1
|
Rahaman W, Chaudhuri A. Relative biomembrane fusogenicities of the tumor-selective liposomes of RGDK- and CGKRK-lipopeptides. NANOSCALE 2024; 16:9836-9852. [PMID: 38713132 DOI: 10.1039/d4nr00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cancer is the second leading cause of death globally after heart diseases. Currently used highly cytotoxic anti-cancer drugs not only kill cancer cells but also often kill non-cancerous healthy body cells, causing adverse side effects. Efforts are now being directed towards developing tumor-selective chemotherapy. Tumor/tumor endothelial cell selective peptide ligands are being covalently grafted onto the exo-surfaces of drug carriers such as liposomes, polymers, etc. A number of prior studies used conjugation of tumor/tumor endothelial cell-selective RGDK- or CGKRK-peptide ligands on the outer surfaces of liposomes, metal-based nanoparticles, single walled carbon nanotubes (SWNTs), etc. However, studies aimed at examining the relative cell membrane fusogenicities and the relative degrees of cellular uptake for the RGDK- and CGKRK-ligand-grafted nanometric drug carriers have not yet been undertaken. Herein, using the widely used liposomes of DOPC, DOPE, DOPS and cholesterol (45 : 25 : 20 : 15, w/w ratio) as the model biomembranes and the fluorescence resonance energy transfer (FRET) assay for measuring membrane fusogenicities, we show that the liposomes of the RGDK-lipopeptide are more biomembrane fusogenic than the liposomes of the CGKRK-lipopeptide. Notably, such FRET assay-derived relative biomembrane fusogenicities of the liposomes of RGDK- and CGKRK-lipopeptides were found to be consistent with their relative degrees of cellular uptake in cultured cancer cells. The present findings open the door for undertaking in-depth in vivo studies aimed at evaluating the relative therapeutic potential of different nanocarriers of drugs/genes/siRNA having tumor-targeting RGDK- and CGKRK-peptides on their exo-surfaces.
Collapse
Affiliation(s)
- Wahida Rahaman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| | - Arabinda Chaudhuri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| |
Collapse
|
2
|
High endothelial venules associated with better prognosis in esophageal squamous cell carcinoma. Ann Diagn Pathol 2022; 61:152051. [DOI: 10.1016/j.anndiagpath.2022.152051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
3
|
Han M, Sun Y, Zhao W, Xiang G, Wang X, Jiang Z, Xue Z, Zhou W. Comprehensive characterization of TNFSF14/LIGHT with implications in prognosis and immunotherapy of human gliomas. Front Immunol 2022; 13:1025286. [PMID: 36341396 PMCID: PMC9632349 DOI: 10.3389/fimmu.2022.1025286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 07/02/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a common central neural system malignant tumor among adults. Alongside its microscopic spread, immunosuppression in the tumor microenvironment also induces its refractoriness, which makes immunotherapy for GBM particularly important. Unfortunately, traditional immune checkpoint inhibitors (ICIs) often show limited therapeutic effects in GBM clinical trials, and new therapeutic strategies or targets are urgently needed. TNFSF14/LIGHT is a novel immune checkpoint molecule that plays essential roles in both innate and acquired immunity. Despite recent advances in our understanding of the function of TNFSF14/LIGHT in a variety of cancer types, the clinical and immunological importance of TNFSF14/LIGHT in human gliomas has not been fully explained. Here, we employed a comprehensive in silico analysis with publicly available data to analyze the molecular and immune characteristics of TNFSF14/LIGHT to explore its feasibility as an immunotherapy target. Totally, 2215 glioma cases were enrolled in the current study. Immunohistochemistry staining based on patient tissues (n = 34) was performed for the validation. TNFSF14/LIGHT was expressed higher in higher-WHO-grade gliomas and mesenchymal subtypes, and it was sensitive as a prognostic marker in GBM and low-grade glioma (LGG). A nomogram prognostic model was established based on TNFSF14/LIGHT expression together with other risk factors. Additionally, Gene Ontology and pathway analysis revealed that TNFSF14/LIGHT participated in T-cell activities and inflammatory processes. Moreover, analysis based on the structure and interactions of TNFSF14/LIGHT revealed its mutation sites in tumors as well as crucial interacting proteins. Analysis of IMvigor210 indicated the role of TNFSF14/LIGHT in immunotherapy. Altogether, our results reveal an underlying role of TNFSF14/LIGHT as an immunotherapy target in GBM.
