1
|
Loukopoulou C, Nikolouzakis T, Koliarakis I, Vakonaki E, Tsiaoussis J. Telomere Length and Telomerase Activity as Potential Biomarkers for Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3370. [PMID: 39409990 PMCID: PMC11482595 DOI: 10.3390/cancers16193370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Gastrointestinal (GI) cancers, such as colorectal and gastric cancers, pose significant global health challenges due to their high rates of incidence and mortality. Even with advancements in treatment and early detection, many patients still face poor outcomes, highlighting the critical need for new biomarkers and therapeutic targets. Telomere length (TL) and telomerase activity (TA) have gained attention in this context. Telomeres, protective nucleotide sequences at chromosome ends, shorten with each cell division, leading to cellular aging. Telomerase, a ribonucleoprotein enzyme, counteracts this shortening by adding telomeric repeats, a process tightly regulated in normal cells but often dysregulated in cancer. This review critically evaluates the role of TL and TA in the pathogenesis of GI cancers, examining their potential as diagnostic, prognostic, and predictive biomarkers. It explores how alterations in telomere biology contribute to the initiation and progression of GI tumors and assesses the therapeutic implications of targeting telomerase. By integrating findings from diverse studies, this review aims to elucidate the intricate relationship between telomere dynamics and gastrointestinal carcinogenesis, offering insights into how TL and TA could be leveraged to enhance the early detection, treatment, and prognosis of GI cancers.
Collapse
Affiliation(s)
- Christina Loukopoulou
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Taxiarchis Nikolouzakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Ioannis Koliarakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| |
Collapse
|
2
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024:AD.2024.0586. [PMID: 38913043 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
|
3
|
Ertunc O, Smearman E, Zheng Q, Hicks JL, Brosnan-Cashman JA, Jones T, Gomes-Alexandre C, Trabzonlu L, Meeker AK, De Marzo AM, Heaphy CM. Chromogenic detection of telomere lengths in situ aids the identification of precancerous lesions in the prostate. Prostate 2024; 84:148-157. [PMID: 37849074 PMCID: PMC10843147 DOI: 10.1002/pros.24633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Telomeres are terminal chromosomal elements that are essential for the maintenance of genomic integrity. The measurement of telomere content provides useful diagnostic and prognostic information, and fluorescent methods have been developed for this purpose. However, fluorescent-based tissue assays are cumbersome for investigators to undertake, both in research and clinical settings. METHODS A robust chromogenic in situ hybridization (CISH) approach was developed to visualize and quantify telomere content at single cell resolution in human prostate tissues, both frozen and formalin-fixed, paraffin-embedded (FFPE). RESULTS This new assay (telomere chromogenic in situ hybridization ["Telo-CISH"]) produces permanently stained slides that are viewable with a standard light microscope, thus avoiding the need for specialized equipment and storage. The assay is compatible with standard immunohistochemistry, thereby allowing simultaneous assessment of histomorphology, identification of specific cell types, and assessment of telomere status. In addition, Telo-CISH eliminates the problem of autofluorescent interference that frequently occurs with fluorescent-based methods. Using this new assay, we demonstrate successful application of Telo-CISH to help identify precancerous lesions in the prostate by the presence of markedly short telomeres specifically in the luminal epithelial cells. CONCLUSIONS In summary, with fewer restrictions on the types of tissues that can be tested, and increased histologic information provided, the advantages presented by this novel chromogenic assay should extend the applicability of tissue-based telomere length assessment in research and clinical settings.
