1
|
Agosti V, Munari E. Histopathological evaluation and grading for prostate cancer: current issues and crucial aspects. Asian J Androl 2024; 26:575-581. [PMID: 39254403 DOI: 10.4103/aja202440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/05/2024] [Indexed: 09/11/2024] Open
Abstract
ABSTRACT A crucial aspect of prostate cancer grading, especially in low- and intermediate-risk cancer, is the accurate identification of Gleason pattern 4 glands, which includes ill-formed or fused glands. However, there is notable inconsistency among pathologists in recognizing these glands, especially when mixed with pattern 3 glands. This inconsistency has significant implications for patient management and treatment decisions. Conversely, the recognition of glomeruloid and cribriform architecture has shown higher reproducibility. Cribriform architecture, in particular, has been linked to the worst prognosis among pattern 4 subtypes. Intraductal carcinoma of the prostate (IDC-P) is also associated with high-grade cancer and poor prognosis. Accurate identification, classification, and tumor size evaluation by pathologists are vital for determining patient treatment. This review emphasizes the importance of prostate cancer grading, highlighting challenges like distinguishing between pattern 3 and pattern 4 and the prognostic implications of cribriform architecture and intraductal proliferations. It also addresses the inherent grading limitations due to interobserver variability and explores the potential of computational pathology to enhance pathologist accuracy and consistency.
Collapse
Affiliation(s)
- Vittorio Agosti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy
| | - Enrico Munari
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona 37126, Italy
| |
Collapse
|
2
|
Wei X, Zhao J, Nie L, Shi Y, Zhao F, Shen Y, Chen J, Sun G, Zhang X, Liang J, Hu X, Shen P, Chen N, Zeng H, Liu Z. Assessing the predictive value of intraductal carcinoma of the prostate (IDC-P) in determining abiraterone efficacy for metastatic hormone-sensitive prostate cancer (mHSPC) patients. Prostate 2024. [PMID: 39465570 DOI: 10.1002/pros.24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND This study explored the value of intraductal carcinoma of the prostate (IDC-P) in predicting the efficacy of abiraterone treatment in metastatic hormone-sensitive prostate cancer (mHSPC) patients. METHODS A retrospective study of 925 patients who underwent prostate biopsies to detect IDC-P was conducted, with participants divided into two cohorts. The first cohort of 165 mHSPC patients receiving abiraterone treatment was analyzed to compare therapeutic effectiveness between IDC-P positive and negative cases. Utilizing propensity score matching (PSM) to reduce bias, outcomes such as PSA response, progression-free survival (PSA-PFS), radiographic progression-free survival (rPFS), and overall survival were assessed. Additionally, the second cohort of 760 mHSPC patients compared the efficacy of abiraterone with conventional hormone therapy, focusing on differences between IDC-P positive and negative individuals. RESULTS After PSM, our first cohort included 108 patients with similar baseline characteristics. Among them, 50% (54/108) were diagnosed with IDC-P, with 22.2% (12/54) having IDC-P pattern 1 and 77.8% (42/54) with IDC-P pattern 2. While no notable difference was seen in PSA responses between IDC-P positive and negative patients, IDC-P presence linked to worse clinical outcomes (PSA-PFS: 18.6 months vs. not reached [NR], p = 0.009; rPFS: 23.6 months vs. NR, p = 0.020). Further analysis showed comparable outcomes for IDC-P pattern 1 but significantly worse prognosis for IDC-P pattern 2 (PSA-PFS: 18.6 months vs. NR, p = 0.002; rPFS: 22.4 months vs. NR, p = 0.010). Subgroup analysis revealed IDC-P pattern 2 consistently predicted poorer outcomes across patient subgroups. Remarkably, both IDC-P positive and negative patients gained more from androgen deprivation therapy with abiraterone than conventional treatment, with IDC-P negative patients showing a more significant survival advantage, supported by better hazard ratios (0.47 and 0.66). CONCLUSION This study found that IDC-P, especially pattern 2, predicts poor prognosis in mHSPC patients on abiraterone therapy. Also, abiraterone's advantage over hormone therapy is reduced in cases with IDC-P compared to those without.
Collapse
Affiliation(s)
- Xinyuan Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
McDonald JAL, O'Brien J, Kelly B, Murphy D, Lawrentschuk N, Eapen R, Mitchell C. The highs and lows of grading intraductal carcinoma of the prostate. J Clin Pathol 2024:jcp-2024-209421. [PMID: 38876777 DOI: 10.1136/jcp-2024-209421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Affiliation(s)
- Jodie Ai Ling McDonald
- Department of Urology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- St Vincent's Hospital Melbourne Pty Ltd, Fitzroy, Victoria, Australia
| | - Jonathan O'Brien
- Department of Urology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Brian Kelly
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Urology, Eastern Health, Box Hill, Victoria, Australia
| | - Declan Murphy
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Nathan Lawrentschuk
- Department of Urology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Surgery, University of Melbourne and Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | - Renu Eapen
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Choi J, Shin JY, Kim TK, Kim K, Kim J, Jeon E, Park J, Han YD, Kim KA, Sim T, Kim HK, Kim HS. Site-specific mutagenesis screening in KRAS G12D mutant library to uncover resistance mechanisms to KRAS G12D inhibitors. Cancer Lett 2024; 591:216904. [PMID: 38642608 DOI: 10.1016/j.canlet.2024.216904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
KRAS plays a crucial role in regulating cell survival and proliferation and is one of the most commonly mutated oncogenes in human cancers. The novel KRASG12D inhibitor, MRTX1133, demonstrates promising antitumor efficacy in vitro and in vivo. However, the development of acquired resistance in treated patients presents a considerable challenge to sustained therapeutic effectiveness. In response to this challenge, we conducted site-specific mutagenesis screening to identify potential secondary mutations that could induce resistance to MRTX1133. We screened a range of KRASG12D variants harboring potential secondary mutations, and 44 representative variants were selected for in-depth validation of the pooled screening outcomes. We identified eight variants (G12D with V9E, V9W, V9Q, G13P, T58Y, R68G, Y96W, and Q99L) that exhibited substantial resistance, with V9W showing notable resistance, and downstream signaling analyses and structural modeling were conducted. We observed that secondary mutations in KRASG12D can lead to acquired resistance to MRTX1133 and BI-2865, a novel pan-KRAS inhibitor, in human cancer cell lines. This evidence is critical for devising new strategies to counteract resistance mechanisms and, ultimately, enhance treatment outcomes in patients with KRASG12D-mutant cancers.
Collapse
Affiliation(s)
- Jeesoo Choi
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ju-Young Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taeyul K Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kiwook Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jiyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Juyeong Park
- Department of Medicine, Graduate School, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Theragen Bio Co., Ltd, Seongnam-si, 13488, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung-A Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Taebo Sim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hui Kwon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Han Sang Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Fenton SE, VanderWeeler DJ, Rebbeck TR, Chen DL. Advancing Prostate Cancer Care: Treatment Approaches to Precision Medicine, Biomarker Innovations, and Equitable Access. Am Soc Clin Oncol Educ Book 2024; 44:e433138. [PMID: 38781539 DOI: 10.1200/edbk_433138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Genetic testing and molecular imaging have great promise in the accurate diagnosis and treatment of #prostate #cancer, but only if they can be developed and implemented to achieve equitable benefit for all men.
Collapse
Affiliation(s)
- Sarah E Fenton
- Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - David J VanderWeeler
- Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA
| | - Delphine L Chen
- University of Washington and Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
6
|
Shi Y, Wang H, Golijanin B, Amin A, Lee J, Sikov M, Hyams E, Pareek G, Carneiro BA, Mega AE, Lagos GG, Wang L, Wang Z, Cheng L. Ductal, intraductal, and cribriform carcinoma of the prostate: Molecular characteristics and clinical management. Urol Oncol 2024; 42:144-154. [PMID: 38485644 DOI: 10.1016/j.urolonc.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/15/2024]
Abstract
Prostatic acinar adenocarcinoma accounts for approximately 95% of prostate cancer (CaP) cases. The remaining 5% of histologic subtypes of CaP are known to be more aggressive and have recently garnered substantial attention. These histologic subtypes - namely, prostatic ductal adenocarcinoma (PDA), intraductal carcinoma of the prostate (IDC-P), and cribriform carcinoma of the prostate (CC-P) - typically exhibit distinct growth characteristics, genomic features, and unique oncologic outcomes. For example, PTEN mutations, which cause uncontrolled cell growth, are frequently present in IDC-P and CC-P. Germline mutations in homologous DNA recombination repair (HRR) genes (e.g., BRCA1, BRCA2, ATM, PALB2, and CHEK2) are discovered in 40% of patients with IDC-P, while only 9% of patients without ductal involvement had a germline mutation. CC-P is associated with deletions in common tumor suppressor genes, including PTEN, TP53, NKX3-1, MAP3K7, RB1, and CHD1. Evidence suggests abiraterone may be superior to docetaxel as a first-line treatment for patients with IDC-P. To address these and other critical pathological attributes, this review examines the molecular pathology, genetics, treatments, and oncologic outcomes associated with CC-P, PDA, and IDC-P with the objective of creating a comprehensive resource with a centralized repository of information on PDA, IDC-P, and CC-P.
