1
|
Cheung CK, Alexander S, Reich HN, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol 2024:10.1038/s41581-024-00885-3. [PMID: 39232245 PMCID: PMC7616674 DOI: 10.1038/s41581-024-00885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region - probably derived from the mucosal immune system - is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | - Heather N Reich
- Department of Medicine, Division of Nephrology, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, P. R. China
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
2
|
Li JJ, Li L, Li S, Tang XY, Sun HF, Liu JX. Sinomenine Hydrochloride Protects IgA Nephropathy Through Regulating Cell Growth and Apoptosis of T and B Lymphocytes. Drug Des Devel Ther 2024; 18:1247-1262. [PMID: 38645988 PMCID: PMC11032719 DOI: 10.2147/dddt.s449119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Sinomenine hydrochloride (SH) is used to treat chronic inflammatory diseases such as rheumatoid arthritis and may also be efficacious against Immunoglobulin A nephropathy (IgAN). However, no trial has investigated the molecular mechanism of SH on IgAN. Therefore, this study aims to investigate the effect and mechanism of SH on IgAN. Methods The pathological changes and IgA and C3 depositions in the kidney of an IgAN rat model were detected by periodic acid-Schiff (PAS) and direct immunofluorescence staining. After extracting T and B cells using immunomagnetic beads, we assessed their purity, cell cycle phase, and apoptosis stage through flow cytometry. Furthermore, we quantified cell cycle-related and apoptosis-associated proteins by Western blotting. Results SH reduced IgA and C3 depositions in stage 4 IgAN, thereby decreasing inflammatory cellular infiltration and mesangial injury in an IgAN model induced using heteroproteins. Furthermore, SH arrested the cell cycle of lymphocytes T and B from the spleen of IgAN rats. Regarding the mechanism, our results demonstrated that SH regulated the Cyclin D1 and Cyclin E1 protein levels for arresting the cell cycle and it also regulated Bax and Bcl-2 protein levels, thus increasing Cleaved caspase-3 protein levels in Jurkat T and Ramos B cells. Conclusion SH exerts a dual regulation on the cell cycle and apoptosis of T and B cells by controlling cell cycle-related and apoptosis-associated proteins; it also reduces inflammatory cellular infiltration and mesangial proliferation. These are the major mechanisms of SH in IgAN.
Collapse
Affiliation(s)
- Jun-Jian Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, People’s Republic of China
| | - Li Li
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, People’s Republic of China
| | - Shuang Li
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, People’s Republic of China
- Harbin Voolga Technology Co., Ltd., Harbin, People’s Republic of China
| | - Xin-Yi Tang
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, People’s Republic of China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, People’s Republic of China
| |
Collapse
|
3
|
Kang Y, Xu B, Shi S, Zhou X, Chen P, Liu L, Li Y, Leng Y, Lv J, Zhu L, Zhang H. Mesangial C3 Deposition, Complement-Associated Variant, and Disease Progression in IgA Nephropathy. Clin J Am Soc Nephrol 2023; 18:1583-1591. [PMID: 37651123 PMCID: PMC10723908 DOI: 10.2215/cjn.0000000000000290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND IgA nephropathy is the most common primary GN worldwide, with dominant deposition of IgA and co-deposits of complement component 3 (C3). Phenotypes and progression of IgA nephropathy varies among different ethnic populations, while patients with IgA nephropathy from Asia showed more severe clinical phenotypes, active kidney lesions, and rapid progression. Our previous genome-wide association study identified complement factor H ( CFH ) variant rs6677604, tightly linked with the deletion of CFH -related protein 3 and CFH -related protein 1 genes ( ΔCFHR3-1 ), as IgA nephropathy susceptible variant, and additionally revealed its effect on complement regulation in IgA nephropathy. METHODS To further explore the effect of rs6677604 on IgA nephropathy progression, here we enrolled a Chinese IgA nephropathy cohort of 1781 patients with regular follow-up for analysis. The rs6677604 genotype was measured, and the genotype-phenotype correlation was analyzed using the t test, the chi-squared test, or the nonparametric test, and the association between rs6677604 genotype or mesangial C3 deposition and IgA nephropathy prognosis was analyzed using Kaplan-Meier analysis and Cox regression. RESULTS We found that patients with rs6677604-GG genotype had a stronger intensity of mesangial C3 deposition than those with the rs6677604-AA/AG genotype. Patients with IgA nephropathy who had stronger intensity of C3 deposition manifested with more severe clinical and pathological manifestations, including lower eGFR and higher Oxford-M/S/T/C (mesangial hypercellularity, endocapillary cellularity, segmental sclerosis, interstitial fibrosis/tubular atrophy, and crescent) scores. In the survival analysis, stronger intensity of mesangial C3 deposition, but not rs6677604-GG genotypes, was associated with poor long-term kidney outcome in IgA nephropathy. CONCLUSIONS We found that in Chinese patients with IgA nephropathy, variant rs6677604 was associated with mesangial C3 deposition, and mesangial C3 deposition, but not rs6677604, was associated with IgA nephropathy severity and progression.