Collapse
Affiliation(s)
- Onur Ertunc
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erica Smearman
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Levent Trabzonlu
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K. Meeker
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland
| | - Christopher M. Heaphy
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
4
|
Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M, Karzi V, Katsikantami I, Kakridonis F, Hatzidaki E, Tolia M, Svistunov AA, Spandidos DA, Nikitovic D, Tsiaoussis J, Berdiaki A. Role of telomere length in human carcinogenesis (Review). Int J Oncol 2023; 63:78. [PMID: 37232367 PMCID: PMC10552730 DOI: 10.3892/ijo.2023.5526] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer is considered the most important clinical, social and economic issue regarding cause‑specific disability‑adjusted life years among all human pathologies. Exogenous, endogenous and individual factors, including genetic predisposition, participate in cancer triggering. Telomeres are specific DNA structures positioned at the end of chromosomes and consist of repetitive nucleotide sequences, which, together with shelterin proteins, facilitate the maintenance of chromosome stability, while protecting them from genomic erosion. Even though the connection between telomere status and carcinogenesis has been identified, the absence of a universal or even a cancer‑specific trend renders consent even more complex. It is indicative that both short and long telomere lengths have been associated with a high risk of cancer incidence. When evaluating risk associations between cancer and telomere length, a disparity appears to emerge. Even though shorter telomeres have been adopted as a marker of poorer health status and an older biological age, longer telomeres due to increased cell growth potential are associated with the acquirement of cancer‑initiating somatic mutations. Therefore, the present review aimed to comprehensively present the multifaceted pattern of telomere length and cancer incidence association.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Tatiana Oikonomopoulou
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Elisavet Renieri
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Evaggelia Iliaki
- Laboratory of Microbiology, University Hospital of Heraklion, 71500 Heraklion
| | - Maria Bachlitzanaki
- Department of Medical Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion
| | - Vasiliki Karzi
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Ioanna Katsikantami
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion
| | - Fotios Kakridonis
- Department of Spine Surgery and Scoliosis, KAT General Hospital, 14561 Athens
| | - Eleftheria Hatzidaki
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), University Hospital of Heraklion, 71500 Heraklion
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Crete, 71110 Heraklion, Greece
| | - Andrey A. Svistunov
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
5
|
Kroupa M, Kubecek O, Tomasova K, Hanak P, Krupova M, Cervena K, Siskova A, Rosendorf J, Hosek P, Vodickova L, Vodicka P, Liska V, John S, Vymetalkova V, Petera J. The dynamics of telomere length in primary and metastatic colorectal cancer lesions. Sci Rep 2023; 13:9097. [PMID: 37277368 DOI: 10.1038/s41598-023-35835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Telomeric sequences, the structures comprised of hexanucleotide repeats and associated proteins, play a pivotal role in chromosome end protection and preservation of genomic stability. Herein we address telomere length (TL) dynamics in primary colorectal cancer (CRC) tumour tissues and corresponding liver metastases. TL was measured by multiplex monochrome real-time qPCR in paired samples of primary tumours and liver metastases along with non-cancerous reference tissues obtained from 51 patients diagnosed with metastatic CRC. Telomere shortening was observed in the majority of primary tumour tissues compared to non-cancerous mucosa (84.1%, p < 0.0001). Tumours located within the proximal colon had shorter TL than those in the rectum (p < 0.05). TL in liver metastases was not significantly different from that in primary tumours (p = 0.41). TL in metastatic tissue was shorter in the patients diagnosed with metachronous liver metastases than in those diagnosed with synchronous liver metastases (p = 0.03). The metastatic liver lesions size correlated with the TL in metastases (p < 0.05). Following the neoadjuvant treatment, the patients with rectal cancer had shortened telomeres in tumour tissue than prior to the therapy (p = 0.01). Patients with a TL ratio between tumour tissue and the adjacent non-cancerous mucosa of ≥ 0.387 were associated with increased overall survival (p = 0.01). This study provides insights into TL dynamics during progression of the disease. The results show TL differences in metastatic lesions and may help in clinical practice to predict the patient's prognosis.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic.
| | - Ondrej Kubecek
- Department of Oncology and Radiotherapy, Charles University, Medical Faculty and University Hospital in Hradec Kralove, Simkova 870, 500 38, Hradec Kralove, Czech Republic
| | - Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Petr Hanak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marketa Krupova
- The Fingerland Department of Pathology, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec Kralove, Czech Republic
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1St Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1St Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Jachym Rosendorf
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Petr Hosek
- Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, 1St Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, 1St Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Vaclav Liska
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
| | - Stanislav John
- Department of Oncology and Radiotherapy, Charles University, Medical Faculty and University Hospital in Hradec Kralove, Simkova 870, 500 38, Hradec Kralove, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Alej Svobody 76, 323 00, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, 1St Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Jiri Petera
- Department of Oncology and Radiotherapy, Charles University, Medical Faculty and University Hospital in Hradec Kralove, Simkova 870, 500 38, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Ertunc O, Smearman E, Zheng Q, Hicks JL, Brosnan-Cashman JA, Jones T, Gomes-Alexandre C, Trabzonlu L, Meeker AK, De Marzo AM, Heaphy CM. Chromogenic detection of telomere lengths in situ aids the identification of precancerous lesions in the prostate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535575. [PMID: 37066381 PMCID: PMC10104079 DOI: 10.1101/2023.04.04.535575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Telomeres are terminal chromosomal elements that are essential for the maintenance of genomic integrity. The measurement of telomere content provides useful diagnostic and prognostic information, and fluorescent methods have been developed for this purpose. However, fluorescent-based tissue assays are cumbersome for investigators to undertake, both in research and clinical settings. Here, a robust chromogenic in situ hybridization (CISH) approach was developed to visualize and quantify telomere content at single cell resolution in human prostate tissues, both frozen and formalin-fixed, paraffin-embedded (FFPE). This new assay ("Telo-CISH") produces permanently stained slides that are viewable with a standard light microscope, thus avoiding the need for specialized equipment and storage. The assay is compatible with standard immunohistochemistry, thereby allowing simultaneous assessment of histomorphology, identification of specific cell types, and assessment of telomere status. In addition, Telo-CISH eliminates the problem of autofluorescent interference that frequently occurs with fluorescent-based methods. Using this new assay, we demonstrate successful application of Telo-CISH to help identify precancerous lesions in the prostate by the presence of markedly short telomeres specifically in the luminal epithelial cells. In summary, with fewer restrictions on the types of tissues that can be tested, and increased histologic information provided, the advantages presented by this novel chromogenic assay should extend the applicability of tissue-based telomere length assessment in research and clinical settings.
