1
|
Huang J, Zhou X, Xu Y, Yu C, Zhang H, Qiu J, Wei J, Luo Q, Xu Z, Lin Y, Qiu P, Li C. Shen Qi Wan regulates OPN/CD44/PI3K pathway to improve airway inflammation in COPD: Network pharmacology, bioinformatics, and experimental validation. Int Immunopharmacol 2025; 144:113624. [PMID: 39577218 DOI: 10.1016/j.intimp.2024.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is one of the most common respiratory diseases with undefined pathogenesis and unsatisfactory therapeutic options. Shenqi Wan (SQW), a traditional Chinese medicinal compound, has demonstrated certain preventive and therapeutic effects on COPD. However, the underlying molecular mechanisms remain incompletely understood. In this study, we used weighted gene co-expression network analysis (WGCNA) and machine learning to identify biomarkers for COPD, combined with network pharmacology and experimental validation to evaluate how SQW reduces airway inflammation in COPD. METHODS Targets of SQW in treating COPD and its network regulation mechanism were predicted via network pharmacology. Meanwhile, potential biomarkers were predicted using WGCNA and machine learning algorithms and validated in COPD patients. The relationship between the core pathway and key target was analyzed by ingenuity pathway analysis (IPA) to reveal the regulatory mechanism of SQW. We evaluated the efficacy of SQW treatment in LPS/MS-induced COPD mice by evaluating lung function, histopathological parameters, and levels of inflammatory markers and oxidative stress. The distribution and expression of OPN/CD44/PI3K loop-related proteins were examined through immunofluorescence staining and Western Blotting. In vitro, we added LPS to BEAS-2B cells to mimic the inflammatory microenvironment and transfected the cells with OPN overexpression plasmid to observe the improvement induced by SQW. RESULTS GO and KEGG analyses demonstrated that SQW inhibited inflammation and oxidative stress via the PI3K/Akt pathway, thereby improving COPD. Machine learning algorithms identified OPN as a potential biomarker, with elevated expression observed in the lung tissue of COPD patients. IPA indicated that OPN may modulate the CD44-mediated activation of the PI3K/AKT pathway, forming a positive feedback regulatory mechanism. SQW ameliorated lung function and pathological injury in mice; further, it reduced inflammation, oxidative stress, and OPN/CD44/PI3K positive feedback loop-related protein expression in both mice and cells. After OPN overexpression, the levels of inflammatory factors and ROS were significantly increased, and the OPN/CD44/PI3K signal was further activated, weakening the ameliorative effect of the SQW drug-containing serum. CONCLUSION Overall, SQW contributed to ameliorating COPD by reducing airway inflammation and oxidative stress through inhibiting the OPN/CD44/PI3K positive feedback loop.
Collapse
Affiliation(s)
- Junhao Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Zhou
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yueling Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenshi Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huanhuan Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xian 710032, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiale Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiwei Xu
- Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321000, China
| | - Yiyou Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Golec DP, Gazzinelli-Guimaraes P, Chauss D, Nagashima H, Yu K, Hill T, Nivelo L, Cannons JL, Perry J, Joshi I, Pereira N, Oliveira FMS, Cruz AC, Druey KM, Lack JB, Nutman TB, Villarino AV, O'Shea JJ, Afzali B, Schwartzberg PL. A PI3Kδ-Foxo1-FasL signaling amplification loop rewires CD4 + T helper cell signaling, differentiation and epigenetic remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620691. [PMID: 39803425 PMCID: PMC11722529 DOI: 10.1101/2024.10.28.620691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
While inputs regulating CD4+ T helper cell (Th) differentiation are well-defined, the integration of downstream signaling with transcriptional and epigenetic programs that define Th-lineage identity remain unresolved. PI3K signaling is a critical regulator of T cell function; activating mutations affecting PI3Kδ result in an immunodeficiency with multiple T cell defects. Using mice expressing activated-PI3Kδ, we found aberrant expression of proinflammatory Th1-signature genes under Th2-inducing conditions, both in vivo and in vitro. This dysregulation was driven by a robust PI3Kδ-IL-2-Foxo1 signaling loop, fueling Foxo1-inactivation, loss of Th2-lineage restriction, altered chromatin accessibility and global impairment of CTCF-DNA interactions. Surprisingly, ablation of Fasl, a Foxo1-repressed gene, restored normal Th2 differentiation, TCR signaling and CTCF expression. BioID revealed Fas interactions with TCR-signaling components, which were supported by Fas-mediated potentiation of TCR signaling. Our results highlight Fas-FasL signaling as a critical intermediate in phenotypes driven by activated-PI3Kδ, thereby linking two key pathways of immune dysregulation.