Collapse
Affiliation(s)
- Yibo Shi
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hanzhang Wang
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT
| | - Borivoj Golijanin
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Joanne Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Mark Sikov
- Department of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence RI
| | - Elias Hyams
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Gyan Pareek
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Benedito A Carneiro
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Anthony E Mega
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Galina G Lagos
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Lisha Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Zhiping Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Muthusamy S, Smith SC. Contemporary Diagnostic Reporting for Prostatic Adenocarcinoma: Morphologic Aspects, Molecular Correlates, and Management Perspectives. Adv Anat Pathol 2024; 31:188-201. [PMID: 38525660 DOI: 10.1097/pap.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The diagnosis and reporting of prostatic adenocarcinoma have evolved from the classic framework promulgated by Dr Donald Gleason in the 1960s into a complex and nuanced system of grading and reporting that nonetheless retains the essence of his remarkable observations. The criteria for the "Gleason patterns" originally proposed have been continually refined by consensuses in the field, and Gleason scores have been stratified into a patient-friendly set of prognostically validated and widely adopted Grade Groups. One product of this successful grading approach has been the opportunity for pathologists to report diagnoses that signal carefully personalized management, placing the surgical pathologist's interpretation at the center of patient care. At one end of the continuum of disease aggressiveness, personalized diagnostic care means to sub-stratify patients with more indolent disease for active surveillance, while at the other end of the continuum, reporting histologic markers signaling aggression allows sub-stratification of clinically significant disease. Whether contemporary reporting parameters represent deeper nuances of more established ones (eg, new criteria and/or quantitation of Gleason patterns 4 and 5) or represent additional features reported alongside grade (intraductal carcinoma, cribriform patterns of carcinoma), assessment and grading have become more complex and demanding. Herein, we explore these newer reporting parameters, highlighting the state of knowledge regarding morphologic, molecular, and management aspects. Emphasis is made on the increasing value and stakes of histopathologists' interpretations and reporting into current clinical risk stratification and treatment guidelines.
Collapse
Affiliation(s)
| | - Steven Christopher Smith
- Department of Pathology, VCU School of Medicine, Richmond, VA
- Department of Surgery, Division of Urology, VCU School of Medicine, Richmond, VA
- Richmond Veterans Affairs Medical Center, Richmond, VA
- Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| |
Collapse
|
8
|
Zara Rozalen A, Martin JM, Rajendran R, Jain M, Nava VE. Ductal Adenocarcinoma of the Prostate with Novel Genetic Alterations Characterized by Next-Generation Sequencing. Curr Oncol 2024; 31:1556-1561. [PMID: 38534951 PMCID: PMC10968787 DOI: 10.3390/curroncol31030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 03/17/2024] [Indexed: 05/26/2024] Open
Abstract
Ductal adenocarcinoma of the prostate (DAP) is an uncommon variant of prostate cancer associated with aggressive disease and poor outcome. It presents most frequently as a mixed tumor combined with acinar adenocarcinoma. Although the histopathological features of DAP are well known, its genomic characteristics are still evolving, prompting the suggestion that all DAP would benefit from molecular analysis with the purpose of improving tumor recognition, genetic classification, and, ultimately, personalized therapy. Herein, we report a case of DAP with novel genetic alterations (BCOR P1153S, ERG M219I, KDR A750E, POLE S1896P, and RAD21 T461del).
Collapse
Affiliation(s)
- Alexandra Zara Rozalen
- Department of Pathology, Veterans Affairs Medical Center, Washington, DC 20422, USA; (A.Z.R.); (J.M.M.); (R.R.)
- Department of Pathology, Mount Sinai Morningside and West Hospitals, New York, NY 10019, USA
| | - Jose Manuel Martin
- Department of Pathology, Veterans Affairs Medical Center, Washington, DC 20422, USA; (A.Z.R.); (J.M.M.); (R.R.)
| | - Rithika Rajendran
- Department of Pathology, Veterans Affairs Medical Center, Washington, DC 20422, USA; (A.Z.R.); (J.M.M.); (R.R.)
| | - Maneesh Jain
- Section of Hematology & Oncology, Veterans Affairs Medical Center, Washington, DC 20422, USA;
- Department of Medicine, The George Washington University Hospital, Washington, DC 20037, USA
| | - Victor E. Nava
- Department of Pathology, Veterans Affairs Medical Center, Washington, DC 20422, USA; (A.Z.R.); (J.M.M.); (R.R.)
- Department of Pathology, The George Washington University Hospital, Washington, DC 20037, USA
| |
Collapse
|
9
|
Zhao J, Xu N, Zhu S, Nie L, Zhang M, Zheng L, Cai D, Sun X, Chen J, Dai J, Ni Y, Wang Z, Zhang X, Liang J, Chen Y, Hu X, Pan X, Yin X, Liu H, Zhao F, Zhang B, Chen H, Miao J, Qin C, Zhao X, Yao J, Liu Z, Liao B, Wei Q, Li X, Liu J, Gao AC, Huang H, Shen P, Chen N, Zeng H, Sun G. Genomic and Evolutionary Characterization of Concurrent Intraductal Carcinoma and Adenocarcinoma of the Prostate. Cancer Res 2024; 84:154-167. [PMID: 37847513 DOI: 10.1158/0008-5472.can-23-1176] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/31/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Intraductal carcinoma of the prostate (IDC-P) is a lethal prostate cancer subtype that generally coexists with invasive high-grade prostate acinar adenocarcinoma (PAC) but exhibits distinct biological features compared with concomitant adenocarcinoma. In this study, we performed whole-exome, RNA, and DNA-methylation sequencing of IDC-P, concurrent invasive high-grade PAC lesions, and adjacent normal prostate tissues isolated from 22 radical prostatectomy specimens. Three evolutionary patterns of concurrent IDC-P and PAC were identified: early divergent, late divergent, and clonally distant. In contrast to those with a late divergent evolutionary pattern, tumors with clonally distant and early divergent evolutionary patterns showed higher genomic, epigenomic, transcriptional, and pathologic heterogeneity between IDC-P and PAC. Compared with coexisting PAC, IDC-P displayed increased expression of adverse prognosis-associated genes. Survival analysis based on an independent cohort of 505 patients with metastatic prostate cancer revealed that IDC-P carriers with lower risk International Society of Urological Pathology (ISUP) grade 1-4 adenocarcinoma displayed a castration-resistant free survival as poor as those with the highest risk ISUP grade 5 tumors that lacked concurrent IDC-P. Furthermore, IDC-P exhibited robust cell-cycle progression and androgen receptor activities, characterized by an enrichment of cellular proliferation-associated master regulators and genes involved in intratumoral androgen biosynthesis. Overall, this study provides a molecular groundwork for the aggressive behavior of IDC-P and could help identify potential strategies to improve treatment of IDC-P. SIGNIFICANCE The genomic, transcriptomic, and epigenomic characterization of concurrent intraductal carcinoma and adenocarcinoma of the prostate deepens the biological understanding of this lethal disease and provides a genetic basis for developing targeted therapies.
Collapse
Affiliation(s)
- Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Sha Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Linmao Zheng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Diming Cai
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaomeng Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yuchao Ni
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiuyi Pan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoxue Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bei Zhang
- 3D Medicines Inc., Shanghai, P.R. China
| | - Hao Chen
- 3D Medicines Inc., Shanghai, P.R. China
| | | | - Cong Qin
- 3D Medicines Inc., Shanghai, P.R. China
| | | | - Jin Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiang Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jiyan Liu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Allen C Gao
- Department of Urology, University of California Davis, Davis, California
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
10
|
Naito Y, Kato M, Nagayama J, Sano Y, Matsuo K, Inoue S, Sano T, Ishida S, Matsukawa Y, Tsuzuki T, Akamatsu S. Recent insights on the clinical, pathological, and molecular features of intraductal carcinoma of the prostate. Int J Urol 2024; 31:7-16. [PMID: 37728330 DOI: 10.1111/iju.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Intraductal carcinoma of the prostate, a unique histopathologic entity that is often observed (especially in advanced prostate cancer), is characterized by the proliferation of malignant cells within normal acini or ducts surrounded by a basement membrane. Intraductal carcinoma of the prostate is almost invariably associated with an adjacent high-grade carcinoma and is occasionally observed as an isolated subtype. Intraductal carcinoma of the prostate has been demonstrated to be an independent poor prognostic factor for all stages of cancer, whether localized, de novo metastatic, or castration-resistant. It also has a characteristic genetic profile, including high genomic instability. Recognizing and differentiating it from other pathologies is therefore important in patient management, and morphological diagnostic criteria for intraductal carcinoma of the prostate have been established. This review summarizes and outlines the clinical and pathological features, differential diagnosis, molecular aspects, and management of intraductal carcinoma of the prostate, as described in previous studies. We also present a discussion and future perspectives regarding intraductal carcinoma of the prostate.