Collapse
Affiliation(s)
- Yuqi Kang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Peking University Institute of Nephrology, Beijing, China; Key Laboratory of Renal Disease (Peking University), Beijing, China; National Health Commission, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China; and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Niu SW, Wu CH, Chen HC, Yang CJ, Chang JM, Chang EE, Chuang HH, Chiu YW, Zhen YY, Hung CC, Hwang SJ. Proteins Secreted by Lung Cancer Cells Induce the Onset of Proteinuria via Focal Adhesion Kinase Signaling in Mice. J Transl Med 2023; 103:100156. [PMID: 37119854 DOI: 10.1016/j.labinv.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023] Open
Abstract
Paraneoplastic nephrotic syndrome (PNS) is a complication seen in cancer patients. Ultrastructural examination shows the accumulation of proteins and the presence of foot process (FP) effacement in the glomeruli of PNS patients. Previously, we reported that orthotopic xenografts of Lewis lung carcinoma 1 in C57BL/6 mice caused them to develop lung cancer with albuminuria. This implies that these mice can be used as a model of human disease and suggests that Lewis lung carcinoma 1 cell-secreted proteins (LCSePs) contain nephrotoxic molecules and cause inflammation in renal cells. As podocyte effacement was present in glomeruli in this model, such podocyte injury may be attributable to either soluble LCSeP or LCSeP deposits triggering pathological progression. LCSePs in conditioned media was concentrated for nephrotoxicity testing. Integrin-focal adhesion kinase (FAK) signaling and inflammatory responses were evaluated in podocytes either exposed to soluble LCSePs or seeded onto substrates with immobilized LCSePs. FAK phosphorylation and interleukin-6 expression were higher in podocytes attached to LCSePs substrates than in those exposed to soluble LCSePs. Notably, LCSeP-based haptotaxis gave rise to altered signaling in podocytes. When podocytes were stimulated by immobilized LCSePs, FAK accumulated at focal adhesions, synaptopodin dissociated from F-actin, and disrupting the interactions between synaptopodin and α-actinin was observed. When FAK was inhibited by PF-573228 in immobilized LCSePs, the association between synaptopodin and α-actinin was observed in the podocytes. The association of synaptopodin and α-actinin with F-actin allowed FP stretching, establishing a functional glomerular filtration barrier. Therefore, in this mouse model of lung cancer, FAK signaling prompts podocyte FP effacement and proteinuria, indicative of PNS.