Collapse
Affiliation(s)
- Dominic P Golec
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Pedro Gazzinelli-Guimaraes
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Science, George Washington University, Washington, DC, USA
| | - Daniel Chauss
- Immunoregulation Section, NIDDK, NIH, Bethesda, MD, USA
| | | | - Kang Yu
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Tom Hill
- NIAID Collaborative Bioinformatics Resource (NCBR), NIAID, NIH, Bethesda, MD, USA
| | - Luis Nivelo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Jillian Perry
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Ilin Joshi
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Nicolas Pereira
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Fabrício Marcus Silva Oliveira
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Science, George Washington University, Washington, DC, USA
| | - Anthony C Cruz
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kirk M Druey
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), NIAID, NIH, Bethesda, MD, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Alejandro V Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, NIDDK, NIH, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Gu X, Ju J, Chen Q, Ge M, Huang H. Investigation into the potential mechanism and therapeutic targets of Cangzhu Erchen decoction for the treatment of chronic obstructive pulmonary disease based on bioinformatics and network pharmacology. Medicine (Baltimore) 2024; 103:e39338. [PMID: 39151493 PMCID: PMC11332823 DOI: 10.1097/md.0000000000039338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
This study aimed to elucidate the molecular mechanisms underlying the therapeutic effects of Cangzhu Erchen decoction (CZECD) in the treatment of chronic obstructive pulmonary disease (COPD) using microarray analysis, network pharmacology, and molecular docking. The active components and candidate targets of CZECD were obtained using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Swiss Target Prediction. COPD-related targets were collected from 5 databases. Access to drug-disease interface targets in the Venny platform. The Cytoscape program and the STRING database were used for protein-protein interaction analysis and subsequent core target screening. The DAVID database was used for Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment pathway analysis, while AutoDockTools was used for molecular docking to confirm binding affinity between drugs and key targets. A total of 140 compounds from CZECD and 5100 COPD-related targets were identified. SRC, PIK3CA, STAT3, PIK3R1, AKT1, HSP90AA1, PIK3CB, GRB2, PIK3CD, and MAPK1 were identified as the major targets of CZECD in its anti-COPD activity. GO and Kyoto Encyclopedia of Genes and Genomes enrichment studies revealed that CZECD mainly affects biological processes such as protein phosphorylation, xenobiotic response, positive regulation of the MAPK cascade, and inflammatory responses. Cancer, PI3K/AKT, and MAPK were the key pathways mediating these effects. The positive association between the core targets and the compounds was further validated by molecular docking. CZECD exerts its therapeutic role in COPD mainly through multiple compounds, targets, and pathways.