Collapse
Affiliation(s)
- Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Nagayama
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuta Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuna Matsuo
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Inoue
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Surintrspanont J, Zhou M. Intraductal Carcinoma of the Prostate: To Grade or Not to Grade. Cancers (Basel) 2023; 15:5319. [PMID: 38001579 PMCID: PMC10669759 DOI: 10.3390/cancers15225319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is a distinct tumor type characterized by an expansile growth of atypical glandular epithelial cells within pre-existing prostate glands and ducts and has significant implications on clinical outcomes and patient management. There is an agreement that isolated IDC-P should not be graded, and IDC-P should be reported with a comment on its clinical significance. However, whether IDC-P should be factored into Grade Group (GG) in the presence of concurrent prostate cancer (PCa) has been debated vigorously. The contradicting opinions were promulgated when the Genitourinary Pathology Society (GUPS) and the International Society of Urological Pathologists (ISUP) published their recommendations for this issue. When IDC-P is present with PCa, the ISUP recommends incorporating it in the GG for the entire case, whereas the GUPS recommends excluding it from the final GG. Consequently, pathologists and clinicians are faced with the conundrum of conflicting recommendations. In this review article, the authors evaluate the magnitude of discrepant GG between the two grading methods, explore the rationales behind the differing views of the two urological societies, present the current reporting practices for IDC-P, and propose a provisional and pragmatic guide to alleviate the dilemma of which recommendation to follow.
Collapse
Affiliation(s)
- Jerasit Surintrspanont
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand;
- Special Task Force for Activating Research (STAR), Department of Pathology, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Ming Zhou
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
13
|
Sorvina A, Martini C, Prabhakaran S, Logan JM, S-Y Ung B, Moore C, Johnson IRD, Lazniewska J, Tewari P, Malone V, Brooks RD, Hickey SM, Caruso MC, Klebe S, Karageorgos L, O'Leary JJ, Delahunt B, Samaratunga H, Brooks DA. Appl1, Sortilin and Syndecan-1 immunohistochemistry on intraductal carcinoma of the prostate provides evidence of retrograde spread. Pathology 2023; 55:792-799. [PMID: 37422404 DOI: 10.1016/j.pathol.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 07/10/2023]
Abstract
The presence of intraductal carcinoma of the prostate (IDCP) correlates with late-stage disease and poor outcomes for patients with prostatic adenocarcinoma, but the accurate and reliable staging of disease severity remains challenging. Immunohistochemistry (IHC) has been utilised to overcome problems in assessing IDCP morphology, but the current markers have only demonstrated limited utility in characterising the complex biology of this lesion. In a retrospective study of a cohort of patients who had been diagnosed with IDCP, we utilised IHC on radical prostatectomy sections with a biomarker panel of Appl1, Sortilin and Syndecan-1, to interpret different architectural patterns and to explore the theory that IDCP occurs from retrograde spread of high-grade invasive prostatic adenocarcinoma. Cribriform IDCP displayed strong Appl1, Sortilin and Syndecan-1 labelling patterns, while solid IDCP architecture had high intensity Appl1 and Syndecan-1 labelling, but minimal Sortilin labelling. Notably, the expression pattern of the biomarker panel in regions of IDCP was similar to that of adjacent invasive prostatic adenocarcinoma, and also comparable to prostate cancer showing perineural and vascular invasion. The Appl1, Sortilin, and Syndecan-1 biomarker panel in IDCP provides evidence for the model of retrograde spread of invasive prostatic carcinoma into ducts/acini, and supports the inclusion of IDCP into the five-tier Gleason grading system.
Collapse
Affiliation(s)
- Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.
| | - Sarita Prabhakaran
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia; Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Benjamin S-Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Joanna Lazniewska
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Prerna Tewari
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Victoria Malone
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, SA, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Brett Delahunt
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Hemamali Samaratunga
- Aquesta Uropathology, Brisbane, Qld, Australia; University of Queensland, Brisbane, Qld, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
14
|
Grypari IM, Tzelepi V, Gyftopoulos K. DNA Damage Repair Pathways in Prostate Cancer: A Narrative Review of Molecular Mechanisms, Emerging Biomarkers and Therapeutic Targets in Precision Oncology. Int J Mol Sci 2023; 24:11418. [PMID: 37511177 PMCID: PMC10380086 DOI: 10.3390/ijms241411418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) has a distinct molecular signature, including characteristic chromosomal translocations, gene deletions and defective DNA damage repair mechanisms. One crucial pathway involved is homologous recombination deficiency (HRD) and it is found in almost 20% of metastatic castrate-resistant PCa (mCRPC). Inherited/germline mutations are associated with a hereditary predisposition to early PCa development and aggressive behavior. BRCA2, ATM and CHECK2 are the most frequently HRD-mutated genes. BRCA2-mutated tumors have unfavorable clinical and pathological characteristics, such as intraductal carcinoma. PARP inhibitors, due to the induction of synthetic lethality, have been therapeutically approved for mCRPC with HRD alterations. Mutations are detected in metastatic tissue, while a liquid biopsy is utilized during follow-up, recognizing acquired resistance mechanisms. The mismatch repair (MMR) pathway is another DNA repair mechanism implicated in carcinogenesis, although only 5% of metastatic PCa is affected. It is associated with aggressive disease. PD-1 inhibitors have been used in MMR-deficient tumors; thus, the MMR status should be tested in all metastatic PCa cases. A surrogate marker of defective DNA repair mechanisms is the tumor mutational burden. PDL-1 expression and intratumoral lymphocytes have ambivalent predictive value. Few experimental molecules have been so far proposed as potential biomarkers. Future research may further elucidate the role of DNA damage pathways in PCa, revealing new therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
15
|
Vormittag-Nocito E, Acosta AM, Agarwal S, Narayan KD, Kumar R, Al Rasheed MRH, Kajdacsy-Balla A, Behm FG, Mohapatra G. In-Depth Comparison of Genetic Variants Demonstrates a Close Relationship Between Invasive and Intraductal Components of Prostate Cancer. Mod Pathol 2023; 36:100130. [PMID: 36933394 DOI: 10.1016/j.modpat.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/06/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Intraductal carcinoma (IDC) of the prostate is often associated with concurrent high-grade invasive prostate cancer (PCa) and poor clinical outcomes. In this context, IDC is thought to represent the retrograde spread of invasive prostatic adenocarcinoma into the acini and ducts. Prior studies have demonstrated a concordance of PTEN loss and genomic instability between the IDC and high-grade invasive components of PCa, but larger genomic association studies to solidify our understanding of the relationship between these 2 lesions are lacking. Here, we evaluate the genomic relationship between duct-confined (high-grade prostatic intraepithelial neoplasia and IDC) and invasive components of high-grade PCa using genetic variants generated by whole exome sequencing. High-grade prostatic intraepithelial neoplasia and IDC were laser-microdissected, and PCa and nonneoplastic tissue was manually dissected from 12 radical prostatectomies. A targeted next-generation sequencing panel was used to identify disease-relevant variants. Additionally, the degree of overlap between adjacent lesions was determined by comparing exome-wide variants detected using whole exome sequencing data. Our results demonstrate that IDC and invasive high-grade PCa components show common genetic variants and copy number alterations. Hierarchical clustering of genome-wide variants suggests that in these tumors, IDC is more closely related to the high-grade invasive components of the tumor compared with high-grade prostatic intraepithelial neoplasia. In conclusion, this study reinforces the concept that, in the context of high-grade PCa, IDC likely represents a late event associated with tumor progression.
Collapse
Affiliation(s)
- Erica Vormittag-Nocito
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Andres M Acosta
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Shivangi Agarwal
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Kunwar D Narayan
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Ravindra Kumar
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Mohamed Rizwan H Al Rasheed
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Andre Kajdacsy-Balla
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Frederick G Behm
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois
| | - Gayatry Mohapatra
- Laboratory of Genomic Medicine, Department of Pathology, University of Illinois at Chicago (UIC) College of Medicine, Chicago, Illinois.
| |
Collapse
|
16
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Wang Y, Teramoto Y, Weisenthal SJ, Goto T, Miyamoto H. The Clinical Impact of Comedonecrosis Within Intraductal Carcinoma of the Prostate. Arch Pathol Lab Med 2023; 147:94-99. [PMID: 35472669 DOI: 10.5858/arpa.2021-0346-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/31/2022]
Abstract
CONTEXT.— Intraductal carcinoma of the prostate (IDC-P) is considered a distinct form of aggressive prostate cancer where comedonecrosis, a grade 5 pattern, is occasionally present. Meanwhile, assigning a Gleason grade to IDC-P remains controversial. OBJECTIVE.— To assess the clinical significance of necrosis associated with IDC-P. DESIGN.— We compared radical prostatectomy (RP) findings and oncologic outcomes in men with prostate cancer exhibiting IDC-P with (IDC-P+/N+) versus without (IDC-P+/N-) comedonecrosis. RESULTS.— Of the 558 RPs examined, IDC-P was present in 213 cases (38.2%), including 167 (78.4%) with IDC-P+/N- and 46 (21.6%) with IDC-P+/N+. When comparing IDC-P+/N- versus IDC-P+/N+ cases, the presence of necrosis was significantly associated with higher tumor grade, higher incidence of pT3/pT3b or pN1 disease, and larger estimated tumor volume. Outcome analysis revealed a significantly higher risk of disease progression in IDC-P+/N+ patients than in IDC-P+/N- patients (P < .001). Significant differences in progression-free survival between IDC-P+/N- and IDC-P+/N+ patients were also seen in subgroups, such as those without (P = .01) or with (P = .03) adjuvant therapy immediately after RP, those with pN0 disease (P < .001), and, more interestingly, those exhibiting conventional Gleason pattern 5 component (P = .02). Multivariate analysis showed significance for IDC-P+/N+ when IDC-P (grade 4) and IDC-P+/N+ (grade 5) were (hazard ratio, 1.768; P = .049) or were not (hazard ratio, 2.000; P = .008) incorporated into the Gleason score. CONCLUSIONS.— IDC-P+/N+ was found to be associated with worse histopathologic features on RP and poorer prognosis as an independent predictor. Pathologists may thus need to report the presence or absence of not only IDC-P but also comedonecrosis within IDC-P.