Collapse
Affiliation(s)
- Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Wenbo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Guo Xiang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Xu Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Wei Zhou
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
4
|
Hussain B, Kasinath V, Ashton-Rickardt GP, Clancy T, Uchimura K, Tsokos G, Abdi R. High endothelial venules as potential gateways for therapeutics. Trends Immunol 2022; 43:728-740. [PMID: 35931612 PMCID: PMC10804419 DOI: 10.1016/j.it.2022.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
High endothelial venules (HEVs) are specialized blood vessels that support the migration of lymphocytes from the bloodstream into lymph nodes (LNs). They are also formed ectopically in mammalian organs affected by chronic inflammation and cancer. The recent arrival of immunotherapy at the forefront of many cancer treatment regimens could boost a crucial role for HEVs as gateways for the treatment of cancer. In this review, we describe the microanatomical and biochemical characteristics of HEVs, mechanisms of formation of newly made HEVs, immunotherapies potentially dependent on HEV-mediated T cell homing to tumors, and finally, how HEV-targeted therapies might be used as a complementary approach to potentially shape the therapeutic landscape for the treatment of cancer and immune-mediated diseases.
Collapse
Affiliation(s)
- Bilal Hussain
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Thomas Clancy
- Division of Surgical Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kenji Uchimura
- University Lille, CNRS, UMR8576 - UGSF - Unite de Glycogiologie Structurale et Functionelle, 59000 Lille, France
| | - George Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Kang W, Feng Z, Luo J, He Z, Liu J, Wu J, Rong P. Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies. Front Immunol 2021; 12:689270. [PMID: 34394083 PMCID: PMC8358404 DOI: 10.3389/fimmu.2021.689270] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
The complex tumor microenvironment (TME) plays a vital role in cancer development and dramatically determines the efficacy of immunotherapy. Tertiary lymphoid structures (TLSs) within the TME are well recognized and consist of T cell-rich areas containing dendritic cells (DCs) and B cell-rich areas containing germinal centers (GCs). Accumulating research has indicated that there is a close association between tumor-associated TLSs and favorable clinical outcomes in most types of cancers, though a minority of studies have reported an association between TLSs and a poor prognosis. Overall, the double-edged sword role of TLSs in the TME and potential mechanisms need to be further investigated, which will provide novel therapeutic perspectives for antitumor immunoregulation. In this review, we focus on discussing the main functions of TLSs in the TME and recent advances in the therapeutic manipulation of TLSs through multiple strategies to enhance local antitumor immunity.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Jianwei Luo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianzhen Wu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| |
Collapse
|
6
|
Li L, Chen J, Ming Y, Li B, Fu R, Duan D, Li Z, Ni R, Wang X, Zhou Y, Zhang L. The Application of Peptides in Glioma: a Novel Tool for Therapy. Curr Pharm Biotechnol 2021; 23:620-633. [PMID: 34182908 DOI: 10.2174/1389201022666210628114042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioma is the most aggressive and lethal tumor of the central nervous system. Owing to the cellular heterogeneity, the invasiveness, and blood-brain barrier (BBB), current therapeutic approaches, such as chemotherapy and radiotherapy, are poorly to obtain great anti-tumor efficacy. However, peptides, a novel type of therapeutic agent, displayed excellent ability in the tumor, which becomes a new molecule for