Collapse
Affiliation(s)
- Xiaofei Gu
- Department of Respiratory and Critical Care Medicine, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangang Ju
- Department of Respiratory and Critical Care Medicine, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingqing Chen
- Department of Respiratory and Critical Care Medicine, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minjie Ge
- Department of Respiratory and Critical Care Medicine, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huaqiong Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Guo X, Ren H, Sun P, Ding E, Fang J, Fang K, Ma X, Li C, Li C, Xu Y, Cao K, Lin EZ, Guo P, Pollitt KJG, Tong S, Tang S, Shi X. Personal exposure to airborne organic pollutants and lung function changes among healthy older adults. ENVIRONMENTAL RESEARCH 2024; 258:119411. [PMID: 38876423 DOI: 10.1016/j.envres.2024.119411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Epidemiological evidence on the impact of airborne organic pollutants on lung function among the elderly is limited, and their underlying biological mechanisms remain largely unexplored. Herein, a longitudinal panel study was conducted in Jinan, Shandong Province, China, involving 76 healthy older adults monitored over a span of five months repetitively. We systematically evaluated personal exposure to a diverse range of airborne organic pollutants using a wearable passive sampler and their effects on lung function. Participants' pulmonary function indicators were assessed, complemented by comprehensive multi-omics analyses of blood and urine samples. Leveraging the power of interaction analysis, causal inference test (CIT), and integrative pathway analysis (IPA), we explored intricate relationships between specific organic pollutants, biomolecules, and lung function deterioration, elucidating the biological mechanisms underpinning the adverse impacts of these pollutants. We observed that bis (2-chloro-1-methylethyl) ether (BCIE) was significantly associated with negative changes in the forced vital capacity (FVC), with glycerolipids mitigating this adverse effect. Additionally, 31 canonical pathways [e.g., high mobility group box 1 (HMGB1) signaling, phosphatidylinositol 3-kinase (PI3K)/AKT pathway, epithelial mesenchymal transition, and heme and nicotinamide adenine dinucleotide (NAD) biosynthesis] were identified as potential mechanisms. These findings may hold significant implications for developing effective strategies to prevent and mitigate respiratory health risks arising from exposure to such airborne pollutants. However, due to certain limitations of the study, our results should be interpreted with caution.
Collapse
Affiliation(s)
- Xiaojie Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Ren
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Shandong University, Jinan, Shandong 250100, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenlong Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Shandong University, Jinan, Shandong 250100, China
| | - Yibo Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, China Medical University, Shenyang, Liaoning 110001, China
| | - Kangning Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane 4001, Australia
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
5
|
Xu LT, Wang T, Han QT, Xu ZP, Wen XS, Wang XN, Shen T. Integrated network pharmacology and pharmacological investigations to explore the potential mechanism of Ding-Chuan-Tang against chronic obstructive pulmonary disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117983. [PMID: 38432578 DOI: 10.1016/j.jep.2024.117983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ding-Chuan-Tang (Abbreviated as DCT) is frequently prescribed for treatment of respiratory diseases, including chronic obstructive pulmonary disease (COPD), which is characterized by coughing, wheezing, and chest tightness in traditional Chinese medicine (TCM). However, the potential mechanism of DCT has not been investigated. AIM OF STUDY The aim of the study is to explore the efficiency of DCT in the treatment of COPD in vivo and in vitro, and to illustrate the possible mechanism against COPD. METHODS COPD model was induced by exposure of mice to cigarette smoke (CS) for 16 weeks. Enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay, Western blot, etc., were used to explore the efficiency and mechanisms of DCT. Network pharmacology analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, etc., was performed to explore the potential targets in the treatment of DCT on COPD. RESULTS DCT significantly alleviated pulmonary pathological changes in mouse COPD model, and inhibited inflammatory response induced by CS and LPS in vivo and in vitro. Network pharmacology analysis suggested that DCT alleviated COPD via inhibiting inflammation by regulating PI3K-AKT pathway. In cell-based models, DCT suppressed the phosphorylation of PI3K and AKT, which further regulated its downstream targets Nrf2 and NF-κB, and inhibited inflammatory response. CONCLUSIONS DCT effectively attenuated COPD in the mouse model induced by CS. The therapeutic mechanism of DCT against COPD was closely associated with the regulation of PI3K-AKT pathway and its downstream transcription factors, Nrf2 and NF-κB.