Collapse
Affiliation(s)
- Onur Ertunc
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | - Erica Smearman
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | - Qizhi Zheng
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | - Jessica L. Hicks
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | | | - Tracy Jones
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | | | - Levent Trabzonlu
- The Department of Pathology, The Johns Hopkins University School of Medicine
| | - Alan K. Meeker
- The Department of Pathology, The Johns Hopkins University School of Medicine
- The Department of Urology, The Johns Hopkins University School of Medicine
- The Department of Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland
| | - Angelo M. De Marzo
- The Department of Pathology, The Johns Hopkins University School of Medicine
- The Department of Urology, The Johns Hopkins University School of Medicine
- The Department of Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland
| | - Christopher M. Heaphy
- The Department of Medicine, Boston University, School of Medicine and Boston Medical Center, Boston, Massachusetts
- The Department Pathology and Laboratory Medicine, Boston University, School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
7
|
Matsuda Y, Ye J, Yamakawa K, Mukai Y, Azuma K, Wu L, Masutomi K, Yamashita T, Daigo Y, Miyagi Y, Yokose T, Oshima T, Ito H, Morinaga S, Kishida T, Minamoto T, Kojima M, Kaneko S, Haba R, Kontani K, Kanaji N, Okano K, Muto-Ishizuka M, Yokohira M, Saoo K, Imaida K, Suizu F. Association of longer telomere length in cancer cells and cancer-associated fibroblasts with worse prognosis. J Natl Cancer Inst 2023; 115:208-218. [PMID: 36567450 PMCID: PMC9905972 DOI: 10.1093/jnci/djac226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/02/2022] [Accepted: 11/28/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Telomere dysfunction has been reported to be directly involved in carcinogenesis owing to chromosomal instability and immortalization; however, the clinicopathological significance of telomeres remains controversial. We have shown that telomere shortening occurs in normal-appearing duct cells at initiation and then continues during the progression of pancreatic cancer. In this study, we determined the clinicopathological and prognostic value of telomere length (TL) in cancer progression. METHODS TL in both cancer cells and cancer-associated fibroblasts (CAFs) was analyzed by high-throughput quantitative fluorescence in situ hybridization using a previously reported cohort comprising 1434 cases of adenocarcinoma (ADC), squamous cell carcinoma (SCC), adenosquamous carcinoma, hepatocellular carcinoma, and renal cell carcinoma (RCC), which are known cancers with a statistically significantly low incidence of alternative lengthening of telomeres. Cases were divided into 2 groups as follows: longer and shorter telomeres, according to the median TL of cancer cells and CAFs. The statistical significance of TL in cancer cells and CAFs on clinicopathological characteristics and prognosis was analyzed. RESULTS There was a close association between TL in cancer cells and CAFs. Longer telomeres in cancer cells and CAFs were associated with aggressive features such as advanced stage, high mitosis score and nuclear score, poorly differentiated cancer, and desmoplastic stroma in ADC. Furthermore, a longer TL was an independent prognostic factor for ADC, SCC, and RCC. CONCLUSIONS Longer telomeres are associated with worse prognosis in ADC, SCC, and RCC. Thus, TL is a novel biomarker for the diagnosis of aggressive cancers with poor prognoses.
