, Chen Y, Sha R, Liu Y, Ma Y, Xu L, Zhao B. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on spontaneous movement of human neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136805. [PMID: 32041038 DOI: 10.1016/j.scitotenv.2020.136805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Aryl hydrocarbon receptor (AhR) plays important roles in the interferences of dioxin exposure with the occurrence and development of tumors. Neuroblastoma is a kind of malignant tumor with high mortality and its occurrence is getting higher in dioxin exposed populations. However, there is still a lack of direct evidence of influences of dioxin on neuroblastoma cell migration. SK-N-SH is a human neuroblastoma cell line which has been used to reveal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced dysregulation of certain promigratory gene. Thus, in this study, we employed SK-N-SH cells to investigate the effects of TCDD on the spontaneous movement of neuroblastoma cells, which is a short-range cell migratory behavior related to clone formation and tumor metastasis in vitro. Using unlabeled live cell imaging and high content analysis, we characterized the spontaneous movement under a full-nutrient condition in SK-N-SH cells. We found that the spontaneous movement of SK-N-SH cells was inhibited after 36- or 48-h treatment with TCDD at relative low concentrations (10-10 or 2 × 10-10 M). The TCDD-treated cells were unable to move as freely as that of control cells, resulting in less diffusive trajectories and a decreased displacement of the movement. In line with this cellular effect, the expression of pro-adhesive genes was significantly induced in time- and concentration-dependent manners after TCDD treatment. In addition, with the presence of AhR antagonist, CH223191, the effects of TCDD on the gene expression and the spontaneous cell movement were effectively reversed. Thus, we proposed that AhR-mediated up-regulation of pro-adhesive genes might be involved in the inhibitory effects of dioxin on the spontaneous movement of neuroblastoma cells. To our knowledge, this is the first piece of direct evidence about the influence of dioxin on neuroblastoma cell motility.
Collapse
Affiliation(s)
- Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wanglong Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
11
|
Yu H, Jiang X, Jiang L, Zhou H, Bao J, Zhu X, Liu F, Huang J. Protocadherin 8 (PCDH8) Inhibits Proliferation, Migration, Invasion, and Angiogenesis in Esophageal Squamous Cell Carcinoma. Med Sci Monit 2020; 26:e920665. [PMID: 32330123 PMCID: PMC7197227 DOI: 10.12659/msm.920665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Protocadherin 8 (PCDH8) functions as a tumor-suppressor gene in many types of cancer. This study aimed to investigate the role of PCDH8 in esophageal squamous cell carcinoma (ESCC). MATERIAL AND METHODS Cell proliferation, apoptosis, transwell assay, tube formation assays, and tumor xenograft experiment were performed to explore the role of PCDH8 in the progression of ESCC. RESULTS PCDH8 was found to be downregulated in ESCC cells. Ectopic expression of PCDH8 blocked proliferation, invasion, and migration and induced apoptosis in ESCC cells. Furthermore, vascular endothelial growth factor A (VEGFA) secretion and the AKT signaling pathway were also inhibited when PCDH8 was upregulated. PCDH8 overexpression suppressed epithelial-mesenchymal transition (EMT) and pro-angiogenic activity of ESCC cells. In a mouse model of ESCC xenograft tumors, PCDH8 overexpression remarkably restrained tumor cell growth, with the tumor inhibition rate of 75.2%. PCDH8 was the target of miR-200c and had a negative correlation with miR-200c. CONCLUSIONS PCDH8 exerts a tumor-suppressive effect against ESCC cells. However, further studies are required to elucidate the exact molecular mechanism underlying the antitumor activity of PCDH8 in ESCC.