Collapse
Affiliation(s)
- Lin-Tao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tian Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Tong Han
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhen-Peng Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue-Sen Wen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
6
|
Pinkerton JW, Preite S, Piras A, Zervas D, Markou T, Freeman MS, Hofving T, Ivarsson E, Bonvini SJ, Brailsford W, Yrlid L, Belvisi MG, Birrell MA. PI3Kγδ inhibition suppresses key disease features in a rat model of asthma. Respir Res 2024; 25:175. [PMID: 38654248 PMCID: PMC11040934 DOI: 10.1186/s12931-024-02814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.
Collapse
Affiliation(s)
- James W Pinkerton
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Silvia Preite
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Antonio Piras
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Dimitrios Zervas
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Thomais Markou
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Mark S Freeman
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Tobias Hofving
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Emil Ivarsson
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Sara J Bonvini
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Wayne Brailsford
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Linda Yrlid
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Maria G Belvisi
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK
| | - Mark A Birrell
- Early Respiratory & Immunology, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden.
- Respiratory Pharmacology group, Airway Disease section, NHLI, Imperial College, London, UK.
| |
Collapse
|
7
|
Masoudi M, Torabi P, Judson-Torres RL, Khodarahmi R, Moradi S. Natural resistance to cancer: A window of hope. Int J Cancer 2024; 154:1131-1142. [PMID: 37860922 DOI: 10.1002/ijc.34766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
As healthcare systems are improving and thereby the life expectancy of human populations is increasing, cancer is representing itself as the second leading cause of death. Although cancer biologists have put enormous effort on cancer research so far, we still have a long way to go before being able to treat cancers efficiently. One interesting approach in cancer biology is to learn from natural resistance and/or predisposition to cancer. Cancer-resistant species and tissues are thought-provoking models whose study shed light on the inherent cancer resistance mechanisms that arose during the course of evolution. On the other hand, there are some syndromes and factors that increase the risk of cancer development, and revealing their underlying mechanisms will increase our knowledge about the process of cancer formation. Here, we review natural resistance and predisposition to cancer and the known mechanisms at play. Further insights from these natural phenomena will help design future cancer research and could ultimately lead to the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Masoudi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Parisa Torabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | | | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
8
|
Zhuo Z, Nie J, Xie B, Wang F, Shi M, Jiang Y, Zhu W. A comprehensive study of Ephedra sinica Stapf-Schisandra chinensis (Turcz.) Baill herb pair on airway protection in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117614. [PMID: 38113990 DOI: 10.1016/j.jep.2023.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ephedra sinica Stapf (Mahuang) and Schisandra chinensis (Turcz.) Baill (Wuweizi) are commonly utilized in traditional Chinese medicine for the treatment of cough and asthma. The synergistic effect of Mahuang-Wuweizi herb pair enhances their efficacy in alleviating respiratory symptoms, making them extensively employed in the management of respiratory disorders. Although previous studies have demonstrated the therapeutic potential of Mahuang-Wuweizi in pulmonary fibrosis, the precise mechanism underlying their effectiveness against asthma remains elusive. AIM OF THE STUDY The objective of this study is to investigate the mechanism underlying the preventive and therapeutic effects of Mahuang-Wuweizi herb pair on asthma progression, focusing on airway inflammation and airway remodeling. MATERIALS AND METHODS The active constituents and potential mechanisms of Mahuang-Wuweizi in the management of asthma were elucidated through network pharmacology analysis. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to detect the main components of Mahuang-Wuweizi decoction. A rat model of bronchial asthma was established, and the effects of Mahuang-Wuweizi were investigated using hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), and real-time reverse transcription polymerase chain reaction (RT-qPCR). RESULTS The results of network pharmacological prediction showed that Mahuang had 22 active components and Wuweizi had 8 active components, with 225 potential targets. 