Collapse
Affiliation(s)
- Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Juanjuan Ye
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Keiko Yamakawa
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Yuri Mukai
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Kazuki Azuma
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Linxuan Wu
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
- Department of Plastic Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Kenkichi Masutomi
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - Yohei Miyagi
- Kanagawa Cancer Center Research Institute, Asahi-ku, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Soichiro Morinaga
- Department of Hepato-Biliary and Pancreatic Surgery, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Takeshi Kishida
- Department of Urology, Kanagawa Cancer Center, Asahi-ku, Yokohama, Japan
| | - Toshinari Minamoto
- Divison of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa-shi, Chiba, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Reiji Haba
- Diagnostic Pathology, Kagawa University, Kita-gun, Kagawa, Japan
| | - Keiichi Kontani
- Department of Thoracic, Breast and Endocrine Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Nobuhiro Kanaji
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Mariko Muto-Ishizuka
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Masanao Yokohira
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Kousuke Saoo
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Katsumi Imaida
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Futoshi Suizu
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|
8
|
Likonen D, Pinchasi M, Beery E, Sarsor Z, Signorini LF, Gervits A, Sharan R, Lahav M, Raanani P, Uziel O. Exosomal telomerase transcripts reprogram the microRNA transcriptome profile of fibroblasts and partially contribute to CAF formation. Sci Rep 2022; 12:16415. [PMID: 36180493 PMCID: PMC9525320 DOI: 10.1038/s41598-022-20186-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
It is now well accepted that cancer cells change their microenvironment from normal to tumor-supportive state to provide sustained tumor growth, metastasis and drug resistance. These processes are partially carried out by exosomes, nano-sized vesicles secreted from cells, shuttled from donor to recipient cells containing a cargo of nucleic acids, proteins and lipids. By transferring biologically active molecules, cancer-derived exosomes may transform microenvironmental cells to become tumor supportive. Telomerase activity is regarded as a hallmark of cancer. We have recently shown that the transcript of human telomerase reverse transcriptase (hTERT), is packaged in cancer cells derived- exosomes. Following the engulfment of the hTERT transcript into fibroblasts, it is translated into a fully active enzyme [after assembly with its RNA component (hTERC) subunit]. Telomerase activity in the recipient, otherwise telomerase negative cells, provides them with a survival advantage. Here we show that exosomal telomerase might play a role in modifying normal fibroblasts into cancer associated fibroblasts (CAFs) by upregulating \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{\alpha }$$\end{document}αSMA and Vimentin, two CAF markers. We also show that telomerase activity changes the transcriptome of microRNA in these fibroblasts. By ectopically expressing microRNA 342, one of the top identified microRNAs, we show that it may mediate the proliferative phenotype that these cells acquire upon taking-up exosomal hTERT, providing them with a survival advantage.
Collapse
Affiliation(s)
- Daniela Likonen
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Maria Pinchasi
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | - Zinab Sarsor
- The Felsenstein Medical Research Center, Petah-Tikva, Israel
| | | | - Asia Gervits
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Roded Sharan
- School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Meir Lahav
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Pia Raanani
- The Felsenstein Medical Research Center, Petah-Tikva, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Orit Uziel
- The Felsenstein Medical Research Center, Petah-Tikva, Israel. .,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel.
| |
Collapse
|
9
|
Molecular Markers of Telomerase Complex for Patients with Pituitary Adenoma. Brain Sci 2022; 12:brainsci12080980. [PMID: 35892421 PMCID: PMC9331889 DOI: 10.3390/brainsci12080980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Pituitary adenoma (PA) is the most common benign tumor of the pituitary gland. The pathogenesis of most PA is considered as a multifactorial process, that involves genetic mutations, alterations in gene transcription, and epigenetic factors. Their interaction promotes tumorigenesis. The processes are increasingly focused on changes in telomere length. Our study enrolled 126 patients with PA and 368 healthy subjects. DNA samples from peripheral blood leukocytes were purified by the DNA salting-out method. The RT-PCR carried out SNPs and relative leukocyte telomere lengths (RLTL). ELISA determined the level of TEP1 in blood serum. Binary logistic regression revealed that TERC rs35073794 is likely associated with increased odds of PA development and macro-PA development. It is also associated with decreased odds of active PA, non-invasive PA, and PA without relapse development. Also, we discovered that PA patients with at least one G allele of the TEP1 gene polymorphism rs1713418 have lower serum TEP1 levels than healthy individuals (p = 0.035). To conclude, the study revealed that TERC rs35073794 might be a potential biomarker for PA development.
Collapse
|
10
|
Association between telomere length and hepatic fibrosis in non-alcoholic fatty liver disease. Sci Rep 2021; 11:18004. [PMID: 34504179 PMCID: PMC8429461 DOI: 10.1038/s41598-021-97385-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Telomere length has been linked to the prevalence and progression of metabolic disease. However, clinical implications of telomere length in biopsy-proven non-alcoholic fatty liver disease (NAFLD) patients remain unclear. Therefore, this study aimed to investigate the association of telomere length with the histological severity of NAFLD. The cross-sectional data derived from the prospectively enrolled Boramae NAFLD registry (n = 91) were analyzed. The liver tissues and clinical information were obtained from both NAFLD patients and non-NAFLD subjects. Binary logistic regression was performed to identify the independent association between telomere length and the histological severity of NAFLD. A total of 83 subjects with or without biopsy-proven NAFLD were included for analysis: non-NAFLD in 23 (27.7%), non-alcoholic fatty liver in 15 (18.1%), and non-alcoholic steatohepatitis (NASH) in 45 (54.2%). Telomere length measured from liver tissues showed a strong negative correlation (p < 0.001) with age, regardless of NAFLD status. Therefore, telomere length was corrected for age. Age-adjusted telomere length than decreased gradually with an increasing severity of fibrosis in patients with NAFLD (p < 0.028). In multivariate analysis, age-adjusted telomere length (odds ratio [OR] 0.59; 95% CI 0.37–0.92; p = 0.019) and high-density lipoprotein cholesterol (OR 0.94; 95% CI 0.80–0.99; p = 0.039) were independently associated with significant fibrosis. The age-adjusted telomere length tends to decrease along with the fibrosis stage of NAFLD. In particular, among the histological components of NAFLD, fibrosis severity seems to be related to telomere length in the liver.