Collapse
Affiliation(s)
- Hong Yu
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Xiaoqin Jiang
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Lin Jiang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Huiling Zhou
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Jingjing Bao
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Xiaowei Zhu
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Fuxing Liu
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, China (mainland)
| |
Collapse
|
12
|
Role of Metastasis-Related Genes in Cisplatin Chemoresistance in Gastric Cancer. Int J Mol Sci 2019; 21:ijms21010254. [PMID: 31905926 PMCID: PMC6981396 DOI: 10.3390/ijms21010254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The role of metastasis-related genes in cisplatin (CDDP) chemoresistance in gastric cancer is poorly understood. Here, we examined the expression of four metastasis-related genes (namely, c-met, HMGB1, RegIV, PCDHB9) in 39 cases of gastric cancer treated with neoadjuvant therapy with CDDP or CDDP+5-fluorouracil and evaluated its association with CDDP responsiveness. Comparison of CDDP-sensitive cases with CDDP-resistant cases, the expression of c-met, HMGB1, and PCDHB9 was correlated with CDDP resistance. Among them, the expression of HMGB1 showed the most significant correlation with CDDP resistance in multivariate analysis. Treatment of TMK-1 and MKN74 human gastric cancer cell lines with ethyl pyruvate (EP) or tanshinone IIA (TAN), which are reported to inhibit HMGB1 signaling, showed a 4–5-fold increase in inhibition by CDDP. Treatment with EP or TAN also suppressed the expression of TLR4 and MyD88 in the HMGB1 signal transduction pathway and suppressed the activity of NFκB in both cell lines. These results suggest that the expression of these cancer metastasis-related genes is also related to anticancer drug resistance and that suppression of HMGB1 may be particularly useful for CDDP sensitization.
Collapse
|
13
|
Zhang H, Cheng J, Li Z, Xi Y. Identification of hub genes and molecular mechanisms in infant acute lymphoblastic leukemia with MLL gene rearrangement. PeerJ 2019; 7:e7628. [PMID: 31523525 PMCID: PMC6717502 DOI: 10.7717/peerj.7628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Infant acute lymphoblastic leukemia (ALL) with the mixed lineage leukemia (MLL) gene rearrangement (MLL-R) is considered a distinct leukemia from childhood or non-MLL-R infant ALL. To detect key genes and elucidate the molecular mechanisms of MLL-R infant ALL, microarray expression data were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between MLL-R and non-MLL-R infant ALL were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out. Then, we constructed a protein-protein interaction (PPI) network and identified the hub genes. Finally, drug-gene interactions were mined. A total of 139 cases of MLL-R infant ALL including 77 (55.4%) fusions with AF4, 38 (27.3%) with ENL, 14 (10.1%) with AF9, and 10 (7.2%) other gene fusions were characterized. A total of 236 up-regulated and 84 down-regulated DEGs were identified. The up-regulated DEGs were mainly involved in homophilic cell adhesion, negative regulation of apoptotic process and cellular response to drug GO terms, while down-regulated DEGs were mainly enriched in extracellular matrix organization, protein kinase C signaling and neuron projection extension GO terms. The up-regulated DEGs were enriched in seven KEGG pathways, mainly involving transcriptional regulation and signaling pathways, and down-regulated DEGs were involved in three main KEGG pathways including Alzheimer’s disease, TGF-beta signaling pathway, and hematopoietic cell lineage. The PPI network included 297 nodes and 410 edges, with MYC, ALB, CD44, PTPRC and TNF identified as hub genes. Twenty-three drug-gene interactions including four up-regulated hub genes and 24 drugs were constructed by Drug Gene Interaction database (DGIdb). In conclusion, MYC, ALB, CD44, PTPRC and TNF may be potential bio-markers for the diagnosis and therapy of MLL-R infant ALL.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Juan Cheng
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Jiang RP, Xiong XJ, Qiu XS, Wang EH, Wu GP. The Morphological Analysis of Cells in the Peritoneal Washing Fluids of Patients with Gastric Cancer. Cell Transplant 2019; 28:1384-1389. [PMID: 31366210 PMCID: PMC6802142 DOI: 10.1177/0963689719864318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytology of peritoneal washing fluids for gastric cancer is the most basic method for judging peritoneal micrometastasis. However, the clinical value of this method is not clear at present. A retrospective analysis was performed on 277 patients with pathologically proven and surgically treated gastric cancer. The peritoneal washing fluids were collected after opening the abdomen and before the operation, and were sent to the cytology laboratory for screening of occult cancer cells in the collected washing fluids. The number of cases diagnosed as cancer cells, reactive mesothelial cells, serosal balls, and traumatic mesothelial cells were 42, 18, 27, and 190, respectively. Typical adenocarcinoma cell nests were found in eight of 10 T4b samples, whereas 34 cases of cancer cells in T3 and T4a showed that these cell nests usually contained mesothelial cells, and the three-dimensional stereoscopic sense of the nests was not obvious. In the specific subcellular morphological changes of both reactive mesothelial cells and serosal balls, the changes of both the contour of nuclear membrane and the polarity of cell alignment were present only in stage T3 and T4a. The presence or absence of mesothelial cells in the nests of cancer cells and the changes of the contour of nuclear membrane and of the polarity of cell alignment in reactive mesothelial cells or serosal balls may help us to predict the depth of invasion of cancer cells.