glioma treatment. METHOD We review the current knowledge on peptides for the treatment of glioma through a PubMed-based literature search. RESULTS In the treatment of glioma, peptides can be used as (i) decoration on the surface of the delivery system, facilitating the distribution and accumulation of the anti-tumor drug in the target site;(ii) anti-tumor active molecules, inhibiting the growth of glioma and reducing solid tumor volume; (iii) immune-stimulating factor, and activating immune cells in the tumor microenvironment or recruiting immune cells to the tumor for breaking out the immunosuppression by glioma cells. CONCLUSION The application of peptides has revolutionized the treatment of glioma, which is based on targeting, penetrating, anti-tumor activities, and immunostimulatory. Moreover, better outcomes have been discovered in combining different kinds of peptides rather than a single one. Until now, more and more preclinical studies have been developed with multifarious peptides, which show promising results in vitro or vivo with the model of glioma.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongyu Duan
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianfeng Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yueling Zhou
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Immunohistochemical analysis of L1 cell adhesion molecule and high endothelial venules in breast cancer brain metastasis. Pathol Res Pract 2021; 223:153484. [PMID: 34022682 DOI: 10.1016/j.prp.2021.153484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The vasculature is a crucial factor in tumor development. Vascular co-option achieved by the L1 cell adhesion molecule (L1CAM) and lymphocyte recruitment inside tumors by high endothelial venules (HEVs) are important prognostic factors in primary breast cancer. Their status in breast cancer brain metastasis is unknown. AIM OF THE STUDY To explore the status of L1CAMs and HEVs in this tumor compartment. MATERIAL AND METHODS Thirty resected breast cancer brain metastases were immunohistochemically studied for L1CAM and MECA-79, an HEV marker. Clinicopathological factors were recorded. RESULTS Age at brain metastasis diagnosis ranged from 37 to 80 years (median 55). The time to brain metastasis development after primary tumor diagnosis ranged from 12 to 187 months (median 57). Median overall survival after brain metastasis diagnosis was 29 months. None of the tumors expressed the factors studied. CONCLUSION L1CAM and high endothelial venules are not found in breast cancer brain metastasis.
Collapse
|
8
|
High endothelial venules are present in pharyngeal and laryngeal carcinomas and they are associated with better prognosis. Pathol Res Pract 2021; 220:153392. [PMID: 33647862 DOI: 10.1016/j.prp.2021.153392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Tumors lymphocytic infiltration has prognostic and predictive value. However, the mechanisms involved in lymphocyte recruitment remain poorly characterized. High endothelial venules (HEV) are blood vessels specialized in lymphocyte recruitment, recently showing prognostic significance in some types of cancer. Their implications in laryngeal or pharyngeal cancer is largely unknown. AIM OF THE STUDY To investigate the possible presence of HEVs in head and neck cancer. MATERIAL AND METHODS Oropharyngeal (n = 61), hypopharyngeal (n = 53) and laryngeal (n = 21) squamous cell carcinomas were immunohistochemically studied with the MECA-79 antibody, which specifically recognizes HEVs. Histological and clinical factors were correlated with HEVs' presence. RESULTS HEVs were present in 34% of tumors, showing significant correlations with oropharyngeal localization, higher lymphocytic response, lower tumor budding, lower T status, absence of distant metastases and better overall and progression-free survival. CONCLUSION HEVs represent an important prognostic factor in head and neck cancer.