Collapse
Affiliation(s)
- Sheng-Wen Niu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Hsing Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Division of Pulmonary and Critical care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jer-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eddy Essen Chang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Hao Chuang
- Division of Pulmonary and Critical care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yi Zhen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Chih Hung
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Si M, Li L, Fang M, Ye Z, Zhang XC, Yang W, Nie L, Yu X. Anomalous kinetics of galactose-deficient IgA incurring nephropathy revealed by cross-scale optical imaging. Kidney Int 2023; 103:320-330. [PMID: 36341730 DOI: 10.1016/j.kint.2022.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Abstract
IgA nephropathy (IgAN) is the most common glomerulonephritis, characterized by the presence of predominant IgA deposits in the mesangium. Deposition of pathogenic IgA in kidney tissue is a fundamental initiating process that has not been fully studied. Here, we employed optical imaging to directly visualize kidney deposition of IgA with optimized spatial and temporal resolution in BALB/c nude mice. Real-time fluorescence imaging revealed that IgA isolated from patients with IgAN preferentially accumulated in the kidneys, compared with IgA purified from healthy individuals. There was no difference in the distribution of either IgA preparation by the liver. Photoacoustic computed tomography dynamically demonstrated and quantified the enhanced retention of pathological IgA in the kidney cortex. Photoacoustic microscopy tracked IgA deposition in the glomeruli with a resolution down to three microns in a mouse model. Notably, longitudinal fluorescent imaging revealed that galactose-deficient IgA (Gd-IgA), which was elevated in the circulation of patients with IgAN, persisted in the kidney for longer than two weeks, and stable deposition of Gd-IgA induced kidney impairment, including albuminuria and mesangial proliferation. Thus, our study highlights that the aberrant kidney depositional kinetics of Gd-IgA is involved in the pathogenesis of IgAN. Hence, cross-scale optical imaging has potential applications in assessing immune-mediated kidney diseases and uncovering underlying mechanisms of disease.
Collapse
Affiliation(s)
- Meijun Si
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lanqing Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengting Fang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Chao Zhang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Yang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liming Nie
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Xueqing Yu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
6
|
B7-1 mediates podocyte injury and glomerulosclerosis through communication with Hsp90ab1-LRP5-β-catenin pathway. Cell Death Differ 2022; 29:2399-2416. [PMID: 35710882 PMCID: PMC9750974 DOI: 10.1038/s41418-022-01026-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/08/2023] Open
Abstract
Podocyte injury is a hallmark of glomerular diseases; however, the underlying mechanisms remain unclear. B7-1 is increased in injured podocytes, but its intrinsic role is controversial. The clinical data here revealed the intimate correlation of urinary B7-1 with severity of glomerular injury. Through transcriptomic and biological assays in B7-1 transgenic and adriamycin nephropathy models, we identified B7-1 is a key mediator in podocyte injury and glomerulosclerosis through a series of signal transmission to β-catenin. Using LC-MS/MS, Hsp90ab1, a conserved molecular chaperone, was distinguished to be an anchor for transmitting signals from B7-1 to β-catenin. Molecular docking and subsequent mutant analysis further identified the residue K69 in the N terminal domain of Hsp90ab1 was the key binding site for B7-1 to activate LRP5/β-catenin pathway. The interaction and biological functions of B7-1-Hsp90ab1-LRP5 complex were further demonstrated in vitro and in vivo. We also found B7-1 is a novel downstream target of β-catenin. Our results indicate an intercrossed network of B7-1, which collectively induces podocyte injury and glomerulosclerosis. Our study provides an important clue to improve the therapeutic strategies to target B7-1.