Collapse
|
11
|
Tang LJ, Rios RS, Zhang H, Byrne CD, Targher G, Zheng MH. Telomerase: a key player in the pathogenesis of non-alcoholic fatty liver disease? Expert Rev Gastroenterol Hepatol 2021; 15:811-819. [PMID: 33709875 DOI: 10.1080/17474124.2021.1903318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Telomerase is a basic nuclear protein reverse transcriptase, which plays a key role in maintaining telomere stability, genome integrity, long-term cell activity, and potential continued proliferation.Area covered: This narrative review discusses key research advances involving telomerase in the development and progression of nonalcoholic fatty liver disease (NAFLD). The review evaluates 9a) whether the assessment of telomerase can be used as a noninvasive diagnostic tool; and (b) whether modification of telomerase function might be a useful potential therapeutic target for treatment of NAFLD. Furthermore, the relationship between telomerase and other chronic metabolic diseases is evaluated.Expert opinion: Several experimental and preclinical studies have suggested that telomerase plays an important role in the development of NAFLD. However, further mechanistic studies are needed to prove a causal relationship and to better elucidate whether the measurement of telomerase has utility as a diagnostic tool or whether pharmacological manipulation of telomerase has therapeutic potential in NAFLD treatment.
Collapse
Affiliation(s)
- Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rafael S Rios
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huai Zhang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
12
|
Yamada S, Misawa K, Mima M, Imai A, Mochizuki D, Yamada T, Shinmura D, Kita J, Ishikawa R, Yamaguchi Y, Misawa Y, Kawasaki H, Mineta H. Telomere shortening in head and neck cancer: association between DNA demethylation and survival. J Cancer 2021; 12:2165-2172. [PMID: 33758594 PMCID: PMC7974875 DOI: 10.7150/jca.54760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
A growing body of evidence indicates that telomere dysfunction is a biological marker of progression in several types of cancer. However, the association between head and neck squamous cell carcinoma (HNSCC) and telomere length (TL) remains unknown. We measured the absolute TL levels in a well-characterised dataset of 211 tumoral vs normal tissues obtained from the same patients by quantitative polymerase chain reaction assay. Normalised TL levels were significantly lower in tumour samples than in normal tissue (P < 0.001) and there was a positive correlation between tumour tissue and normal mucosal tissue (R2 = 0.176, P < 0.001). We were able to distinguish two classes, one with a tumour/normal TL ratio ≤ 0.3 (38.4%), which showed clear telomere erosion, and the other with a tumour/normal TL ratio > 0.3 (61.6%), in which the TL was slightly shorter or longer than that in normal tissue. Notably, the tumour/normal TL ratio was correlated with the likelihood of disease recurrence (P = 0.002), the 5-hydroxymethylcytosine level (P = 0.043), and expression of the ten-eleven translocation (TET) gene (P = 0.043). Our findings show that TL shortening and subsequent low levels of 5-hydroxymethylcytosine and TET expression may contribute to development of HNSCC.