Collapse
Affiliation(s)
- Ying Wang
- From the Department of Pathology & Laboratory Medicine (Wang, Teramoto, Weisenthal, Goto, Miyamoto), University of Rochester Medical Center, Rochester, New York
| | - Yuki Teramoto
- From the Department of Pathology & Laboratory Medicine (Wang, Teramoto, Weisenthal, Goto, Miyamoto), University of Rochester Medical Center, Rochester, New York.,The James P. Wilmot Cancer Institute (Teramoto, Goto, Miyamoto), University of Rochester Medical Center, Rochester, New York
| | - Samuel J Weisenthal
- From the Department of Pathology & Laboratory Medicine (Wang, Teramoto, Weisenthal, Goto, Miyamoto), University of Rochester Medical Center, Rochester, New York.,Department of Biostatistics and Computational Biology (Weisenthal), University of Rochester Medical Center, Rochester, New York
| | - Takuro Goto
- From the Department of Pathology & Laboratory Medicine (Wang, Teramoto, Weisenthal, Goto, Miyamoto), University of Rochester Medical Center, Rochester, New York.,The James P. Wilmot Cancer Institute (Teramoto, Goto, Miyamoto), University of Rochester Medical Center, Rochester, New York
| | - Hiroshi Miyamoto
- From the Department of Pathology & Laboratory Medicine (Wang, Teramoto, Weisenthal, Goto, Miyamoto), University of Rochester Medical Center, Rochester, New York.,Department of Urology (Miyamoto), University of Rochester Medical Center, Rochester, New York.,The James P. Wilmot Cancer Institute (Teramoto, Goto, Miyamoto), University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
18
|
Cai Q, Shah RB. Cribriform Lesions of the Prostate Gland. Surg Pathol Clin 2022; 15:591-608. [PMID: 36344177 DOI: 10.1016/j.path.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
"Cribriform lesions of the prostate represent an important and often diagnostically challenging spectrum of prostate pathology. These lesions range from normal anatomical variation, benign proliferative lesions, premalignant, suspicious to frankly malignant and biologically aggressive entities. The concept of cribriform prostate adenocarcinoma (CrP4) and intraductal carcinoma of the prostate (IDC-P), in particular, has evolved significantly in recent years with a growing body of evidence suggesting that the presence of these morphologies is important for clinical decision-making in prostate cancer management. Therefore, accurate recognition and reporting of CrP4 and IDC-P architecture are especially important. This review discusses a contemporary diagnostic approach to cribriform lesions of the prostate with a focus on their key morphologic features, differential diagnosis, underlying molecular alterations, clinical significance, and reporting recommendations."
Collapse
Affiliation(s)
- Qi Cai
- Department of Pathology, 04.449, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rajal B Shah
- Department of Pathology, 04.449, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Abstract
The Gleason scoring system and Grade Group systems facilitate accurate grading and reporting of prostate cancer, which are essential tasks for surgical pathologists. Gleason Pattern 4 is critical to recognize because it signifies a risk for more aggressive behavior than Gleason Pattern 3 carcinoma. Prostatic adenocarcinoma with radiation or androgen therapy effect, with aberrant P63 expression, or with Paneth cell-like differentiation represent pitfalls in prostate cancer grading because although they display architecture associated with aggressive behavior in usual prostatic adenocarcinoma, they do not behave aggressively and using conventional Gleason scoring in these tumors would significantly overstate their biologic potential.
Collapse
Affiliation(s)
- Ezra Baraban
- Department of Pathology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA.
| | - Jonathan Epstein
- Department of Pathology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA.
| |
Collapse
|
20
|
Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, Raspollini MR, Rubin MA, Tan PH, Tsuzuki T, Turjalic S, van der Kwast TH, Zhou M, Srigley JR. WHO Classification of Tumours fifth edition: evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology 2022; 81:447-458. [PMID: 35758185 PMCID: PMC9542779 DOI: 10.1111/his.14711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
The fifth edition of the WHO Classification of Tumours of the Urinary and Male Genital Systems encompasses several updates to the classification and diagnosis of prostatic carcinoma as well as incorporating advancements in the assessment of its prognosis, including recent grading modifications. Some of the salient aspects include: (1) recognition that prostatic intraepithelial neoplasia (PIN)-like carcinoma is not synonymous with a pattern of ductal carcinoma, but better classified as a subtype of acinar adenocarcinoma; (2) a specific section on treatment-related neuroendocrine prostatic carcinoma in view of the tight correlation between androgen deprivation therapy and the development of prostatic carcinoma with neuroendocrine morphology, and the emerging data on lineage plasticity; (3) a terminology change of basal cell carcinoma to "adenoid cystic (basal cell) cell carcinoma" given the presence of an underlying MYB::NFIB gene fusion in many cases; (4) discussion of the current issues in the grading of acinar adenocarcinoma and the prognostic significance of cribriform growth patterns; and (5) more detailed coverage of intraductal carcinoma of prostate (IDC-P) reflecting our increased knowledge of this entity, while recommending the descriptive term atypical intraductal proliferation (AIP) for lesions falling short of IDC-P but containing more atypia than typically seen in high-grade prostatic intraepithelial neoplasia (HGPIN). Lesions previously regarded as cribriform patterns of HGPIN are now included in the AIP category. This review discusses these developments, summarising the existing literature, as well as the emerging morphological and molecular data that underpins the classification and prognostication of prostatic carcinoma.
Collapse
Affiliation(s)
- James G Kench
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred Hospital, NSW Health PathologyCamperdownNew South WalesAustralia
- The University of SydneyCamperdownNew South WalesAustralia
| | - Mahul B Amin
- The University of Tennessee Health Science CenterMemphisTNUSA
| | - Daniel M Berney
- Department of Cellular Pathology, Bartshealth NHS TrustRoyal London HospitalLondonUK
| | - Eva M Compérat
- Department of PathologyUniversity of ViennaViennaAustria
| | - Ian A Cree
- International Agency for Research on CancerLyonFrance
| | - Anthony J Gill
- The University of SydneyCamperdownNew South WalesAustralia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Pacific HighwaySt LeonardsNew South WalesAustralia
| | - Arndt Hartmann
- Institute of PathologyUniversity Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Santosh Menon
- Department of PathologyTata Memorial Centre, Homi Bhabha National InstituteMumbaiIndia
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - George J Netto
- Heersink School of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Maria R Raspollini
- Histopathology and Molecular DiagnosticsUniversity Hospital CareggiFlorenceItaly
| | - Mark A Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Puay Hoon Tan
- Division of Pathology, Singapore General HospitalSingaporeSingapore
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Samra Turjalic
- Skin and Renal UnitsRoyal Marsden NHS Foundation TrustLondonUK
- Cancer Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Theo H van der Kwast
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming Zhou
- Pathology and Laboratory MedicineTufts Medical CenterBostonMAUSA
| | - John R Srigley
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
21
|
Abstract
BACKGROUND An important fraction (>/~10%) of men with high-risk, localized prostate cancer and metastatic prostate cancer carry germline (heritable) pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes. These can represent known or suspected autosomal dominant cancer predisposition syndromes. Growing evidence suggests that pathogenic variants in key genes involved in homologous recombination and mismatch DNA repair are important in prostate cancer initiation and/or the development of metastases. AIMS Here we provide a comprehensive review regarding individual genes and available literature regarding risks for developing prostate cancer, and discuss current national guidelines for germline genetic testing in the prostate cancer population and treatment implications. RESULTS The association with prostate cancer risk and treatment implications is best understood for those with germline mutations of BRCA2, with emerging data supporting associations with ATM, CHEK2, BRCA1, HOXB13, MSH2, MSH6, PALB2, TP53 and NBN. Treatment implications in the metastatic castration resistant prostate cancer setting include rucaparib and olaparib, and pembrolizumab with potential clinical trial opportunities in earlier disease settings. DISCUSSION The data summarized in this review has led to the expansion of national guidelines for germline genetic testing in prostate cancer. We review these guidelines, and discuss the importance of cascade genetic testing of relatives, diverse populations with attention to inclusion, as well as prostate cancer screening updates and clinical trial opportunities for men who carry genetic risk factors for prostate cancer.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Heather H. Cheng
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
22
|
Intraductal Carcinoma of the Prostate and Nuclear Size. Am J Surg Pathol 2022; 46:1315-1317. [PMID: 35778794 DOI: 10.1097/pas.0000000000001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Destouni M, Lazaris AC, Tzelepi V. Cribriform Patterned Lesions in the Prostate Gland with Emphasis on Differential Diagnosis and Clinical Significance. Cancers (Basel) 2022; 14:cancers14133041. [PMID: 35804812 PMCID: PMC9264941 DOI: 10.3390/cancers14133041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary A cribriform structure is defined as a continuous proliferation of cells with intermingled lumina. Various entities may have a cribriform morphology within the prostate gland, ranging from normal, to benign, to borderline and even to malignant lesions. This review summarizes the morphologic features of entities that have a cribriform morphology within the prostate gland, with an emphasis on their differential diagnosis, molecular profile and clinical significance. The basic aim is to assist the pathologist with challenging and controversial cases and inform the clinician on the clinical implications of cribriform morphology. Abstract Cribriform glandular formations are characterized by a continuous proliferation of cells with intermingled lumina and can constitute a major or minor part of physiologic (normal central zone glands), benign (clear cell cribriform hyperplasia and basal cell hyperplasia), premalignant (high-grade prostatic intraepithelial neoplasia), borderline (atypical intraductal cribriform proliferation) or clearly malignant (intraductal, acinar, ductal and basal cell carcinoma) lesions. Each displays a different clinical course and variability in clinical management and prognosis. The aim of this review is to summarize the current knowledge regarding the morphological features, differential diagnosis, molecular profile and clinical significance of the cribriform-patterned entities of the prostate gland. Areas of controversy regarding their management, i.e., the grading of Intaductal Carcinoma, will also be discussed. Understanding the distinct nature of each cribriform lesion leads to the correct diagnosis and ensures accuracy in clinical decision-making, prognosis prediction and personalized risk stratification of patients.