Collapse
|
7
|
Zhang X, Chao P, Jiang H, Yang S, Muhetaer G, Zhang J, Song X, Lu C. Integration of three machine learning algorithms identifies characteristic RNA binding proteins linked with diagnosis, immunity and pyroptosis of IgA nephropathy. Front Genet 2022; 13:975521. [PMID: 36246620 PMCID: PMC9554240 DOI: 10.3389/fgene.2022.975521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: RNA-binding proteins (RBPs) are essential for most post-transcriptional regulatory events, which exert critical roles in nearly all aspects of cell biology. Here, characteristic RBPs of IgA nephropathy were determined with multiple machine learning algorithms. Methods: Our study included three gene expression datasets of IgA nephropathy (GSE37460, GSE73953, GSE93798). Differential expression of RBPs between IgA nephropathy and normal samples was analyzed via limma, and hub RBPs were determined through MCODE. Afterwards, three machine learning algorithms (LASSO, SVM-RFE, random forest) were integrated to determine characteristic RBPs, which were verified in the Nephroseq database. Immune cell infiltrations were estimated through CIBERSORT. Utilizing ConsensusClusterPlus, IgA nephropathy were classified based on hub RBPs. The potential upstream miRNAs were predicted. Results: Among 388 RBPs with differential expression, 43 hub RBPs were determined. After integration of three machine learning algorithms, three characteristic RBPs were finally identified (DDX27, RCL1, and TFB2M). All of them were down-regulated in IgA nephropathy than normal specimens, with the excellent diagnostic efficacy. Additionally, they were significantly linked to immune cell infiltrations, immune checkpoints, and pyroptosis-relevant genes. Based on hub RBPs, IgA nephropathy was stably classified as two subtypes (cluster 1 and 2). Cluster 1 exhibited the relatively high expression of pyroptosis-relevant genes and characteristic RBPs. MiR-501-3p, miR-760, miR-502-3p, miR-1224-5p, and miR-107 were potential upstream miRNAs of hub RBPs. Conclusion: Collectively, our findings determine three characteristic RBPs in IgA nephropathy and two RBPs-based subtypes, and thus provide a certain basis for further research on the diagnosis and pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Peng Chao
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hong Jiang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Gulimire Muhetaer
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jun Zhang
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xue Song
- Department of Nephrology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- *Correspondence: Xue Song, ; Chen Lu,
| | - Chen Lu
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Xue Song, ; Chen Lu,
| |
Collapse
|
8
|
Gao L, Xie X, Liu P, Jin J. High-avidity binding drives nucleation of amyloidogenic transthyretin monomer. JCI Insight 2022; 7:150131. [PMID: 35393947 PMCID: PMC9057628 DOI: 10.1172/jci.insight.150131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloidosis involves stepwise growth of fibrils assembled from soluble precursors. Transthyretin (TTR) naturally folds into a stable tetramer, whereas conditions and mutations that foster aberrant monomer formations facilitate TTR oligomeric aggregation and subsequent fibril extension. We investigated the early assembly of oligomers by WT TTR compared with its V30M and V122I variants. We monitored time-dependent redistribution among monomer, dimer, tetramer, and oligomer contents in the presence and absence of multimeric TTR seeds. The seeds were artificially constructed recombinant multimers that contained 20–40 TTR subunits via engineered biotin-streptavidin (SA) interactions. As expected, these multimer seeds rapidly nucleated TTR monomers into larger complexes, while having less effect on dimers and tetramers. In vivo, SA-induced multimers formed TTR-like deposits in the heart and the kidney following i.v. injection in mice. While all 3 variants prominently deposited glomerulus in the kidney, only V30M resulted in extensive deposition in the heart. The cardiac TTR deposits varied in size and shape and were localized in the intermyofibrillar space along the capillaries. These results are consistent with the notion of monomeric TTR engaging in high-avidity interactions with tissue amyloids. Our multimeric induction approach provides a model for studying the initiation of TTR deposition in the heart.