Collapse
|
9
|
Guo XY, Zhang GH, Wang ZN, Duan H, Xie T, Liang L, Cui R, Hu HR, Wu Y, Dong JJ, He ZQ, Mou YG. A novel Foxp3-related immune prognostic signature for glioblastoma multiforme based on immunogenomic profiling. Aging (Albany NY) 2021; 13:3501-3517. [PMID: 33429364 PMCID: PMC7906197 DOI: 10.18632/aging.202282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/31/2020] [Indexed: 01/01/2023]
Abstract
Foxp3+ regulatory T cells (Treg) play an important part in the glioma immunosuppressive microenvironment. This study analyzed the effect of Foxsp3 on the immune microenvironment and constructed a Foxp3-related immune prognostic signature (IPS)for predicting prognosis in glioblastoma multiforme (GBM). Immunohistochemistry (IHC) staining for Foxp3 was performed in 72 high-grade glioma specimens. RNA-seq data from 152 GBM samples were obtained from The Cancer Genome Atlas database (TCGA) and divided into two groups, Foxp3 High (Foxp3_H) and Foxp3 Low (Foxp3_L), based on Foxp3 expression. We systematically analyzed the influence of Foxp3 on the immune microenvironment. Least Absolute Shrinkage and Selection Operator (LASSO) Cox analysis was conducted for immune-related genes that were differentially expressed between Foxp3_H and Foxp3_L GBM patients. We found a differential expression of Foxp3 in high-grade glioma tissues. The presence of Foxp3 was significantly associated with poor OS. From the four-gene IPS developed, GBM patients were stratified into low-risk and high-risk groups in both the training set and validation sets. Furthermore, we developed a novel nomogram to evaluate the overall survival in GBM patients. This study offers innovative insights into the GBM immune microenvironment and these findings contribute to individualized treatment and improvement in the prognosis for GBM patients.
Collapse
Affiliation(s)
- Xiao-Yu Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Guan-Hua Zhang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China.,Department of Cerebrovascular Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhen-Ning Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Tian Xie
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Lun Liang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Rui Cui
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Hong-Rong Hu
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Yi Wu
- Department of Neurosurgery, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Jia-Jun Dong
- Department of Neurosurgery, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Zhen-Qiang He
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Yong-Gao Mou
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| |
Collapse
|
10
|
Dai S, Lv Y, Xu W, Yang Y, Liu C, Dong X, Zhang H, Prabhakar BS, Maker AV, Seth P, Wang H. Oncolytic adenovirus encoding LIGHT (TNFSF14) inhibits tumor growth via activating anti-tumor immune responses in 4T1 mouse mammary tumor model in immune competent syngeneic mice. Cancer Gene Ther 2020; 27:923-933. [PMID: 32307442 DOI: 10.1038/s41417-020-0173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
LIGHT, also known as tumor-necrosis factor (TNF) superfamily member 14 (TNFSF14), is predominantly expressed on activated immune cells and some tumor cells. LIGHT is a pivotal regulator both for recruiting and activating immune cells in the tumor lesions. In this study, we armed human telomerase reverse transcriptase (TERT) promoter controlled oncolytic adenovirus with LIGHT to generate rAd.Light. rAd.Light effectively transduced both human and mouse breast tumor cell lines in vitro, and expressed LIGHT protein on the surface of tumor cells. Both rAd.Null, and rAd.Light could replicate in human breast cancer cells, and produced cytotoxicity to human and mouse mammary tumor cells. rAd.Light induced apoptosis resulting in tumor cell death. Using a subcutaneous model of 4T1 cells in BALB/c mice, rAd.Light was delivered intratumorally to evaluate the anti-tumor responses. Both rAd.Light and rAd.Null significantly inhibited the tumor growth, but rAd.Light produced much stronger anti-tumor effects. Histopathological analysis showed the infiltration of T lymphocytes in the tumor tissues. rAd.Light also induced stronger cellular apoptosis than rAd.Null in the tumors. Interestingly, on day 15, compared to rAd.Null, there was a significant reduction of Tregs following rAd.Light treatment. rAd.Light significantly increased Th1 cytokine interleukin (IL)-2 expression, and reduced Th2 cytokines expression, such as transforming growth factor β (TGF-β) and IL-10 in the tumors. These results suggest rAd.Light induced activation of anti-tumor immune responses. In conclusion, rAd.Light produced anti-tumor effect in a subcutaneous model of breast cancer via inducing tumor apoptosis and evoking strong anti-tumor immune responses. Therefore, rAd.Light has great promise to be developed as an effective therapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shiyun Dai
- Anhui Medical University, Hefei, 230032, Anhui, PR China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yun Lv
- Anhui Medical University, Hefei, 230032, Anhui, PR China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA
| | - Yuefeng Yang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA
- Department of Experimental Medical Science & Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, PR China
| | - Chao Liu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiwen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Huan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ajay V Maker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois, Chicago, IL, USA
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, IL, USA.
| | - Hua Wang
- Anhui Medical University, Hefei, 230032, Anhui, PR China.
