1
|
Liu J, Huang B, Rao Y, Guo L, Cai C, Gao D, Kong D, Wang G, Xiong Y, Cui R, Zhang M, Chen C. Intraductal photothermal ablation: a noninvasive approach for early breast cancer treatment and prevention. Theranostics 2024; 14:3997-4013. [PMID: 38994019 PMCID: PMC11234271 DOI: 10.7150/thno.97968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Innovative treatment strategies for early-stage breast cancer (BC) are urgently needed. Tumors originating from mammary ductal cells present an opportunity for targeted intervention. Methods: We explored intraductal therapy via natural nipple openings as a promising non-invasive approach for early BC. Using functional Near-infrared II (NIR-II) nanomaterials, specifically NIR-IIb quantum dots conjugated with Epep polypeptide for ductal cell targeting, we conducted in situ imaging and photothermal ablation of mammary ducts. Intraductal administration was followed by stimulation with an 808 nm laser. Results: This method achieved precise ductal destruction and heightened immunological responses in the microenvironment. The technique was validated in mouse models of triple-negative BC and a rat model of ductal carcinoma in situ, demonstrating promising therapeutic potential for localized BC treatment and prevention. Conclusion: Our study demonstrated the effectiveness of NIR-II nanoprobes in guiding non-invasive photothermal ablation of mammary ducts, offering a compelling avenue for early-stage BC therapy.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer. No.116 Zhuo Daoquan South Road, Wuhan, Hubei 430079, PR China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, PR China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, 430071, PR China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, PR China
| | - Dongcheng Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Guannan Wang
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, New Research Building, Room E204, Washington, D.C. 20007, USA
| | - Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, PR China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
2
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Lewis MT, Caldas C. The Power and Promise of Patient-Derived Xenografts of Human Breast Cancer. Cold Spring Harb Perspect Med 2024; 14:a041329. [PMID: 38052483 PMCID: PMC10982691 DOI: 10.1101/cshperspect.a041329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In 2016, a group of researchers engaged in the development of patient-derived xenografts (PDXs) of human breast cancer provided a comprehensive review of the state of the field. In that review, they summarized the clinical problem that PDXs might address, the technical approaches to their generation (including a discussion of host animals and transplant conditions tested), and presented transplantation success (take) rates across groups and across transplantation conditions. At the time, there were just over 500 unique PDX models created by these investigators representing all three clinically defined subtypes (ER+, HER2+, and TNBC). Today, many of these PDX resources have at least doubled in size, and several more PDX development groups now exist, such that there may be well upward of 1000 PDX models of human breast cancer in existence worldwide. They also presented a series of open questions for the field. Many of these questions have been addressed. However, several remain open, or only partially addressed. Herein, we revisit these questions, and recount the progress that has been made in a number of areas with respect to generation, characterization, and use of PDXs in translational research, and re-present questions that remain open. These open questions, and others, are now being addressed not only by individual investigators, but also large, well-funded consortia including the PDXNet program of the National Cancer Institute in the United States, and the EuroPDX Consortium, an organization of PDX developers across Europe. Finally, we discuss the new opportunities in PDX-based research.
Collapse
Affiliation(s)
- Michael T Lewis
- Baylor College of Medicine, The Lester and Sue Smith Breast Center, Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
4
|
Behbod F, Chen JH, Thompson A. Human Ductal Carcinoma In Situ: Advances and Future Perspectives. Cold Spring Harb Perspect Med 2023; 13:a041319. [PMID: 36781223 PMCID: PMC10547390 DOI: 10.1101/cshperspect.a041319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Due to widespread adoption of screening mammography, there has been a significant increase in new diagnoses of ductal carcinoma in situ (DCIS). However, DCIS outcomes remain unclear. A large fraction of human DCIS (>50%) may not need the multimodality treatment options currently offered to all DCIS patients. More importantly, while we may be overtreating many, we cannot identify those most at risk of invasion or metastasis following a DCIS diagnosis. This review summarizes the studies that have furthered our understanding of DCIS pathology and mechanisms of invasive progression by using advanced technologies including spatial genomics, transcriptomics, and multiplex proteomics. This review also highlights a need for rethinking DCIS with a more focused view on epithelial states and programs and their cross talk with the microenvironment.