Collapse
Affiliation(s)
- Maria Destouni
- Department of Cytopathology, Hippokrateion General Hospital of Athens, 11527 Athens, Greece;
| | - Andreas C. Lazaris
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence:
| |
Collapse
|
24
|
Gordetsky JB, Schaffer K, Hurley PJ. Current conundrums with cribriform prostate cancer. Histopathology 2022; 80:1038-1040. [PMID: 35592932 DOI: 10.1111/his.14665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer B Gordetsky
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kerry Schaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Paula J Hurley
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
25
|
Pantazopoulos H, Diop MK, Grosset AA, Rouleau-Gagné F, Al-Saleh A, Boblea T, Trudel D. Intraductal Carcinoma of the Prostate as a Cause of Prostate Cancer Metastasis: A Molecular Portrait. Cancers (Basel) 2022; 14:820. [PMID: 35159086 PMCID: PMC8834356 DOI: 10.3390/cancers14030820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is one of the most aggressive types of prostate cancer (PCa). IDC-P is identified in approximately 20% of PCa patients and is associated with recurrence, metastasis, and PCa-specific death. The main feature of this histological variant is the colonization of benign glands by PCa cells. Although IDC-P is a well-recognized independent parameter for metastasis, mechanisms by which IDC-P cells can spread and colonize other tissues are not fully known. In this review, we discuss the molecular portraits of IDC-P determined by immunohistochemistry and genomic approaches and highlight the areas in which more research is needed.
Collapse
Affiliation(s)
- Helen Pantazopoulos
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Andrée-Anne Grosset
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Frédérique Rouleau-Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Afnan Al-Saleh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Teodora Boblea
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), 1051 Sanguinet, Montreal, QC H2X 0C1, Canada
| |
Collapse
|
26
|
Hongo H, Kosaka T, Nakamura K, Mikami S, Nishihara H, Oya M. A first Japanese case of intraductal cancer of the prostate with checkpoint kinase 2 mutation. Asian J Urol 2022; 9:480-482. [DOI: 10.1016/j.ajur.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/23/2021] [Accepted: 09/03/2021] [Indexed: 10/19/2022] Open
|
27
|
Russell DH, Epstein JI. Intraductal Adenocarcinoma of the Prostate With Cribriform or Papillary Ductal Morphology: Rare Biopsy Cases Lacking Associated Invasive High-grade Carcinoma. Am J Surg Pathol 2022; 46:233-240. [PMID: 34619708 DOI: 10.1097/pas.0000000000001819] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Prostatic duct adenocarcinoma, characterized by pseudostratified columnar epithelium, has historically been considered invasive carcinoma, although it may commonly have an intraductal component. Usual (acinar) intraductal carcinoma of the prostate (IDC-P) is a noninvasive high-risk lesion typically associated with high-grade, high-stage prostate cancer. Whereas there have been rare biopsy studies of pure acinar IDC-P or IDC-P associated with only low-grade carcinoma, there have been no analogous series of IDC-P with cribriform or papillary ductal morphology on biopsy unassociated with invasive high-grade carcinoma. We identified 14 patients with biopsies showing IDC-P with ductal morphology, defined as prostatic duct adenocarcinoma confined to glands/ducts with immunohistochemically proven retention of basal cells. Our series includes 12 patients with pure IDC-P and 2 patients with concurrent low-volume Grade Group 1 invasive cancer in unassociated cores. Three patients underwent radical prostatectomy: 2/3 had high-grade cancer in their resection specimen (Grade Group 3, Grade Group 5), including 1 with advanced stage and nodal metastases; 1/3 had Grade Group 1 organ-confined carcinoma and spatially distinct IDC-P with ductal morphology. Five men had only follow-up biopsies: 2/5 had cancer (Grade Group 2, Grade Group 4); 1/5 had IDC-P (on 2 repeat biopsies); and 2/5 had benign transurethral resection of the prostate. In all 5 cases with invasive cancer, the invasive portion was comprised purely of acinar morphology; no invasive ductal component was identified. Five patients did not have follow-up biopsies and were treated with radiation therapy±androgen deprivation. One patient had no follow-up information. In an analogous situation to acinar IDC-P, we propose that rarely there is a precursor form of ductal adenocarcinoma that can exist without concurrent invasive high-grade carcinoma and propose the term "IDC-P with ductal morphology," consistent with the terminology for acinar prostate adenocarcinoma. Until more evidence is accumulated, we recommend reporting and treating patients with IDC-P with ductal morphology in a manner analogous to those with acinar IDC-P. As with pure IDC-P with acinar morphology, we would also recommend not grading pure IDC-P with ductal morphology. Finally, we propose a new addition to the diagnostic criteria of IDC-P to include intraductal lesions with ductal morphology consisting of papillary fronds or cribriform lesions lined by cytologically atypical pseudostratified epithelium.
Collapse
Affiliation(s)
| | - Jonathan I Epstein
- Departments of Pathology
- Urology
- Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
28
|
Genomic Features and Clinical Implications of Intraductal Carcinoma of the Prostate. Int J Mol Sci 2021; 22:ijms222313125. [PMID: 34884926 PMCID: PMC8658449 DOI: 10.3390/ijms222313125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is a rare and unique form of aggressive prostate carcinoma, which is characterized by an expansile proliferation of malignant prostatic epithelial cells within prostatic ducts or acini and the preservation of basal cell layers around the involved glands. The vast majority of IDC-P tumors result from adjacent high-grade invasive cancer via the retrograde spreading of tumor cells into normal prostatic ducts or acini. A subset of IDC-P tumors is rarely derived from the de novo intraductal proliferation of premalignant cells. The presence of IDC-P in biopsy or surgical specimens is significantly associated with aggressive pathologic features, such as high Gleason grade, large tumor volume, and advanced tumor stage, and with poor clinical courses, including earlier biochemical recurrence, distant metastasis, and worse survival outcomes. These architectural and behavioral features of IDC-P may be driven by specific molecular properties. Notably, IDC-P possesses distinct genomic profiles, including higher rates of TMPRSS2–ERG gene fusions and PTEN loss, increased percentage of genomic instability, and higher prevalence of germline BRCA2 mutations. Considering that IDC-P tumors are usually resistant to conventional therapies for prostate cancer, further studies should be performed to develop optimal therapeutic strategies based on distinct genomic features, such as treatment with immune checkpoint blockades or poly (adenosine diphosphate–ribose) polymerase inhibitors for patients harboring increased genomic instability or BRCA2 mutations, as well as genetic counseling with genetic testing. Patient-derived xenografts and tumor organoid models can be the promising in vitro platforms for investigating the molecular features of IDC-P tumor.
Collapse
|
29
|
Chen H, Strickland AL, Castrillon DH. Histopathologic diagnosis of endometrial precancers: Updates and future directions. Semin Diagn Pathol 2021; 39:137-147. [PMID: 34920905 PMCID: PMC9035046 DOI: 10.1053/j.semdp.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022]
Abstract
Early detection of endometrial cancer, especially its precancers, remains a critical and evolving issue in patient management and the quest to decrease mortality due to endometrial cancer. Due to many factors such as specimen fragmentation, the confounding influence of endogenous or exogenous hormones, and variable or overlapping histologic features, identification of bona fide endometrial precancers and their reliable discrimination from benign mimics remains one of the most challenging areas in diagnostic pathology. At the same time, the diagnosis of endometrial precancer, or the presence of suspicious but subdiagnostic features in an endometrial biopsy, can lead to long clinical follow-up with multiple patient visits and serial endometrial sampling, emphasizing the need for accurate diagnosis. Our understanding of endometrial precancers and their diagnosis has improved due to systematic investigations into morphologic criteria, the molecular genetics of endometrial cancer and their precursors, the validation of novel biomarkers and their use in panels, and more recent methods such digital image analysis. Although precancers for both endometrioid and non-endometrioid carcinomas will be reviewed, emphasis will be placed on the former. We review these advances and their relevance to the histopathologic diagnosis of endometrial precancers, and the recently updated 2020 World Health Organization (WHO) Classification of Female Genital Tumors.
