1
|
Zhang J, Kamoi K, Zong Y, Yang M, Zou Y, Miyagaki M, Ohno-Matsui K. Cytomegalovirus Retinitis: Clinical Manifestations, Diagnosis and Treatment. Viruses 2024; 16:1427. [PMID: 39339903 PMCID: PMC11437412 DOI: 10.3390/v16091427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Cytomegalovirus (CMV) retinitis is the most common eye disease associated with CMV infection in immunocompromised individuals. The CMVR may initially be asymptomatic; however, relatively mild vitreous inflammation at the onset may be an important differential point from other diseases in HIV patients. Fundus photography, CD4 T-cell count, and telemedicine could be used to screen and monitor the high-risk population, particularly in resource-limited regions. Retinitis generally starts in the peripheral retina and advances toward the posterior pole, which could develop to the characteristic "pizza pie" appearance marked by central retinal necrosis and intraretinal hemorrhage. CMVR causes vision loss if left untreated, and early antiviral therapy significantly reduces the risk of vision loss. Alongside traditional antiviral treatments, immunotherapies including CMV-specific adoptive T-cell therapy and CMV immunoglobulin (CMVIG) are emerging as promising treatment options due to their favorable tolerability and reduced mortality. This review comprehensively examines CMV retinitis, encompassing the clinical features, differential diagnosis, laboratory tests, and updated treatment strategies to inform clinical management.
Collapse
Affiliation(s)
| | - Koju Kamoi
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (J.Z.); (Y.Z.); (M.Y.); (Y.Z.); (M.M.); (K.O.-M.)
| | | | | | | | | | | |
Collapse
|
2
|
Sayeed K, Parameswaran S, Beucler MJ, Edsall LE, VonHandorf A, Crowther A, Donmez O, Hass M, Richards S, Forney C, Wright J, Leong MML, Murray-Nerger LA, Gewurz BE, Kaufman KM, Harley JB, Zhao B, Miller WE, Kottyan LC, Weirauch MT. Human cytomegalovirus infection coopts chromatin organization to diminish TEAD1 transcription factor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588762. [PMID: 38645179 PMCID: PMC11030363 DOI: 10.1101/2024.04.12.588762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.
Collapse
Affiliation(s)
- Khund Sayeed
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew J. Beucler
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Lee E. Edsall
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Audrey Crowther
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Omer Donmez
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Hass
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Scott Richards
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jay Wright
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura A. Murray-Nerger
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ben E. Gewurz
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth M. Kaufman
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - John B. Harley
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - William E. Miller
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Leah C. Kottyan
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
3
|
Lischer C, Eberhardt M, Flamann C, Berges J, Güse E, Wessely A, Weich A, Retzlaff J, Dörrie J, Schaft N, Wiesinger M, März J, Schuler-Thurner B, Knorr H, Gupta S, Singh KP, Schuler G, Heppt MV, Koch EAT, van Kleef ND, Freen-van Heeren JJ, Turksma AW, Wolkenhauer O, Hohberger B, Berking C, Bruns H, Vera J. Gene network-based and ensemble modeling-based selection of tumor-associated antigens with a predicted low risk of tissue damage for targeted immunotherapy. J Immunother Cancer 2024; 12:e008104. [PMID: 38724462 PMCID: PMC11086525 DOI: 10.1136/jitc-2023-008104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Tumor-associated antigens and their derived peptides constitute an opportunity to design off-the-shelf mainline or adjuvant anti-cancer immunotherapies for a broad array of patients. A performant and rational antigen selection pipeline would lay the foundation for immunotherapy trials with the potential to enhance treatment, tremendously benefiting patients suffering from rare, understudied cancers. METHODS We present an experimentally validated, data-driven computational pipeline that selects and ranks antigens in a multipronged approach. In addition to minimizing the risk of immune-related adverse events by selecting antigens based on their expression profile in tumor biopsies and healthy tissues, we incorporated a network analysis-derived antigen indispensability index based on computational modeling results, and candidate immunogenicity predictions from a machine learning ensemble model relying on peptide physicochemical characteristics. RESULTS In a model study of uveal melanoma, Human Leukocyte Antigen (HLA) docking simulations and experimental quantification of the peptide-major histocompatibility complex binding affinities confirmed that our approach discriminates between high-binding and low-binding affinity peptides with a performance similar to that of established methodologies. Blinded validation experiments with autologous T-cells yielded peptide stimulation-induced interferon-γ secretion and cytotoxic activity despite high interdonor variability. Dissecting the score contribution of the tested antigens revealed that peptides with the potential to induce cytotoxicity but unsuitable due to potential tissue damage or instability of expression were properly discarded by the computational pipeline. CONCLUSIONS In this study, we demonstrate the feasibility of the de novo computational selection of antigens with the capacity to induce an anti-tumor immune response and a predicted low risk of tissue damage. On translation to the clinic, our pipeline supports fast turn-around validation, for example, for adoptive T-cell transfer preparations, in both generalized and personalized antigen-directed immunotherapy settings.