1159 targets associated with asthma and 115 targets that overlap between drugs and diseases were identified. These include interleukin-6 (IL-6), tumor necrosis factor (TNF), Tumor Protein 53, interleukin-1β (IL-1β), as well as other essential targets. Additionally, there is a potential correlation between asthma and Phosphatidylinositol 3 kinase (PI3K)/Protein Kinase B (AKT) signaling pathway, calcium ion channels, nuclear factor-kappa B (NF-κB) signaling pathway, and other signaling pathways. The animal experiment results demonstrated that treatment with Mahuang and Wuweizi, in comparison to the model group, exhibited improvements in lung tissue pathological injury, reduction in collagen fiber accumulation around the airway and proliferation of airway smooth muscle, decrease in concentration levels of IL-6, TNF-α and IL-1β in lung tissue, as well as alleviation of airway inflammation. Furthermore, Mahuang and Wuweizi suppressed the expression of phospholipase C (PLC), transient receptor potential channel 1 (TRPC1), myosin light chain kinase (MLCK), NF-κB P65 protein in ovalbumin (OVA)-sensitized rat lung tissue and downregulated the mRNA expression of PLC, TRPC1, PI3K, AKT, NF-κB P65 in asthmatic rats. These findings were consistent with network pharmacological analysis. CONCLUSION The results show that the synergistic interaction between Mahuang and Wuweizi occur, and they can effectively reduce airway remodeling and airway inflammation induced by inhaling OVA in bronchial asthma rats by inhibiting the expression of PLC/TRPC1/PI3K/AKT/NF-κB signaling pathway. Therefore, Mahuang and Wuweizi may be potential drugs to treat asthma.
Collapse
Affiliation(s)
- Zushun Zhuo
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Jianhua Nie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Bin Xie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Fei Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Min Shi
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yini Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Weifeng Zhu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
9
|
Lin H, Cheng S, Yang S, Zhang Q, Wang L, Li J, Zhang X, Liang L, Zhou X, Yang F, Song J, Cao X, Yang W, Weng Z. Isoforskolin modulates AQP4-SPP1-PIK3C3 related pathway for chronic obstructive pulmonary disease via cAMP signaling. Chin Med 2023; 18:128. [PMID: 37817209 PMCID: PMC10566078 DOI: 10.1186/s13020-023-00778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) levels are directly activated by adenylate cyclase (AC) and play an anti-inflammatory role in chronic obstructive pulmonary disease (COPD). Previously, we have shown that isoforskolin (ISOF) can effectively activate AC1 and AC2 in vitro, improve pulmonary ventilation and reduce the inflammatory response in COPD model rats, supporting that ISOF may be a potential drug for the prevention and treatment of COPD, but the mechanism has not been explored in detail. METHODS The potential pharmacological mechanisms of ISOF against COPD were analyzed by network pharmacology and multi-omics based on pharmacodynamic study. To use specific agonists, inhibitors and/or SiRNA for gene regulation function studies, combined qPCR, WB were applied to detect changes in mRNA and protein expression of important targets PIK3C3, AKT, mTOR, SPP1 and AQP4 which related to ISOF effect on COPD. And the key inflammatory factors detected by ELISA. RESULTS Bioinformatics suggested that the anti-COPD pharmacological mechanism of ISOF was related to PI3K-AKT signaling pathway, and suggested target protein like PIK3C3, AQP4, SPP1, AKT, mTOR. Using the AQP4 inhibitor,or inhibiting SPP1 expression by siRNA-SPP1 could block the PIK3C3-AKT-mTOR pathway and ameliorate chronic inflammation. ISOF showed cAMP-promoting effect then suppressed AQP4 expression, together with decreased level of IL-1β, IL-6, and IL-8. CONCLUSIONS These findings demonstrate ISOF controlled the cAMP-regulated PIK3C3-AKT-mTOR pathway, thereby alleviating inflammatory development in COPD. The cAMP/AQP4/PIK3C3 axis also modulate Th17/Treg differentiation, revealed potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Haochang Lin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, Guizhou, China
| | - Songye Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Qian Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Lueli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Jiangya Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Xinyue Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Liju Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Xiaoqian Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Furong Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Jingfeng Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| | - Xue Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, 650500, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| | - Zhiying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| |
Collapse
|
10
|