Collapse
|
30
|
Contemporary Grading of Prostate Cancer: The Impact of Grading Criteria and the Significance of the Amount of Intraductal Carcinoma. Cancers (Basel) 2021; 13:cancers13215454. [PMID: 34771617 PMCID: PMC8582560 DOI: 10.3390/cancers13215454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Prognostic grade group (PGG) is an important prognostic parameter in prostate cancer that guides therapeutic decisions. The cribriform pattern and intraductal carcinoma (IDC) are two histological patterns, that have additional prognostic significance. However, discrepancies exist regarding the handling of IDC according to the guidelines published by two international genitourinary pathology societies. Furthermore, whether, in addition to its presence, the amount of IDC is also of importance has not been studied before. Lastly, the handling of tertiary patterns has also been a matter of debate in the literature. (2) Methods: A total of 129 prostatectomy cases were retrieved and a detailed histopathologic analysis was performed. (3) Results: Two cases (1.6%) upgraded their PGG, when IDC was incorporated in the grading system. The presence and the amount of IDC, as well as the presence of cribriform carcinoma were associated with adverse pathologic characteristics. Interestingly, in six cases (4.7%) there was a difference in PGG when using the different guidelines regarding the handling of tertiary patterns. In total, 6.2% of the cases would be assigned a different grade depending on the guidelines followed. (4) Conclusions: These findings highlight a potential area of confusion among pathologists and clinicians and underscore the need for a consensus grading system.
Collapse
|
31
|
Epstein JI, Hirsch MS. A Comparison of Genitourinary Pathology Society (GUPS) and International Society of Urological Pathology (ISUP) Prostate Cancer Grading Guidelines. Am J Surg Pathol 2021; 45:1005-1007. [PMID: 33481386 DOI: 10.1097/pas.0000000000001664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jonathan I Epstein
- Departments of Pathology
- Oncology
- Urology, The Johns Hopkins Medical Institutions, Baltimore, MD
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Lawrence MG, Porter LH, Clouston D, Murphy DG, Frydenberg M, Taylor RA, Risbridger GP. Knowing what's growing: Why ductal and intraductal prostate cancer matter. Sci Transl Med 2021; 12:12/533/eaaz0152. [PMID: 32132214 DOI: 10.1126/scitranslmed.aaz0152] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Prostate cancer is a common malignancy, but only some tumors are lethal. Accurately identifying these tumors will improve clinical practice and instruct research. Aggressive cancers often have distinctive pathologies, including intraductal carcinoma of the prostate (IDC-P) and ductal adenocarcinoma. Here, we review the importance of these pathologies because they are often overlooked, especially in genomics and preclinical testing. Pathology, genomics, and patient-derived models show that IDC-P and ductal adenocarcinoma accompany multiple markers of poor prognosis. Consequently, "knowing what is growing" will help translate preclinical research to pinpoint and treat high-risk prostate cancer in the clinic.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia.,Epworth HealthCare, Melbourne, VIC 3000, Australia
| | - Mark Frydenberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Australian Urology Associates, Melbourne, VIC 3000, Australia.,Department of Urology, Cabrini Health, Malvern, VIC 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
33
|
Sokolova AO, Obeid EI, Cheng HH. Genetic Contribution to Metastatic Prostate Cancer. Urol Clin North Am 2021; 48:349-363. [PMID: 34210490 DOI: 10.1016/j.ucl.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies show that the prevalence of germline pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes in metastatic prostate cancer is higher than previously recognized and higher than in unaffected men. Specific gene dysfunction is important in prostate cancer initiation and/or evolution to metastases. This article reviews key literature on individual genes, recognizing BRCA2 as the gene most commonly altered in the metastatic setting. This article discusses the importance of representative and diverse inclusion, and efforts to advance management for at-risk carrier populations to maximize clinical benefit.
Collapse
Affiliation(s)
- Alexandra O Sokolova
- Department of Medicine (Div. Oncology), University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; VA Puget Sound Health Care System, Seattle, WA, USA
| | | | - Heather H Cheng
- Department of Medicine (Div. Oncology), University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
34
|
Epstein JI, Amin MB, Fine SW, Algaba F, Aron M, Baydar DE, Beltran AL, Brimo F, Cheville JC, Colecchia M, Comperat E, da Cunha IW, Delprado W, DeMarzo AM, Giannico GA, Gordetsky JB, Guo CC, Hansel DE, Hirsch MS, Huang J, Humphrey PA, Jimenez RE, Khani F, Kong Q, Kryvenko ON, Kunju LP, Lal P, Latour M, Lotan T, Maclean F, Magi-Galluzzi C, Mehra R, Menon S, Miyamoto H, Montironi R, Netto GJ, Nguyen JK, Osunkoya AO, Parwani A, Robinson BD, Rubin MA, Shah RB, So JS, Takahashi H, Tavora F, Tretiakova MS, True L, Wobker SE, Yang XJ, Zhou M, Zynger DL, Trpkov K. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med 2021; 145:461-493. [PMID: 32589068 DOI: 10.5858/arpa.2020-0015-ra] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Controversies and uncertainty persist in prostate cancer grading. OBJECTIVE.— To update grading recommendations. DATA SOURCES.— Critical review of the literature along with pathology and clinician surveys. CONCLUSIONS.— Percent Gleason pattern 4 (%GP4) is as follows: (1) report %GP4 in needle biopsy with Grade Groups (GrGp) 2 and 3, and in needle biopsy on other parts (jars) of lower grade in cases with at least 1 part showing Gleason score (GS) 4 + 4 = 8; and (2) report %GP4: less than 5% or less than 10% and 10% increments thereafter. Tertiary grade patterns are as follows: (1) replace "tertiary grade pattern" in radical prostatectomy (RP) with "minor tertiary pattern 5 (TP5)," and only use in RP with GrGp 2 or 3 with less than 5% Gleason pattern 5; and (2) minor TP5 is noted along with the GS, with the GrGp based on the GS. Global score and magnetic resonance imaging (MRI)-targeted biopsies are as follows: (1) when multiple undesignated cores are taken from a single MRI-targeted lesion, an overall grade for that lesion is given as if all the involved cores were one long core; and (2) if providing a global score, when different scores are found in the standard and the MRI-targeted biopsy, give a single global score (factoring both the systematic standard and the MRI-targeted positive cores). Grade Groups are as follows: (1) Grade Groups (GrGp) is the terminology adopted by major world organizations; and (2) retain GS 3 + 5 = 8 in GrGp 4. Cribriform carcinoma is as follows: (1) report the presence or absence of cribriform glands in biopsy and RP with Gleason pattern 4 carcinoma. Intraductal carcinoma (IDC-P) is as follows: (1) report IDC-P in biopsy and RP; (2) use criteria based on dense cribriform glands (>50% of the gland is composed of epithelium relative to luminal spaces) and/or solid nests and/or marked pleomorphism/necrosis; (3) it is not necessary to perform basal cell immunostains on biopsy and RP to identify IDC-P if the results would not change the overall (highest) GS/GrGp part per case; (4) do not include IDC-P in determining the final GS/GrGp on biopsy and/or RP; and (5) "atypical intraductal proliferation (AIP)" is preferred for an intraductal proliferation of prostatic secretory cells which shows a greater degree of architectural complexity and/or cytological atypia than typical high-grade prostatic intraepithelial neoplasia, yet falling short of the strict diagnostic threshold for IDC-P. Molecular testing is as follows: (1) Ki67 is not ready for routine clinical use; (2) additional studies of active surveillance cohorts are needed to establish the utility of PTEN in this setting; and (3) dedicated studies of RNA-based assays in active surveillance populations are needed to substantiate the utility of these expensive tests in this setting. Artificial intelligence and novel grading schema are as follows: (1) incorporating reactive stromal grade, percent GP4, minor tertiary GP5, and cribriform/intraductal carcinoma are not ready for adoption in current practice.