Collapse
Affiliation(s)
- Christopher Lischer
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Martin Eberhardt
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Cindy Flamann
- BZKF, Erlangen, Germany
- Department of Hematology and Oncology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berges
- BZKF, Erlangen, Germany
- Department of Hematology and Oncology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Esther Güse
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anja Wessely
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Adrian Weich
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jimmy Retzlaff
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jan Dörrie
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manuel Wiesinger
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Johannes März
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Harald Knorr
- Department of Ophthalmology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- CCC Erlangen-EMN, Erlangen, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Universität Rostock, Rostock, Germany
| | - Krishna Pal Singh
- Department of Systems Biology and Bioinformatics, Universität Rostock, Rostock, Germany
| | - Gerold Schuler
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus Vincent Heppt
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Elias Andreas Thomas Koch
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | | | | | | | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Universität Rostock, Rostock, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- CCC Erlangen-EMN, Erlangen, Germany
| | - Carola Berking
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Dermatology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Heiko Bruns
- BZKF, Erlangen, Germany
- Department of Hematology and Oncology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Dermatology, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Zhang X, Xu J, Marshall B, Dong Z, Liu Y, Espinosa-Heidmann DG, Zhang M. Transcriptome Analysis of Retinal and Choroidal Pathologies in Aged BALB/c Mice Following Systemic Neonatal Murine Cytomegalovirus Infection. Int J Mol Sci 2023; 24:4322. [PMID: 36901754 PMCID: PMC10001583 DOI: 10.3390/ijms24054322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Our previous studies have shown that systemic neonatal murine cytomegalovirus (MCMV) infection of BALB/c mice spread to the eye with subsequent establishment of latency in choroid/RPE. In this study, RNA sequencing (RNA-Seq) analysis was used to determine the molecular genetic changes and pathways affected by ocular MCMV latency. MCMV (50 pfu per mouse) or medium as control were injected intra-peritoneally (i.p.) into BALB/c mice at <3 days after birth. At 18 months post injection, the mice were euthanized, and the eyes were collected and prepared for RNA-Seq. Compared to three uninfected control eyes, we identified 321 differentially expressed genes (DEGs) in six infected eyes. Using the QIAGEN Ingenuity Pathway Analysis (QIAGEN IPA), we identified 17 affected canonical pathways, 10 of which function in neuroretinal signaling, with the majority of DEGs being downregulated, while 7 pathways function in upregulated immune/inflammatory responses. Retinal and epithelial cell death pathways involving both apoptosis and necroptosis were also activated. MCMV ocular latency is associated with upregulation of immune and inflammatory responses and downregulation of multiple neuroretinal signaling pathways. Cell death signaling pathways are also activated and contribute to the degeneration of photoreceptors, RPE, and choroidal capillaries.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Diego G. Espinosa-Heidmann
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Liu Z, Mao X, Yang Q, Zhang X, Xu J, Ma Q, Zhou Y, Da Q, Cai Y, Sopeyin A, Dong Z, Hong M, Caldwell RB, Sodhi A, Huo Y. Suppression of myeloid PFKFB3-driven glycolysis protects mice from choroidal neovascularization. Br J Pharmacol 2022; 179:5109-5131. [PMID: 35830274 DOI: 10.1111/bph.15925] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Pathological angiogenesis is a major cause of irreversible blindness in individuals with neovascular age-related macular degeneration (nAMD). Macrophages and microglia (MΦ) contribute to aberrant ocular angiogenesis. However, the role of glucose metabolism of MΦ in nAMD is still undefined. Here, we have investigated the involvement of glycolysis, driven by the kinase/phosphatase