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
11
|
Lv L, Li X, Qian W, Li S, Jiang Y, Xiong Y, Xu J, Lv W, Liu X, Chen Y, Tang Y, Xin H. Enhanced Anti-Glioma Efficacy by Borneol Combined With CGKRK-Modified Paclitaxel Self-Assembled Redox-Sensitive Nanoparticles. Front Pharmacol 2020; 11:558. [PMID: 32425792 PMCID: PMC7203528 DOI: 10.3389/fphar.2020.00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/14/2020] [Indexed: 01/26/2023] Open
Abstract
The serious therapeutic obstacles to glioma treatment include poor penetration across the blood-brain barrier (BBB) and low accumulation of therapeutic drugs at tumor sites. In this study, borneol combined with CGKRK peptide (a ligand of the heparan sulfate which overexpress on the glioma cells) modified paclitaxel prodrug self-assembled redox-responsive nanoparticles (CGKRK-PSNPs) were hypothesized to enhance the BBB penetration ability and active tumor targeting efficiency, respectively. The resulting CGKRK-PSNPs possessed a spherical shape with a small particle size (105.61 ± 1.53 nm) and high drug loading for PTX (54.18 ± 1.13%). The drug release behavior proved that CGKRK-PSNPs were highly sensitive to glutathione (GSH) redox environment. The in vitro cell experiments suggested that CGKRK-PSNPs significantly increased the cellular uptake and cytotoxicity of U87MG cells, meanwhile CGKRK-PSNPs showed the low cytotoxicity against BCEC cells. Combined with borneol, CGKRK-PSNPs exhibited enhanced transportation across in vitro BBB model. In intracranial U87MG glioma-bearing nude mice, the higher accumulation of CGKRK-PSNPs combined with borneol was observed through real-time fluorescence image. Moreover, the in vivo anti-glioma results confirmed that CGKRK-PSNPs combined with borneol could improve the anti-glioma efficacy with the prolonged medium survival time (39 days). In conclusion, the collaborative strategy of CGKRK-PSNPs combined with borneol provided a promising drug delivery routine for glioblastoma therapy.
Collapse
Affiliation(s)
- Lingyan Lv
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Qian
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Shennan Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yaokun Xiong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianpei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wei Lv
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Xiaoyan Liu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yulin Tang
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hongliang Xin
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Li S, Zhang Q, Hong Y. Tumor Vessel Normalization: A Window to Enhancing Cancer Immunotherapy. Technol Cancer Res Treat 2020; 19:1533033820980116. [PMID: 33287656 PMCID: PMC7727091 DOI: 10.1177/1533033820980116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023] Open
Abstract
Hostile microenvironment produced by abnormal blood vessels, which is characterized by hypoxia, low pH value and increasing interstitial fluid pressure, would facilitate tumor progression, metastasis, immunosuppression and anticancer treatments resistance. These abnormalities are the result of the imbalance of pro-angiogenic and anti-angiogenic factors (such as VEGF and angiopoietin 2, ANG2). Prudent use of anti-angiogenesis drugs would normalize these aberrant tumor vessels, resulting in a transient window of vessel normalization. In addition, use of cancer immunotherapy including immune checkpoint blockers when vessel normalization is achieved brings better outcomes. In this review, we sum up the advances in the field of understanding and application of the concept of tumor vessels normalization window to treat cancer. Moreover, we also outline some challenges and opportunities ahead to optimize the combination of anti-angiogenic agents and immunotherapy, leading to improve patients' outcomes.
Collapse
Affiliation(s)
- Sai Li
- Department of gynecologic oncology, Women’s hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yupeng Hong
- Department of Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|