Collapse
Affiliation(s)
- Jonathan I Epstein
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada.,Urology (Epstein), David Geffen School of Medicine at UCLA, Los Angeles, California (Huang).,and Oncology (Epstein), The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science, Memphis (Amin)
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York (Fine)
| | - Ferran Algaba
- Department of Pathology, Fundacio Puigvert, Barcelona, Spain (Algaba)
| | - Manju Aron
- Department of Pathology, University of Southern California, Los Angeles (Aron)
| | - Dilek E Baydar
- Department of Pathology, Faculty of Medicine, Koç University, İstanbul, Turkey (Baydar)
| | - Antonio Lopez Beltran
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal (Beltran)
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center, Montréal, Quebec, Canada (Brimo)
| | - John C Cheville
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Maurizio Colecchia
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy (Colecchia)
| | - Eva Comperat
- Department of Pathology, Hôpital Tenon, Sorbonne University, Paris, France (Comperat)
| | | | | | - Angelo M DeMarzo
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Jennifer B Gordetsky
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Guo)
| | - Donna E Hansel
- Department of Pathology, Oregon Health and Science University, Portland (Hansel)
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (Hirsch)
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California (Huang)
| | - Peter A Humphrey
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut (Humphrey)
| | - Rafael E Jimenez
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong, China (Kong).,Kong is currently located at Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Oleksandr N Kryvenko
- Departments of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (Kryvenko)
| | - L Priya Kunju
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Priti Lal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia (Lal)
| | - Mathieu Latour
- Department of Pathology, CHUM, Université de Montréal, Montréal, Quebec, Canada (Latour)
| | - Tamara Lotan
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Fiona Maclean
- Douglass Hanly Moir Pathology, Faculty of Medicine and Health Sciences Macquarie University, North Ryde, Australia (Maclean)
| | - Cristina Magi-Galluzzi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Santosh Menon
- Department of Surgical Pathology, Tata Memorial Hospital, Parel, Mumbai, India (Menon)
| | - Hiroshi Miyamoto
- Departments of Pathology and Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, New York (Miyamoto)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy (Montironi)
| | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Jane K Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Nguyen)
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia (Osunkoya)
| | - Anil Parwani
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland (Rubin)
| | - Rajal B Shah
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas (Shah)
| | - Jeffrey S So
- Institute of Pathology, St Luke's Medical Center, Quezon City and Global City, Philippines (So)
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan (Takahashi)
| | - Fabio Tavora
- Argos Laboratory, Federal University of Ceara, Fortaleza, Brazil (Tavora)
| | - Maria S Tretiakova
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Lawrence True
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Sara E Wobker
- Departments of Pathology and Laboratory Medicine and Urology, University of North Carolina, Chapel Hill (Wobker)
| | - Ximing J Yang
- Department of Pathology, Northwestern University, Chicago, Illinois (Yang)
| | - Ming Zhou
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts (Zhou)
| | - Debra L Zynger
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Kiril Trpkov
- and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada (Trpkov)
| |
Collapse
|
35
|
Similarities and Differences in the 2019 ISUP and GUPS Recommendations on Prostate Cancer Grading: A Guide for Practicing Pathologists. Adv Anat Pathol 2021; 28:1-7. [PMID: 33027069 DOI: 10.1097/pap.0000000000000287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Contemporary subspecialization of practice in prostate pathology has seen a transition to complex, nuanced reporting, where a growing number of histopathologic parameters may signal differences in patient management. In this context, the International Society of Urological Pathology (ISUP) and the Genitourinary Pathology Society (GUPS) both published proceedings papers on the grading of prostate cancer in 2019. Overall, the 2 prostate cancer grading manuscripts reached many of the same conclusions and recommendations. Yet, each consensus was conducted somewhat differently, and in a couple of key areas, each reached different conclusions and recommendations. Herein, sourced from the experience and viewpoints of members of both societies, we provide the practicing pathologist a summary of the shared recommendations, and of the discordances. It is anticipated that these 2 documents will inform future iterations of recommendations and guidelines for reporting prostate cancer by organizations such as the College of American Pathologists, the Royal College of Pathologists, and the European Society of Pathology, which will promote best practices for their respective constituents. Our goal is to provide the practicing pathologist a useful catalog of the main points of both, allowing each practitioner to make informed decisions and understand any divergent opinions as may arise between observers for individual cases.
Collapse
|
36
|
Delahunt B, Egevad L, Samaratunga H, Srigley JR, Cheng L, Clouston D, Furusato B, Kench J, Leite KRM, MacLennan GT, Moch H, Pan CC, Ro J, Tsuzuki T, van der Kwast T, Wheeler T, Yaxley JW. Intraductal carcinoma of the prostate is not a diagnostic entity. Histopathology 2020; 78:342-344. [PMID: 32970871 DOI: 10.1111/his.14260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellinton School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hemamali Samaratunga
- Aquesta Uropathology and University of Queensland, Brisbane, Queensland, Australia
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Bungo Furusato
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences and Cancer Genomics Unit, Clinical Genomics Center, Nagasaki University Hospital, Sakamoto, Nagasaki, Japan
| | - James Kench
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Katia R M Leite
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gregory T MacLennan
- Department of Pathology and Urology, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Chin-Chen Pan
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jae Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, Houston, TX, USA
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, School of Medicine, Aichi Medical University Aichi Medical University, Nagakute, Japan
| | - Theodorus van der Kwast
- Department of Pathology, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Thomas Wheeler
- Department of Pathology and Laboratory Medicine, Baylor St. Luke's Medical Center, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - John W Yaxley
- Department of Medicine, University of Queensland, Wesley Urology Clinic, Royal Brisbane and Women's Hospital, Brisbane, Qld, Australia
| |
Collapse
|
37
|
Epstein JI. Intraductal carcinoma of the prostate does not always represent invasive high-grade carcinoma extending into ducts. Histopathology 2020; 78:345-346. [PMID: 33022796 DOI: 10.1111/his.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Vlajnic T, Bubendorf L. Molecular pathology of prostate cancer: a practical approach. Pathology 2020; 53:36-43. [PMID: 33234230 DOI: 10.1016/j.pathol.2020.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
While localised prostate cancer can be cured by local treatment, 'high-risk' prostate cancer often progresses to castration resistant disease and remains incurable with a dismal prognosis. In recent years, technical advances and development of novel methodologies have largely contributed to a better understanding of underlying molecular mechanisms that promote tumour growth and progression. Consecutively, novel therapeutic strategies for treatment of prostate cancer have emerged during the last decade, calling for the identification of predictive biomarkers. The concept of personalised medicine is to tailor treatment according to the specific tumour profile of an individual patient. Moreover, acquired molecular changes during tumour evolution and in response to therapy selection pressure require adapted predictive marker testing at different time points during the disease. In this setting, the pathologist plays a critical role in patient management and treatment selection. In this review, we provide a comprehensive overview of the current knowledge of molecular aspects of prostate cancer and their potential utility in the context of different therapeutic approaches. Furthermore, we discuss methods for molecular marker testing in routine clinical practice, with a focus on castration resistant prostate cancer.
Collapse
Affiliation(s)
- Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Zong Y, Montironi R, Massari F, Jiang Z, Lopez-Beltran A, Wheeler TM, Scarpelli M, Santoni M, Cimadamore A, Cheng L. Intraductal Carcinoma of the Prostate: Pathogenesis and Molecular Perspectives. Eur Urol Focus 2020; 7:955-963. [PMID: 33132109 DOI: 10.1016/j.euf.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022]
Abstract
Intraductal carcinoma of the prostate (IDC-P), a clinicopathological entity characterized by malignant prostatic epithelial cells growing within ducts and/or acini, has a distinct architectural pattern, cytological features, and biological behavior. Whereas most IDC-P tumors could be derived from adjacent high-grade invasive cancer via retrograde spreading of cancer cells along benign ducts and acini, a small subset of IDC-P may arise from the transformation and intraductal proliferation of precancerous cells induced by various oncogenic events. These isolated IDC-P tumors possess a distinct mutational profile and may function as a carcinoma in situ lesion with de novo intraductal outgrowth of malignant cells. Further molecular characterization of these two types of IDC-P and better understanding of the mechanisms underlying IDC-P formation and progression could be translated into valuable biomarkers for differential diagnosis and actionable targets for therapeutic interventions. PATIENT SUMMARY: Intraductal carcinoma of the prostate is an aggressive type of prostate cancer associated with high risk for local recurrence and distant metastasis. In this review, we discussed pathogenesis, biomarkers, differential diagnoses, and therapeutic strategies for this tumor.
Collapse
Affiliation(s)
- Yang Zong
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Massari
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | - Thomas M Wheeler
- Department of Pathology and Laboratory Medicine, Baylor St. Luke's Medical Center, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
40
|
Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. Am J Surg Pathol 2020; 44:e15-e29. [PMID: 32044806 DOI: 10.1097/pas.0000000000001450] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The combined clinical and molecular heterogeneity of prostate cancer necessitates the use of prognostic, predictive, and diagnostic biomarkers to assist the clinician with treatment selection. The pathologist plays a critical role in guiding molecular biomarker testing in prostate cancer and requires a thorough knowledge of the current testing options. In the setting of clinically localized prostate cancer, prognostic biomarkers such as Ki-67 labeling, PTEN loss or mRNA-based genomic signatures can be useful to help determine whether definitive therapy is required. In the setting of advanced disease, predictive biomarkers, such as the presence of DNA repair deficiency mediated by BRCA2 loss or mismatch repair gene defects, may suggest the utility of poly-ADP ribosylase inhibition or immune checkpoint blockade. Finally, androgen receptor-related biomarkers or diagnostic biomarkers indicating the presence of small cell neuroendocrine prostate cancer may help guide the use of androgen receptor signaling inhibitors and chemotherapy. In this review, we examine the current evidence for several prognostic, predictive and diagnostic tissue-based molecular biomarkers in prostate cancer management. For each assay, we summarize a recent survey of the International Society of Urology Pathology (ISUP) members on current testing practices and include recommendations for testing that emerged from the ISUP Working Group on Molecular Pathology of Prostate Cancer and the 2019 Consultation Conference on Molecular Pathology of Urogenital Cancers.