Collapse
Affiliation(s)
- Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taiki Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daichi Shinmura
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junya Kita
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Yamaguchi
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
Zhao Y, Yang B, Chen D, Zhou X, Wang M, Jiang J, Wei L, Chen Z. Combined identification of ARID1A, CSMD1, and SENP3 as effective prognostic biomarkers for hepatocellular carcinoma. Aging (Albany NY) 2021; 13:4696-4712. [PMID: 33558447 PMCID: PMC7906131 DOI: 10.18632/aging.202586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
Background: The current study aimed to understand the genetic landscape and investigate the diagnostic and prognostic biomarkers of primary hepatocellular carcinoma (HCC). Methods: A cohort of 36 Chinese HCC samples with hepatitis B virus (HBV) infection was examined by whole-exome sequencing (WES). Prognosis-related alterations were identified and further verified in the TCGA database and GSE65372 profiles in the GEO database. A Chinese replication cohort of 180 HCC samples with HBV infection was collected to evaluate the candidate genes by immunohistochemical analysis. A receiver operating characteristic (ROC) curve analysis evaluated the prognostic power of candidate genes. Finally, EdU and transwell invasion assay were performed to detect the function of candidate genes. Results: A total of 11 novel genes showed a significant association with HCC in the discovery cohort. The data were verified using the GEO and TCGA databases, and the expression of ARID1A, CSMD1, and SENP was evaluated in the replication cohort. Furthermore, ARID1A, CSMD1, and SENP3 are effective prognostic biomarkers for HCC patients in the replication population. Conclusions: Molecular heterogeneity was detected in HCC patients, and ARID1A, CSMD1, and SENP3 were identified as effective HCC prognosis biomarkers. CSMD1 prevents HCC by suppressing cell invasion.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.,NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.,NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.,NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaojun Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.,NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Meixi Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.,NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Jipin Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.,NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.,NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China.,NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| |
Collapse
|
14
|
Zhang J, Gu C, Song Q, Zhu M, Xu Y, Xiao M, Zheng W. Identifying cancer-associated fibroblasts as emerging targets for hepatocellular carcinoma. Cell Biosci 2020; 10:127. [PMID: 33292459 PMCID: PMC7603733 DOI: 10.1186/s13578-020-00488-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a complex multicellular functional compartment that includes fibroblasts, myofibroblasts, endothelial cells, immune cells, and extracellular matrix (ECM) elements. The microenvironment provides an optimum condition for the initiation, growth, and dissemination of hepatocellular carcinoma (HCC). As one of the critical and abundant components in tumor microenvironment, cancer-associated fibroblasts (CAFs) have been implicated in the progression of HCC. Through secreting various growth factors and cytokines, CAFs contribute to the ECM remodeling, stem features, angiogenesis, immunosuppression, and vasculogenic mimicry (VM), which reinforce the initiation and development of HCC. In order to restrain the CAFs-initiated HCC progression, current strategies include targeting specific markers, engineering CAFs with tumor-suppressive phenotype, depleting CAFs’ precursors, and repressing the secretions or downstream signaling. In this review, we update the emerging understanding of CAFs in HCC, with particular emphasis on cellular origin, phenotypes, biological functions and targeted strategies. It provides insights into the targeting CAFs for HCC treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Chaoyu Gu
- School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, One Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mengqi Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yuqing Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mingbing Xiao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
15
|
Protsenko E, Rehkopf D, Prather AA, Epel E, Lin J. Are long telomeres better than short? Relative contributions of genetically predicted telomere length to neoplastic and non-neoplastic disease risk and population health burden. PLoS One 2020; 15:e0240185. [PMID: 33031470 PMCID: PMC7544094 DOI: 10.1371/journal.pone.0240185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Mendelian Randomization (MR) studies exploiting single nucleotide polymorphisms (SNPs) predictive of leukocyte telomere length (LTL) have suggested that shorter genetically determined telomere length (gTL) is associated with increased risks of degenerative diseases, including cardiovascular and Alzheimer’s diseases, while longer gTL is associated with increased cancer risks. These varying directions of disease risk have long begged the question: when it comes to telomeres, is it better to be long or short? We propose to operationalize and answer this question by considering the relative impact of long gTL vs. short gTL on disease incidence and burden in a population. Methods and findings We used odds ratios (OR) of disease associated with gTL from a recently published MR meta-analysis to approximate the relative contributions of gTL to the incidence and burden of neoplastic and non-neoplastic disease in a European population. We obtained incidence data of the 9 cancers associated with long gTL and 4 non-neoplastic diseases associated with short gTL from the Institute of Health Metrics (IHME). Incidence rates of individual cancers from SEER, a database of United States cancer records, were used to weight the ORs in order to align with the available IHME data. These data were used to estimate the excess incidences due to long vs. short gTL, expressed as per 100,000 persons per standard deviation (SD) change in gTL. To estimate the population disease burden, we used the Disability Adjusted Life Years (DALY) metric from the IHME, a measure of overall disease burden that accounts for both mortality and morbidity, and similarly calculated the excess DALY associated with long vs. short gTL. Results Our analysis shows that, despite the markedly larger ORs of neoplastic disease, the large incidence of degenerative diseases causes the excess incidence attributable to gTL to balance that of neoplastic diseases. Long gTL is associated with an excess incidence of 94.04 cases/100,000 persons/SD (45.49–168.84, 95%CI) from the 9 cancer, while short gTL is associated with an excess incidence of 121.49 cases/100,000 persons/SD (48.40–228.58, 95%CI) from the 4 non-neoplastic diseases. When considering disease burden using the DALY metric, long gTL is associated with an excess 1255.25 DALYs/100,000 persons/SD (662.71–2163.83, 95%CI) due to the 9 cancers, while short gTL is associated with an excess 1007.75 DALYs/100,000 persons/SD (411.63–1847.34, 95%CI) due to 4 non-neoplastic diseases. Conclusions Our results show that genetically determined long and short telomere length are associated with disease risk and burden of approximately equal magnitude. These results provide quantitative estimates of the relative impact of genetically-predicted short vs. long TL in a human population, and provide evidence in support of the cancer-aging paradox, wherein human telomere length is balanced by opposing evolutionary forces acting to minimize both neoplastic and non-neoplastic diseases. Importantly, our results indicate that odds ratios alone can be misleading in different clinical scenarios, and disease risk should be assessed from both an individual and population level in order to draw appropriate conclusions about the risk factor’s role in human health.