Collapse
Affiliation(s)
- Li Gao
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Cardiology, and
| | - Xinfang Xie
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pan Liu
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jing Jin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Xie X, Gao L, Liu P, Lv J, Lu WH, Zhang H, Jin J. Propensity of IgA to self-aggregate via tailpiece cysteine-471 and treatment of IgA nephropathy using cysteamine. JCI Insight 2021; 6:e150551. [PMID: 34428184 PMCID: PMC8525636 DOI: 10.1172/jci.insight.150551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
IgA nephropathy is caused by deposition of circulatory IgA1 in the kidney. Hypogalactosylated IgA1 has the propensity to form poly-IgA aggregates that are prone to deposition. Herein, we purified poly-IgA from the plasma of patients with IgA nephropathy and showed that the complex is susceptible to reducing conditions, suggesting intermolecular disulfide connections between IgA units. We sought to find the cysteine residue(s) that form intermolecular disulfide. Naturally assembled dimeric IgA, also known as secretory IgA, involves a J chain subunit connected with 2 IgA1 molecules via their penultimate cysteine-471 residue on a “tailpiece” segment of IgA heavy chain. It is plausible that, with the absence of J chain, the cysteine residue of mono-IgA1 might aberrantly form a disulfide bond in poly-IgA formation. Mutagenesis confirmed that cysteine-471 is capable of promoting IgA aggregation. These discoveries prompted us to test thiol-based drugs for stabilizing cysteine. Specifically, the cystine-reducing drug cysteamine used for treatment of cystinosis showed a remarkable potency in preventing self-aggregation of IgA. When administrated to rat and mouse models of IgA nephropathy, cysteamine significantly reduced glomerular IgA deposition. Collectively, our results reveal a potentially novel molecular mechanism for aberrant formation of IgA aggregates, to which the repurposed cystinosis drug cysteamine was efficacious in preventing renal IgA deposition.
Collapse
Affiliation(s)
- Xinfang Xie
- Department of Medicine/Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Nephrology and
| | - Li Gao
- Department of Medicine/Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pan Liu
- Department of Medicine/Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jicheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China
| | | | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China
| | - Jing Jin
- Department of Medicine/Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Wehbi B, Pascal V, Zawil L, Cogné M, Aldigier JC. History of IgA Nephropathy Mouse Models. J Clin Med 2021; 10:jcm10143142. [PMID: 34300307 PMCID: PMC8306110 DOI: 10.3390/jcm10143142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. It was first described in 1968 by Jean Berger and Nicole Hinglais as the presence of intercapillary deposits of IgA. Despite this simple description, patients with IgAN may present very broad clinical features ranging from the isolated presence of IgA in the mesangium without clinical or biological manifestations to rapidly progressive kidney failure. These features are associated with a variety of histological lesions, from the discrete thickening of the mesangial matrix to diffuse cell proliferation. Immunofluorescence on IgAN kidney specimens shows the isolated presence of IgA or its inconsistent association with IgG and complement components. This clinical heterogeneity of IgAN clearly echoes its complex and multifactorial pathophysiology in humans, inviting further analyses of its various aspects through the use of experimental models. Small-animal models of IgAN provide the most pertinent strategies for studying the multifactorial aspects of IgAN pathogenesis and progression. Although only primates have the IgA1 subclass, several murine models have been developed in which various aspects of immune responses are deregulated and which are useful in the understanding of IgAN physiopathology as well as in the assessment of IgAN therapeutic approaches. In this manuscript, we review all murine IgAN models developed since 1968 and discuss their remarkable contribution to understanding the disease.
Collapse
Affiliation(s)
- Batoul Wehbi
- Immunology Department, UMR CNRS 7276 INSERM 1262, Limoges University, 87032 Limoges, France; (B.W.); (V.P.); (L.Z.)
| | - Virginie Pascal
- Immunology Department, UMR CNRS 7276 INSERM 1262, Limoges University, 87032 Limoges, France; (B.W.); (V.P.); (L.Z.)
| | - Lina Zawil
- Immunology Department, UMR CNRS 7276 INSERM 1262, Limoges University, 87032 Limoges, France; (B.W.); (V.P.); (L.Z.)
| | - Michel Cogné
- Immunology Department, EFS Bretagne, INSERM 1236, Rennes 1 University, 35000 Rennes, France;
| | - Jean-Claude Aldigier
- Immunology Department, UMR CNRS 7276 INSERM 1262, Limoges University, 87032 Limoges, France; (B.W.); (V.P.); (L.Z.)
- Correspondence:
| |
Collapse
|