PFKFB3, in the development of choroidal neovascularization (CNV). EXPERIMENTAL APPROACH CNV was induced in mice with laser photocoagulation. Choroid/retinal pigment epithelium (RPE) complexes and MΦ were isolated for analysis by qRT-PCR, western blot, flow cytometry, immunostaining, metabolic measurements and angiogenesis assays. KEY RESULTS MΦ accumulated within the CNV of murine nAMD models and expressed high levels of glycolysis-related enzymes and M1/M2 polarization markers. This phenotype of hyper-glycolytic and activated MΦ was replicated in bone marrow-derived macrophages stimulated by necrotic RPE in vitro. Myeloid cell-specific knockout of PFKFB3, a key glycolytic activator, attenuated pathological neovascularization in laser-induced CNV, which was associated with decreased expression of MΦ polarization markers and pro-angiogenic factors, along with decreased sprouting of vessels in choroid/RPE complexes. Mechanistically, necrotic RPE increased PFKFB3-driven glycolysis in macrophages, leading to activation of HIF-1α/HIF-2α and NF-κB, and subsequent induction of M1/M2 markers and pro-angiogenic cytokines, finally promoting macrophage reprogramming towards an angiogenic phenotype to facilitate development of CNV. The PFKFB3 inhibitor AZ67 also inhibited activation of HIF-1α/HIF-2α and NF-κB signalling and almost completely prevented laser-induced CNV in mice. CONCLUSIONS AND IMPLICATIONS Modulation of PFKFB3-mediated macrophage glycolysis and activation is a promising strategy for the treatment of nAMD.
Collapse
Affiliation(s)
- Zhiping Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoxiao Mao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xiaoyu Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jiean Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yaqi Zhou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qingen Da
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Anu Sopeyin
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
6
|
Arjunan P, Swaminathan R. Do Oral Pathogens Inhabit the Eye and Play a Role in Ocular Diseases? J Clin Med 2022; 11:2938. [PMID: 35629064 PMCID: PMC9146391 DOI: 10.3390/jcm11102938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Fascinatingly, the immune-privileged healthy eye has a small unique population of microbiota. The human microbiome project led to continuing interest in the ocular microbiome. Typically, ocular microflorae are commensals of low diversity that colonize the external and internal sites of the eye, without instigating any disorders. Ocular commensals modulate immunity and optimally regulate host defense against pathogenic invasion, both on the ocular surface and neuroretina. Yet, any alteration in this symbiotic relationship culminates in the perturbation of ocular homeostasis and shifts the equilibrium toward local or systemic inflammation and, in turn, impaired visual function. A compositional variation in the ocular microbiota is associated with surface disorders such as keratitis, blepharitis, and conjunctivitis. Nevertheless, innovative studies now implicate non-ocular microbial dysbiosis in glaucoma, age-related macular degeneration (AMD), uveitis, and diabetic retinopathy. Accordingly, prompt identification of the extra-ocular etiology and a methodical understanding of the mechanisms of invasion and host-microbial interaction is of paramount importance for preventative and therapeutic interventions for vision-threatening conditions. This review article aims to explore the current literature evidence to better comprehend the role of oral pathogens in the etiopathogenesis of ocular diseases, specifically AMD.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Radhika Swaminathan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
7
|
He J, Li X. Identification and Validation of Aging-Related Genes in Idiopathic Pulmonary Fibrosis. Front Genet 2022; 13:780010. [PMID: 35211155 PMCID: PMC8863089 DOI: 10.3389/fgene.2022.780010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Aging plays a significant role in the occurrence and development of idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify and verify potential aging-associated genes involved in IPF using bioinformatic analysis. The mRNA expression profile dataset GSE150910 available in the Gene Expression Omnibus (GEO) database and R software were used to identify the differentially expressed aging-related genes involved in IPF. Hub gene expression was validated by other GEO datasets. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on differentially expressed aging-related genes. Subsequently, aging-related genes were further screened using three techniques (least absolute shrinkage and selection operator (LASSO) regression, support vector machine, and random forest), and the receiver operating characteristic curves were plotted based on screening results. Finally, real-time quantitative polymerase chain reaction (qRT-PCR) was performed to verify the RNA expression of the six differentially expressed aging-related genes using the blood samples of patients with IPF and healthy individuals. Sixteen differentially expressed aging-related genes were detected, of which the expression of 12 were upregulated and four were downregulated. GO and KEGG enrichment analyses indicated the presence of several enriched terms related to senescence and apoptotic mitochondrial changes. Further screening by LASSO regression, support vector machine, and random forest identified six genes (IGF1, RET, IGFBP2, CDKN2A, JUN, and TFAP2A) that could serve as potential diagnostic biomarkers for IPF. Furthermore, qRT-PCR analysis indicated that among the above-mentioned six aging-related genes, only the expression levels of IGF1, RET, and IGFBP2 in patients with IPF and healthy individuals were consistent with the results of bioinformatic analysis. In conclusion, bioinformatics analysis identified 16 potential aging-related genes associated with IPF, and clinical sample validation suggested that among these, IGF1, RET, and IGFBP2 might play a role in the incidence and prognosis of IPF. Our findings may help understand the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Kumar S, Quach J, Cook N, Gum G, Naageshwaran V. Characterization and validation of a chronic retinal neovascularization rabbit model by evaluating the efficacy of anti-angiogenic and anti-inflammatory drugs. Int J Ophthalmol 2022; 15:15-22. [PMID: 35047351 DOI: 10.18240/ijo.2022.01.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To establish a rabbit model with chronic condition of retinal neovascularization (RNV) induced by intravitreal (IVT) injection of DL-2-aminoadipic acid (DL-AAA), a retinal glial (Müller) cell toxin, extensive characterization of DL-AAA induced angiographic features and the suitability of the model to evaluate anti-angiogenic and anti-inflammatory therapies for ocular vascular diseases. METHODS DL-AAA (80 mmol/L) was administered IVT into both eyes of Dutch Belted rabbit. Post DL-AAA delivery, clinical ophthalmic examinations were performed weekly following modified McDonald-Shadduck Scoring System. Color fundus photography, fluorescein angiography (FA), and optical coherence tomography (OCT) procedures were performed every 2 or 4wk until stable retinal vascular leakage was observed. Once stable retinal leakage (12wk post DL-AAA administration) was established, anti-vascular endothelial growth factor (VEGF) (bevacizumab, ranibizumab and aflibercept) and anti-inflammatory (triamcinolone, TAA) drugs were tested for their efficacy after IVT administration. Fluorescein angiograms were scored before and after treatment following a novel grading system, developed for the DL-AAA rabbit model. RESULTS Post DL-AAA administration, eyes were presented with moderate to severe retinal/choroidal inflammation which was accompanied by intense vitreous flare and presence of inflammatory cells in the vitreous humor. Retinal hemorrhage was restricted to the tips of neo-retinal vessels. FA revealed maximum retinal vascular leakage at 2wk after DL-AAA injection and then persisted as evidenced by stable mean FA scores in weeks 8 and 12. Retinal vascular angiographic and tomographic features were stable and consistent up to 36mo among two different staggers induced for RNV at two different occasions. Day 7, mean FA scores showed that 1 µg/eye of bevacizumab, ranibizumab, aflibercept and 2 µg/eye of TAA suppress 65%, 90%, 100% and 50% retinal vascular leakage, respectively. Day 30, bevacizumab and TAA continued to show 66% and 44% suppression while ranibizumab effect was becoming less effective (68%). In contrast, aflibercept was still able to fully (100%) suppress vascular leakage on day 30. On day 60, bevacizumab, ranibizumab and TAA showed suppression of 7%, 12%, and 9% retinal vascular leakage, respectively, however, aflibercept continued to be more effective showing 50% suppression of vascular leakage. CONCLUSION The DL-AAA rabbit model mimics RNV angiographic features like RNV and chronic retinal leakage. Based on these features the DL-AAA rabbit model provides an invaluable tool that could be used to test the therapeutic efficacy and duration of action of novel anti-angiogenic formulations, alone or in combination with anti-inflammatory compounds.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| | - John Quach