Collapse
Affiliation(s)
- Ren-Peng Jiang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Jiao Xiong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Oue N, Sentani K, Sakamoto N, Uraoka N, Yasui W. Molecular carcinogenesis of gastric cancer: Lauren classification, mucin phenotype expression, and cancer stem cells. Int J Clin Oncol 2019; 24:771-778. [PMID: 30980196 DOI: 10.1007/s10147-019-01443-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC), one of the most common human cancers, is a heterogeneous disease with different phenotypes, prognoses, and responses to treatment. Understanding the pathogenesis of GC at the molecular level is important for prognosis prediction and determining treatments. Microsatellite instability (MSI), silencing of MLH1, MGMT, and CDKN2A genes by DNA hypermethylation, KRAS mutation, APC mutation, and ERBB2 amplification are frequently found in intestinal type GC. Inactivation of CDH1 and RARB by DNA hypermethylation, and amplification of FGFR and MET, are frequently detected in diffuse type GC. In addition, BST2 and PCDHB9 genes are overexpressed in intestinal type GC. Both genes are associated with GC progression. GC can be divided into gastric/intestinal mucin phenotypes according to mucin expression. MSI, alterations of TP73, CDH1 mutation, and DNA methylation of MLH are detected frequently in the gastric mucin phenotype. TP53 mutation, deletion of APC, and DNA methylation of MGMT are detected frequently in the intestinal mucin phenotype. FKTN is overexpressed in the intestinal mucin phenotype, and IQGAP3 is overexpressed in the gastric mucin phenotype. These genes are involved in GC progression. To characterize cancer stem cells, a useful method is spheroid colony formation. KIFC1 and KIF11 genes show more than twofold higher expression in spheroid-forming cells than that in parental cells. Both KIF genes are overexpressed in GC, and knockdown of these genes inhibits spheroid formation. Alterations of these molecules may be useful to understand gastric carcinogenesis. Specific inhibitors of these molecules may also be promising anticancer drugs.