Collapse
Affiliation(s)
| | - David Rehkopf
- Stanford Department of Primary Care and Population Health, Stanford, CA, United States of America
| | - Aric A. Prather
- UCSF Department of Psychiatry, San Francisco, CA, United States of America
| | - Elissa Epel
- UCSF Department of Psychiatry, San Francisco, CA, United States of America
| | - Jue Lin
- UCSF Department of Biochemistry and Biophysics, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sansone V, Le Grazie M, Roselli J, Polvani S, Galli A, Tovoli F, Tarocchi M. Telomerase reactivation is associated with hepatobiliary and pancreatic cancers. Hepatobiliary Pancreat Dis Int 2020; 19:420-428. [PMID: 32386990 DOI: 10.1016/j.hbpd.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) and its components play a significant role in cancer progression, but recent data demonstrated that telomeres and telomerase alterations could be found in other diseases; increasing evidence suggests a key role of this enzyme in the fields of hepatobiliary and pancreatic diseases. DATA SOURCES We performed a PubMed search with the following keywords: telomerase, hepatocellular carcinoma, cholangiocarcinoma, pancreatic adenocarcinoma by December 2019. We reviewed the relevant publications that analyzed the correlation between telomerase activity and hepatobiliary and pancreatic diseases. RESULTS Telomerase reactivation plays a significant role in the development and progression of hepatobiliary and pancreatic tumors and could be used as a diagnostic biomarker for hepatobiliary and pancreatic cancers, as a predictor for prognosis and a promising therapeutic target. CONCLUSIONS Our review summarized the evidence about the critical role of hTERT in cancerous and precancerous lesions of the alteration and its activity in hepatobiliary and pancreatic diseases.
Collapse
Affiliation(s)
- Vito Sansone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Marco Le Grazie
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Jenny Roselli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Mirko Tarocchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139 Firenze, Italy
| |
Collapse
|
17
|
Morais M, Dias F, Resende T, Nogueira I, Oliveira J, Maurício J, Teixeira AL, Medeiros R. Leukocyte telomere length and hTERT genetic polymorphism rs2735940 influence the renal cell carcinoma clinical outcome. Future Oncol 2020; 16:1245-1255. [PMID: 32422075 DOI: 10.2217/fon-2019-0795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Analysis of the genetic hTERT-1327 C>T (rs2735940) influence on leukocyte telomere length (LTL) and tumor development, progression and overall survival in renal cell carcinoma (RCC) patients. Materials & methods: Using leukocyte DNA of RCC patients and healthy individuals, LTL measurement and allelic discrimination of rs2735940 was performed by real-time PCR. Results: RCC patients showed shorter LTL than healthy individuals and LTL increased with clinical stage. CC+TC genotypes healthy carriers' presented shorter LTL. However, no statistical association between the different genotypes and RCC risk. Nevertheless, CC homozygous presented a reduced time to disease progression and a lower overall survival. The use of hTERT-1327 single nucleotide polymorphism information increased the capacity to predict risk for RCC progression. Conclusion: In fact, in healthy individuals, hTERT-1327 CC+TC genotypes were associated with shorter LTL, and this single nucleotide polymorphism was associated with time to disease progression, being a promising potential prognosis biomarker to be used in the future.
Collapse
Affiliation(s)
- Mariana Morais
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Research, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal.,ICBAS, Abel Salazar Institute for The Biomedical Sciences, University of Porto, Portugal
| | - Francisca Dias
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,ICBAS, Abel Salazar Institute for The Biomedical Sciences, University of Porto, Portugal
| | - Telma Resende
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Inês Nogueira
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Research, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana L Teixeira
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Research, LPCC-Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça de 9 de Abril 349, 4249-004 Porto, Portugal
| |
Collapse
|
18
|
The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol 2019; 16:544-558. [PMID: 31253940 DOI: 10.1038/s41575-019-0165-3] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Telomerase is a key enzyme for cell survival that prevents telomere shortening and the subsequent cellular senescence that is observed after many rounds of cell division. In contrast, inactivation of telomerase is observed in most cells of the adult liver. Absence of telomerase activity and shortening of telomeres has been implicated in hepatocyte senescence and the development of cirrhosis, a chronic liver disease that can lead to hepatocellular carcinoma (HCC) development. During hepatocarcinogenesis, telomerase reactivation is required to enable the uncontrolled cell proliferation that leads to malignant transformation and HCC development. Part of the telomerase complex, telomerase reverse transcriptase, is encoded by TERT, and several mechanisms of telomerase reactivation have been described in HCC that include somatic TERT promoter mutations, TERT amplification, TERT translocation and viral insertion into the TERT gene. An understanding of the role of telomeres and telomerase in HCC development is important to develop future targeted therapies and improve survival of this disease. In this Review, the roles of telomeres and telomerase in liver carcinogenesis are discussed, in addition to their potential translation to clinical practice as biomarkers and therapeutic targets.