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| | - Nicholas Cook
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| | - Glenwood Gum
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| | - Vatsala Naageshwaran
- Department of Ophthalmology, Absorption Systems: a Pharmaron company, 7901 Vickers St, San Diego, CA 92111, USA
| |
Collapse
|
9
|
Xu J, Liu X, Zhang X, Marshall B, Dong Z, Smith SB, Espinosa-Heidmann DG, Zhang M. Retinal and Choroidal Pathologies in Aged BALB/c Mice Following Systemic Neonatal Murine Cytomegalovirus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1787-1804. [PMID: 34197777 PMCID: PMC8485058 DOI: 10.1016/j.ajpath.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Although pathologies associated with acute virus infections have been extensively studied, the effects of long-term latent virus infections are less well understood. Human cytomegalovirus, which infects 50% to 80% of humans, is usually acquired during early life and persists in a latent state for the lifetime. The purpose of this study was to determine whether systemic murine cytomegalovirus (MCMV) infection acquired early in life disseminates to and becomes latent in the eye and if ocular MCMV can trigger in situ inflammation and occurrence of ocular pathology. This study found that neonatal infection of BALB/c mice with MCMV resulted in dissemination of virus to the eye, where it localized principally to choroidal endothelia and pericytes and less frequently to the retinal pigment epithelium (RPE) cells. MCMV underwent ocular latency, which was associated with expression of multiple virus genes and from which MCMV could be reactivated by immunosuppression. Latent ocular infection was associated with significant up-regulation of several inflammatory/angiogenic factors. Retinal and choroidal pathologies developed in a progressive manner, with deposits appearing at both basal and apical aspects of the RPE, RPE/choroidal atrophy, photoreceptor degeneration, and neovascularization. The pathologies induced by long-term ocular MCMV latency share features of previously described human ocular diseases, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xinglou Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xinyan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Diego G Espinosa-Heidmann
- James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia; Department of Ophthamology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia; James and Jean Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
10
|
Yu Z, Wang Y, Liu L, Zhang X, Jiang S, Wang B. Apoptosis Disorder, a Key Pathogenesis of HCMV-Related Diseases. Int J Mol Sci 2021; 22:ijms22084106. [PMID: 33921122 PMCID: PMC8071541 DOI: 10.3390/ijms22084106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) belongs to the β-herpesvirus family, which is transmitted in almost every part of the world and is carried by more than 90% of the general population. Increasing evidence indicates that HCMV infection triggers numerous diseases by disrupting the normal physiological activity of host cells, particularly apoptosis. Apoptosis disorder plays a key role in the initiation and development of multiple diseases. However, the relationship and molecular mechanism of HCMV-related diseases and apoptosis have not yet been systematically summarized. This review aims to summarize the role of apoptosis in HCMV-related diseases and provide an insight into the molecular mechanism of apoptosis induced by HCMV infection. We summarize the literature on HCMV-related diseases and suggest novel strategies for HCMV treatment by regulating apoptosis.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
| | - Yashuo Wang
- College of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Lili Liu
- Department of Basic Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
| | - Xianjuan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China; (X.Z.); (S.J.)
| | - Shasha Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China; (X.Z.); (S.J.)
| | - Bin Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266000, China;
- Correspondence: ; Tel.: +86-136-8532-6203
| |
Collapse
|