Tang Y, Zheng F, Bao X, Zheng Y, Hu X, Lou S, Zhao H, Cui S. Discovery of Highly Selective and Orally Bioavailable PI3Kδ Inhibitors with Anti-Inflammatory Activity for Treatment of Acute Lung Injury. J Med Chem 2023; 66:11905-11926. [PMID: 37606563 DOI: 10.1021/acs.jmedchem.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PI3Kδ is a promising target for the treatment of inflammatory disease; however, the application of PI3Kδ inhibitors in acute respiratory inflammatory diseases is rarely investigated. In this study, through scaffold hopping design, we report a new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amine-tethered 3-methyl-1-aryl-1H-indazoles as highly selective and potent PI3Kδ inhibitors with significant anti-inflammatory activities for treatment of acute lung injury (ALI). There were 29 compounds designed, prepared, and subjected to PI3Kδ inhibitory activity evaluation and anti-inflammatory activity evaluation in macrophages. (S)-29 was identified as a candidate with high PI3Kδ inhibitory activity, isoform selectivity, and high oral bioavailability. The in vivo administration of (S)-29 at 10 mg/kg dosage could significantly ameliorate histopathological changes and attenuate lung inflammation in lung tissues of LPS-challenged mice. Molecular docking demonstrated the success of scaffold hopping design. Overall, (S)-29 is a potent PI3Kδ inhibitor which might be a promising candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fanli Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaodong Bao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Siyue Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Shaker ME, Gomaa HAM, Abdelgawad MA, El-Mesery M, Shaaban AA, Hazem SH. Emerging roles of tyrosine kinases in hepatic inflammatory diseases and therapeutic opportunities. Int Immunopharmacol 2023; 120:110373. [PMID: 37257270 DOI: 10.1016/j.intimp.2023.110373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Inflammation has been convicted of causing and worsening many liver diseases like acute liver failure, fibrosis, cirrhosis, fatty liver and liver cancer. Pattern recognition receptors (PRRs) like TLRs 4 and 9 localized on resident or recruited immune cells are well known cellular detectors of pathogen and damage-associated molecular patterns (PAMPs/DAMPs). Stimulation of these receptors generates the sterile and non-sterile inflammatory responses in the liver. When these responses are repeated, there will be a sustained liver injury that may progress to fibrosis and its outcomes. Crosstalk between inflammatory/fibrogenic-dependent streams and certain tyrosine kinases (TKs) has recently evolved in the context of hepatic diseases. Because of TKs increasing importance, their role should be elucidated to highlight effective approaches to manage the diverse liver disorders. This review will give a brief overview of types and functions of some TKs like BTK, JAKs, Syk, PI3K, Src and c-Abl, as well as receptors for TAM, PDGF, EGF, VEGF and HGF. It will then move to discuss the roles of these TKs in the regulation of the proinflammatory, fibrogenic and tumorigenic responses in the liver. Lastly, the therapeutic opportunities for targeting TKs in hepatic inflammatory disorders will be addressed. Overall, this review sheds light on the diverse TKs that have substantial roles in hepatic disorders and potential therapeutics modulating their activity.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Ahmed A Shaaban
- Department of Pharmacology & Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
McClean N, Hasday JD, Shapiro P. Progress in the development of kinase inhibitors for treating asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:145-178. [PMID: 37524486 DOI: 10.1016/bs.apha.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Current therapies to mitigate inflammatory responses involved in airway remodeling and associated pathological features of asthma and chronic obstructive pulmonary disease (COPD) are limited and largely ineffective. Inflammation and the release of cytokines and growth factors activate kinase signaling pathways that mediate changes in airway mesenchymal cells such as airway smooth muscle cells and lung fibroblasts. Proliferative and secretory changes in mesenchymal cells exacerbate the inflammatory response and promote airway remodeling, which is often characterized by increased airway smooth muscle mass, airway hyperreactivity, increased mucus secretion, and lung fibrosis. Thus, inhibition of relevant kinases has been viewed as a potential therapeutic approach to mitigate the debilitating and, thus far, irreversible airway remodeling that occurs in asthma and COPD. Despite FDA approval of several kinase inhibitors for the treatment of proliferative disorders, such as cancer and inflammation associated with rheumatoid arthritis and ulcerative colitis, none of these drugs have been approved to treat asthma or COPD. This review will provide a brief overview of the role kinases play in the pathology of asthma and COPD and an update on the status of kinase inhibitors currently in clinical trials for the treatment of obstructive pulmonary disease. In addition, potential issues associated with the current kinase inhibitors, which have limited their success as therapeutic agents in treating asthma or COPD, and alternative approaches to target kinase functions will be discussed.