Collapse
|
19
|
The protective function of non-coding DNA in DNA damage accumulation with age and its roles in age-related diseases. Biogerontology 2019; 20:741-761. [PMID: 31473864 DOI: 10.1007/s10522-019-09832-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
Aging is a progressive decline of physiological function in tissue and organ accompanying both accumulation of DNA damage and reduction of non-coding DNA. Peripheral non-coding DNA/heterochromatin has been proposed to protect the genome and centrally-located protein-coding sequences in soma and male germ cells against radiation and the invasion of exogenous nucleic acids. Therefore, this review summarizes the reduction of non-coding DNA/heterochromatin (including telomeric DNA and rDNA) and DNA damage accumulation during normal physiological aging and in various aging-related diseases. Based on analysis of data, it is found that DNA damage accumulation is roughly negatively correlated with the reduction of non-coding DNA and therefore speculated that DNA damage accumulation is likely due to the reduction of non-coding DNA protection in genome defense during aging. Therefore, it is proposed here that means to increase the total amount of non-coding DNA and/or heterochromatin prior to the onset of these diseases could potentially better protect the genome and protein-coding DNA, reduce the incidence of aging-related diseases, and thus lead to better health during aging.
Collapse
|
20
|
Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, Sun L, Gong Z, Xu Z. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res 2019; 38:171. [PMID: 31014370 PMCID: PMC6480893 DOI: 10.1186/s13046-019-1172-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) plays an essential role in cancer cell growth, metabolism and immunoreaction. Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis. Targeting autophagy has gained interest with multiple preclinical and clinical trials, such as the pharmacological inhibitor chloroquine or the inducer rapamycin, especially in exploiting its ability to modulate the secretory capability of CAFs to enhance drug delivery or inhibit it to prevent its influence on cancer cell chemoresistance. In this review, we summarize the reports on autophagy in cancer-associated fibroblasts by detailing the mechanism and role of autophagy in CAFs, including the hypoxic-autophagy positive feedback cycle, the metabolic cross-talk between CAFs and tumors induced by autophagy, CAFs secreted cytokines promote cancer survival by secretory autophagy, CAFs autophagy-induced EMT, stemness, senescence and treatment sensitivity, as well as the research of antitumor chemicals, miRNAs and lncRNAs. Additionally, we discuss the evidence of molecules in CAFs that are relevant to autophagy and the contribution to sensitive treatments as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Hu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shuyi Zhou
- Hunan Provincial People's Hospital Xingsha Branch (People's Hospital of Changsha County), Changsha, 410008, Hunan, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
21
|
Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 2018; 18:99-115. [DOI: 10.1038/s41573-018-0004-1] [Citation(s) in RCA: 633] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Zhao Z, Tan Q, Zhan X, Lin J, Fan Z, Xiao K, Li B, Liao Y, Huang X. Cascaded Electrochemiluminescence Signal Amplifier for the Detection of Telomerase Activity from Tumor Cells and Tissues. Am J Cancer Res 2018; 8:5625-5633. [PMID: 30555568 PMCID: PMC6276299 DOI: 10.7150/thno.27680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase is closely linked to the physiological transformation of tumor cells and is commonly overexpressed in most types of tumor cells. Therefore, telomerase has become a potential biomarker for the process of tumorigenesis, progression, prognosis and metastasis. Thus, it is important to develop a simple, accurate and reliable method for detecting telomerase activity. As a high signal-to-noise ratio mode, electrochemiluminescence (ECL) has been widely applied in the field of biomedical analysis. Here, our objective was to construct an improved ECL signal amplifier for the detection of telomerase activity. Methods: A cascaded ECL signal amplifier was constructed to detect telomerase activity with high selectivity via controllable construction of a lysine-based dendric Ru(bpy)3 2+ polymer (DRP). The sensitivity, specificity and performance index were simultaneously evaluated by standard substance and cell and tissue samples. Results: With this cascaded ECL signal amplifier, high sensitivities of 100, 50, and 100 cells for three tumor cell lines (A549, MCF7 and HepG2 cell lines) were simultaneously achieved, and desirable specificity was also obtained. Furthermore, the excellent performance of this platform was also demonstrated in the detection of telomerase in tumor cells and tissues. Conclusion: This cascaded ECL signal amplifier has the potential to be a technological innovation in the field of telomerase activity detection.
Collapse
|