Collapse
Affiliation(s)
- Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohiro Uraoka
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
16
|
Sekino Y, Oue N, Mukai S, Shigematsu Y, Goto K, Sakamoto N, Sentani K, Hayashi T, Teishima J, Matsubara A, Yasui W. Protocadherin B9 promotes resistance to bicalutamide and is associated with the survival of prostate cancer patients. Prostate 2019; 79:234-242. [PMID: 30324761 DOI: 10.1002/pros.23728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Background Prostate cancer (PCa) is a common malignancy worldwide and is the second leading cause of cancer death in men. The standard therapy for advanced PCa is androgen deprivation therapy (ADT). Although ADT, including bicalutamide treatment, is initially effective, resistance to bicalutamide frequently occurs and leads to the development of castration-resistant PCa. Thus, clarifying the mechanisms of bicalutamide resistance is urgently needed. We designed this study to assess the expression and function of PCDHB9, which encodes the protocadherin B9 protein. Methods The expression of PCDHB9 was determined using immunohistochemistry and a qRT-PCR. The effects of the overexpression or knockdown of PCDHB9 on cell growth, migration, adhesion were evaluated. To evaluate the PCDHB9-mediated effects in PCa, we performed a gene expression analysis using DU145 transfected with PCDHB9. We examined the effects of PCDHB9 inhibition on bicalutamide resistance. Results The qRT-PCR revealed that the expression of PCDHB9 was much higher in PCa than that in non-neoplastic prostate tissues. In 152 clinically localized PCa cases immunohistochemistry showed that 59% of PCa cases were positive for protocadherin B9. A Kaplan-Meier analysis showed that the high expression of protocadherin B9 was associated with PSA recurrence after radical prostatectomy. A functional analysis showed that PCDHB9 modulated cell migration and adhesion. We also found that PCDHB9 induced the expression of ITGB6 based on a gene expression analysis. The effect of PCDHB9 inhibition on bicalutamide sensitivity was examined using MTT assays. The IC50 value of PCDHB9 siRNA-transfected PCa cells was significantly lower than that of negative control siRNA-transfected cells. Furthermore, immunohistochemical staining of protocadherin B9 in 74 PCa patients who were treated with androgen depletion therapy, including bicalutamide treatment, demonstrated that the high expression of protocadherin B9 was significantly associated with poor overall survival. Conclusions PCDHB9 plays an important role in the progression of PCa and bicalutamide resistance. Collectively, our results suggest that PCDHB9 targeted therapy may be more effective than bicalutamide alone.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shoichiro Mukai
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima, Japan
| | - Yoshinori Shigematsu
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
17
|
Sawaki K, Kanda M, Kodera Y. Review of recent efforts to discover biomarkers for early detection, monitoring, prognosis, and prediction of treatment responses of patients with gastric cancer. Expert Rev Gastroenterol Hepatol 2018; 12:657-670. [PMID: 29902383 DOI: 10.1080/17474124.2018.1489233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide. Despite recent advances in diagnosis and therapy, the prognosis of patients with GC is poor. Many patients have inoperable disease upon diagnosis or experience recurrent disease after curative gastrectomy. Unfortunately, tumor markers for GC, such as serum carcinoembryonic antigen and carbohydrate antigen 19-9, lack sufficient sensitivity and specificity. Therefore, effective biomarkers are required to detect early GC and to predict tumor recurrence and chemosensitivity. Areas covered: Here we aimed to review recent developments in techniques that improve the detection of aberrant expression of GC-associated molecules, including protein coding genes, microRNAs, long noncoding RNAs, and methylated promoter DNAs. Expert commentary: Detection of genetic and epigenetic alterations in gastric tissue or in the circulation will likely improve the diagnosis and management of GC to achieve significantly improved outcomes.
Collapse
Affiliation(s)
- Koichi Sawaki
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
18
|
Chen KB, Chen J, Jin XL, Huang Y, Su QM, Chen L. Exosome-mediated peritoneal dissemination in gastric cancer and its clinical applications. Biomed Rep 2018; 8:503-509. [PMID: 29774141 DOI: 10.3892/br.2018.1088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
The prognosis of patients with peritoneal dissemination from gastric cancer is poor, and the underlying molecular mechanism remains unclear. Exosomes, as macromolecular phospholipid bilayer vesicles comprising of proteins, nucleic acids and lipids, serve as mediators of cell-cell communication. Gastric cancer tumor-derived exosomes may be involved in the pathological process of peritoneal dissemination by mediating crosstalk between cancer cells and mesothelial cells, to result in the induction of enhanced tumor growth, migratory, adhesive and invasive abilities, peritoneal fibrosis and apoptosis, mesothelial-to-mesenchymal transition, angiogenesis and chemoresistance. The present review focuses on previous studies addressing the exosome-dependent molecular transfer in peritoneal dissemination in gastric cancer and the potential clinical applications.
Collapse
Affiliation(s)
- Kai-Bo Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jian Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiao-Li Jin
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yi Huang
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Qiu-Ming Su
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Li Chen
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|