Collapse
Affiliation(s)
- Nathaniel McClean
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
13
|
Arezina R, Chen T, Wang D. Conventional, Complementary and Alternative Medicines: Mechanistic Insights into Therapeutic Landscape of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:447-457. [PMID: 37038544 PMCID: PMC10082417 DOI: 10.2147/copd.s393540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
COPD (chronic obstructive pulmonary disease) is a major public health concern associated with significant morbidity and mortality worldwide. Current therapeutic guidelines for this disease recommend starting with an inhaled bronchodilator, stepping up to combination therapy as necessary, and/or adding inhaled corticosteroids as symptoms and airflow obstruction progress. However, no drug therapy exists to stop disease progression. The mechanistic definition underlying COPD pathogenesis remains poorly understood, it is generally accepted that oxidative stress and the altered immune response of low-grade airway inflammation are major factors contributing to COPD development. There are several potential therapeutic targets that are currently under investigation, including immune regulatory pathways in inflammation and lung-associated steroid resistance induced by oxidative stress signaling cascades. Patients with COPD have increased levels of inflammatory mediators, including lipid and peptide mediators, as well as a network of cytokines and chemokines that maintain inflammatory immune response and recruit circulating cells into the lungs. Many of these pro-inflammatory mediators are regulated by nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs), such as p38 MAPK. Increased oxidative stress is a key driving mechanism in perpetuating inflammation and lung injury. Furthermore, many proteases that degrade elastin fibres are secreted by airway resident infiltrating immune cells in COPD patients. In this perspective, we discuss novel aspects of signaling pathway activation in the context of inflammation and oxidative stress, and the broad view of potential effective pharmacotherapies that target the underlying mechanistic disease process in COPD.
Collapse
Affiliation(s)
- Radivoj Arezina
- Department of Medical, Stridon Clinical Research, Richmond Upon Thames, London, UK
| | - Tao Chen
- Department of Public Health, Policy & Systems, Institute of Population Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Duolao Wang
- Affiliated Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
- Correspondence: Duolao Wang, Email
| |
Collapse
|
14
|
Tiao-Bu-Fei-Shen Formula Improves Glucocorticoid Resistance of Chronic Obstructive Pulmonary Disease via Downregulating the PI3K-Akt Signaling Pathway and Promoting GR α Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4359616. [PMID: 36820399 PMCID: PMC9938767 DOI: 10.1155/2023/4359616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 02/12/2023]
Abstract
Objective To predict and determine the mechanism through which Tiao-Bu-Fei-Shen (TBFS) formula improves glucocorticoid resistance in chronic obstructive pulmonary disease (COPD), using network pharmacology, molecular docking technology, and in vitro studies. Methods The main active components and associated targets of TBFS were screened using the systems pharmacology database of traditional Chinese medicine database (TCMSP). The main COPD targets were retrieved from the Human Gene (GeneCards) and DrugBank databases. A protein-protein interaction (PPI) network was constructed using the protein interaction platform STRING and Cytoscape 3.6.1. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genome Pathway (KEGG) analyses were performed using the biological information annotation database Metascape. Molecular docking was performed using the AutoDock Vina software. THP-1 monocytes were treated with TBFS-containing serum and cigarette smoke extract (CSE) for 48 h, and cell proliferation in each group was determined using cell counting kit-8 (CCK-8). A COPD cell model was constructed by stimulating THP-1 monocytes with CSE for 12 h. A lentivirus vector for RNA interference of histone deacetylase 2 (HDAC2) gene was constructed and transfected into the THP-1 monocytes, and the transfection efficiency was verified using quantitative polymerase chain reaction (qPCR) and western blotting (WB). The expression of HDAC2 in each group of cells was detected using qPCR, and the expression of HDAC2, phosphoinositide-3 kinase (PI3K) p85α, glucocorticoid receptor α (GRα), and P-AKT1 in each group of cells was detected through WB. Results A total of 344 TBFS active components, 249 related drug targets, 1,171 COPD target proteins, and 138 drug and disease intersection targets were obtained. Visual analysis of the PPI network map revealed that the core COPD targets of TBFS were AKT1, IL-6, TNF, TP53, and IL1-β. KEGG pathway enrichment analysis resulted in the identification of 20 signaling pathways as the main pathways involved in the action of TBFS against COPD, including the PI3K-Akt, TNF, and IL-17 signaling pathways. Molecular docking experiments revealed a strong binding capacity of kaempferol, luteolin, and quercetin to the ATK1 protein in TBFS, with quercetin performing the best. PCR results showed that treatment with TBFS significantly increased the expression levels of HDAC2 in the COPD model. WB results showed that TBFS treatment significantly increased the expression levels of GRα and HDAC2 in the COPD model, while reducing the expression levels of P-AKT1. Conclusion TBFS treatment improves glucocorticoid resistance observed in COPD through downregulation of the PI3K-Akt signaling pathway and promotion of GRα expression.
Collapse
|
15
|
Li S, Huang Q, Zhou D, He B. PRKCD as a potential therapeutic target for chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 113:109374. [PMID: 36279664 DOI: 10.1016/j.intimp.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
16
|
Zeng X, Lan Y, Xiao J, Hu L, Tan L, Liang M, Wang X, Lu S, Peng T, Long F. Advances in phosphoproteomics and its application to COPD. Expert Rev Proteomics 2022; 19:311-324. [PMID: 36730079 DOI: 10.1080/14789450.2023.2176756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) was the third leading cause of global death in 2019, causing a huge economic burden to society. Therefore, it is urgent to identify specific phenotypes of COPD patients through early detection, and to promptly treat exacerbations. The field of phosphoproteomics has been a massive advancement, compelled by the developments in mass spectrometry, enrichment strategies, algorithms, and tools. Modern mass spectrometry-based phosphoproteomics allows understanding of disease pathobiology, biomarker discovery, and predicting new therapeutic modalities. AREAS COVERED In this article, we present an overview of phosphoproteomic research and strategies for enrichment and fractionation of phosphopeptides, identification of phosphorylation sites, chromatographic separation and mass spectrometry detection strategies, and the potential application of phosphorylated proteomic analysis in the diagnosis, treatment, and prognosis of COPD disease. EXPERT OPINION The role of phosphoproteomics in COPD is critical for understanding disease pathobiology, identifying potential biomarkers, and predicting new therapeutic approaches. However, the complexity of COPD requires the more comprehensive understanding that can be achieved through integrated multi-omics studies. Phosphoproteomics, as a part of these multi-omics approaches, can provide valuable insights into the underlying mechanisms of COPD.
Collapse
Affiliation(s)
- Xiaoyin Zeng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yanting Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xufei Wang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shaohua Lu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Fagone E, Fruciano M, Gili E, Sambataro G, Vancheri C. Developing PI3K Inhibitors for Respiratory Diseases. Curr Top Microbiol Immunol 2022; 436:437-466. [DOI: 10.1007/978-3-031-06566-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|