Collapse
|
41
|
Kaur HB, Salles DC, Paulk A, Epstein JI, Eshleman JR, Lotan TL. PIN-like ductal carcinoma of the prostate has frequent activating RAS/RAF mutations. Histopathology 2020; 78:327-333. [PMID: 32740981 DOI: 10.1111/his.14224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
AIMS Prostatic intraepithelial neoplasia-like (PIN-like) ductal carcinoma is a rare tumour characterised by often cystically dilated glands architecturally resembling high-grade PIN, but lacking basal cells. These tumours are frequently accompanied by grade group 1 acinar cancer and behave relatively indolently. In contrast, conventional ductal adenocarcinoma of the prostate is an aggressive variant comparable to grade group 4 acinar cancer. Here, we used targeted next-generation sequencing to molecularly profile PIN-like ductal carcinoma cases at radical prostatectomy. METHODS AND RESULTS Five PIN-like ductal carcinoma samples at radical prostatectomy with sufficient tumour tissue available were analysed for genomic alterations by targeted next-generation sequencing using the Johns Hopkins University (JHU) solid tumour panel. DNA was captured using SureSelect for 640 genes and sequenced on the Illumina HiSeq platform. Three of five (60%) of the PIN-like ductal carcinomas showed activating mutations in the RAS/RAF pathways, which are extraordinarily rare in conventional primary prostate carcinoma (<3% of cases), including an activating hot-spot BRAF mutation (p.K601E), an activating hot-spot mutation in HRAS (p.Q61K) and an in-frame activating deletion in BRAF (p.T488_Q493delinsK). An additional two cases lacked BRAF or HRAS mutations, but harboured in-frame insertions of uncertain significance in MAP2K4 and MAP3K6. One case had sufficient acinar tumour for sequencing, and showed a similar molecular profile as the concurrent PIN-like ductal carcinoma, suggesting a clonal relationship between the two components. CONCLUSIONS PIN-like ductal carcinoma represents a molecularly unique tumour, enriched for potentially targetable oncogenic driver mutations in the RAS/RAF/MAPK pathway. This molecular profile contrasts with that of conventional ductal adenocarcinoma, which is typically enriched for pathogenic mutations in the mismatch repair (MMR) and homologous recombination (HR) DNA repair pathways.
Collapse
Affiliation(s)
- Harsimar B Kaur
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adina Paulk
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan I Epstein
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Reporting Practices and Resource Utilization in the Era of Intraductal Carcinoma of the Prostate: A Survey of Genitourinary Subspecialists. Am J Surg Pathol 2020; 44:673-680. [PMID: 31876580 DOI: 10.1097/pas.0000000000001417] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intraductal carcinoma of the prostate (IDC-P) has been recently recognized by the World Health Organization classification of prostatic tumors as a distinct entity, most often occurring concurrently with invasive prostatic adenocarcinoma (PCa). Whether documented admixed with PCa or in its rare pure form, numerous studies associate this entity with clinical aggressiveness. Despite increasing clinical experience and requirement of IDC-P documentation in protocols for synoptic reporting, the specifics of its potential contribution to assessment of grade group (GG) and cancer quantitation of PCa in both needle biopsies (NBx) and radical prostatectomy (RP) specimens remain unclear. Moreover, there are no standard guidelines for incorporating basal cell marker immunohistochemistry (IHC) in the diagnosis of IDC-P, either alone or as part of a cocktail with AMACR/racemase. An online survey containing 26 questions regarding diagnosis, reporting practices, and IHC resource utilization, focusing on IDC-P, was undertaken by 42 genitourinary subspecialists from 9 countries. The degree of agreement or disagreement regarding approaches to individual questions was classified as significant majority (>75%), majority (51% to 75%), minority (26% to 50%) and significant minority (≤25%). IDC-P with or without invasive cancer is considered a contraindication for active surveillance by the significant majority (95%) of respondents, although a majority (66%) also agreed that the clinical significance/behavior of IDC-P on NBx or RP with PCa required further study. The majority do not upgrade PCa based on comedonecrosis seen only in the intraductal component in NBx (62%) or RP (69%) specimens. Similarly, recognizable IDC-P with GG1 PCa was not a factor in upgrading in NBx (78%) or RP (71%) specimens. The majority (60%) of respondents include readily recognizable IDC-P in assessment of linear extent of PCa at NBx. A significant majority (78%) would use IHC to confirm or exclude intraductal carcinoma if other biopsies showed no PCa, while 60% would use it to confirm IDC-P with invasive PCa in NBx if it would change the overall GG assignment. Nearly half (48%, a minority) would use IHC to confirm IDC-P for accurate Gleason pattern 4 quantitation. A majority (57%) report the percentage of IDC-P when present, in RP specimens. When obvious Gleason pattern 4 or 5 PCa is present in RP or NBx, IHC is rarely to almost never used to confirm the presence of IDC-P by the significant majority (88% and 90%, respectively). Most genitourinary pathologists consider IDC-P to be an adverse prognostic feature independent of the PCa grade, although recommendations for standardization are needed to guide reporting of IDC-P vis a vis tumor quantitation and final GG assessment. The use of IHC varies widely and is performed for a multitude of indications, although it is used most frequently in scenarios where confirmation of IDC-P would impact the GG assigned. Further study and best practices recommendations are needed to provide guidance with regards to the most appropriate indications for IHC use in scenarios regarding IDC-P.
Collapse
|
43
|
Grypari IM, Logotheti S, Lazaris AC, Kallidonis P, Fokaefs E, Melachrinou M, Zolota V, Tzelepi V. Isolated Intraductal Carcinoma of the Prostate in Prostatectomy Specimens: Report of 2 Cases and Review of the Literature. Int J Surg Pathol 2020; 28:918-924. [PMID: 32456482 DOI: 10.1177/1066896920920357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intraductal carcinoma of the prostate (IDCp) is a distinct neoplastic entity, and although recognized for some time, it was included for the first time in the histologic classification of prostate cancer in the 2016 publication of World Health Organization. IDCp represents an intraductal or intra-acinar proliferation of malignant cells, with preservation of the basal cell layer. Even though IDCp is usually accompanied by a high-grade invasive component, low-grade invasive carcinoma can rarely be seen adjacent to the lesion. Even rarer is the incidence of isolated IDCp in needle biopsies, while a few such cases have been reported in prostatectomy specimens. We report 2 cases with isolated IDCp without any invasive component. A review of the literature is performed including the diagnostic challenges of IDCp and its morphologic mimics, immunohistochemical markers, molecular aspects, and prognostic implications. Even though it is not yet clear whether IDCp represents an intraductal spread of invasive cancer or a precursor of invasive carcinoma, the existence of isolated IDCp reinforces the idea that, at least in some of the cases, IDCp is a precancerous lesion. Further molecular studies need to be performed in order to clarify its pathogenesis.
Collapse
|
44
|
Abstract
Intraductal carcinoma of the prostate (IDC-P) is a diagnostic entity characterized by architecturally or cytologically malignant-appearing prostatic glandular epithelium confined to prostatic ducts. Despite its apparent in situ nature, this lesion is associated with aggressive prostatic adenocarcinoma and is a predictor for poor prognosis when identified on biopsy or radical prostatectomy. This review discusses diagnosis, clinical features, histogenesis, and management of IDC-P, as well as current research and controversies surrounding this entity.
Collapse
|
45
|
Samaratunga H, Delahunt B, Egevad L, Srigley JR, Billis A, Bostwick DG, Camparo P, Cheng L, Clouston D, Denham J, Furusato B, Hartmann A, Jufe L, Kench J, Kenwright DN, Kristiansen G, Leite KRM, MacLennan GT, Merrimen J, Moch H, Oxley J, Pan CC, Paner G, Ro J, Sesterhenn IAM, Shanks J, Thunders M, Tsuzuki T, Wheeler T, Yaxley JW, Varma M. Intraductal carcinoma of the prostate is an aggressive form of invasive carcinoma and should be graded. Pathology 2019; 52:192-196. [PMID: 31843189 DOI: 10.1016/j.pathol.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 11/28/2022]
Abstract
Infiltration of the prostatic ducts by prostatic adenocarcinoma occurs relatively frequently, being most commonly associated with high grade disease. It is now recognised that intraductal carcinoma of the prostate (IDCP) has an associated poor prognosis and this is reflected in its histological, molecular and immunohistochemical features. The current recommendation of the World Health Organization is that IDCP not be taken into consideration when grading prostate adenocarcinoma. It is apparent that Gleason did not differentiate between IDCP and stromal invasive carcinoma when developing and validating his grading system, and recent studies suggest that the incorporation of IDCP grading into the overall grading of the specimen provides additional prognostic information.
Collapse
Affiliation(s)
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand.
| | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Athanase Billis
- Department of Anatomic Pathology, School of Medical Sciences, State University of Campinas (Unicamp) Campinas, SP, Brazil
| | | | - Philippe Camparo
- Department of Pathology, Centre de Pathologie Amiens, Amiens, France
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - James Denham
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Bungo Furusato
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences and Cancer Genomics Unit, Clinical Genomics Center, Nagasaki University Hospital, Sakamoto, Nagasaki, Japan
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Jufe
- Servicio de Anatomía Patológica. Hospital General de Agudos J.M. Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | - James Kench
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Diane N Kenwright
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Glen Kristiansen
- Institue of Pathology, Reference Centre for Uropathology, University Hospital Bonn, Bonn, Germany
| | - Katia R M Leite
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gregory T MacLennan
- Department of Pathology and Urology, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jennifer Merrimen
- Division of Anatomical Pathology, QEII Health Sciences Centre, Halifax, NS, Canada
| | - Holger Moch
- University and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
| | - Jon Oxley
- North Bristol NHS Trust, Bristol, UK
| | - Chin-Chen Pan
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Gladell Paner
- Departments of Pathology and Surgery (Section of Urology) University of Chicago, Chicago, IL, USA
| | - Jae Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College of Cornell University, Houston, TX, USA
| | | | - Jonathan Shanks
- Department of Histopathology, The Christie NHS Foundation Trust, Manchester, UK
| | - Michelle Thunders
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University, School of Medicine, Nagakute, Japan
| | - Thomas Wheeler
- Department of Pathology and Laboratory Medicine, Baylor St. Luke's Medical Center and Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - John W Yaxley
- Department of Medicine, University of Queensland, Wesley Urology Clinic, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Murali Varma
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, UK
| |
Collapse
|