Collapse
Affiliation(s)
- Fariba Behbod
- Department of Pathology and Laboratory Medicine, MS 3045, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jennifer H Chen
- Michael E. Debakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Alastair Thompson
- Section of Breast Surgery, Baylor College of Medicine, Co-Director, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Hutten SJ, Behbod F, Scheele CLGJ, Jonkers J. Mouse intraductal modeling of primary ductal carcinoma in situ. STAR Protoc 2023; 4:102526. [PMID: 37651235 PMCID: PMC10480770 DOI: 10.1016/j.xpro.2023.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Mouse intraductal modeling enables efficient in vivo propagation of pre-invasive breast cancer lesions and provides a suitable micro-environment for creating patient-derived tumor xenograft models of estrogen-receptor-positive breast cancer. Here, we present a protocol for mouse intraductal modeling of primary ductal carcinoma in situ (DCIS). We describe steps for processing primary DCIS tissues and performing intraductal injections. We then detail procedures for processing intraductal lesions for 3D whole-mount imaging or serial transplantation using magnetic bead sorting. For complete details on the use and execution of this protocol, please refer to Hutten et al. (2023).1.
Collapse
Affiliation(s)
- Stefan J Hutten
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands.
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Colinda L G J Scheele
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Hutten SJ, Jonkers J. MIND the translational gap: Preclinical models of ductal carcinoma in situ. Clin Transl Med 2023; 13:e1376. [PMID: 37620984 PMCID: PMC10449811 DOI: 10.1002/ctm2.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Affiliation(s)
- Stefan J. Hutten
- Division of Molecular PathologyOncode Institute, Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos Jonkers
- Division of Molecular PathologyOncode Institute, Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
7
|
Thorat MA. Multiclonality of ER expression in DCIS - Implications for clinical practice and future research. Oncotarget 2023; 14:719-720. [PMID: 37477525 PMCID: PMC10360922 DOI: 10.18632/oncotarget.28450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
|
8
|
Hutten SJ, de Bruijn R, Lutz C, Badoux M, Eijkman T, Chao X, Ciwinska M, Sheinman M, Messal H, Herencia-Ropero A, Kristel P, Mulder L, van der Waal R, Sanders J, Almekinders MM, Llop-Guevara A, Davies HR, van Haren MJ, Martin NI, Behbod F, Nik-Zainal S, Serra V, van Rheenen J, Lips EH, Wessels LFA, Wesseling J, Scheele CLGJ, Jonkers J. A living biobank of patient-derived ductal carcinoma in situ mouse-intraductal xenografts identifies risk factors for invasive progression. Cancer Cell 2023; 41:986-1002.e9. [PMID: 37116492 PMCID: PMC10171335 DOI: 10.1016/j.ccell.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer (IBC). Due to a lack of biomarkers able to distinguish high- from low-risk cases, DCIS is treated similar to early IBC even though the minority of untreated cases eventually become invasive. Here, we characterized 115 patient-derived mouse-intraductal (MIND) DCIS models reflecting the full spectrum of DCIS observed in patients. Utilizing the possibility to follow the natural progression of DCIS combined with omics and imaging data, we reveal multiple prognostic factors for high-risk DCIS including high grade, HER2 amplification, expansive 3D growth, and high burden of copy number aberrations. In addition, sequential transplantation of xenografts showed minimal phenotypic and genotypic changes over time, indicating that invasive behavior is an intrinsic phenotype of DCIS and supporting a multiclonal evolution model. Moreover, this study provides a collection of 19 distributable DCIS-MIND models spanning all molecular subtypes.
Collapse
Affiliation(s)
- Stefan J Hutten
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Roebi de Bruijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Madelon Badoux
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Timo Eijkman
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Xue Chao
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Marta Ciwinska
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Michael Sheinman
- Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Hendrik Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Petra Kristel
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lennart Mulder
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rens van der Waal
- Core Facility Molecular Pathology & Biobanking, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Joyce Sanders
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Mathilde M Almekinders
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Helen R Davies
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, CB2 0QQ Cambridge, UK; Early Cancer Institute, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2302 BH Leiden, the Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2302 BH Leiden, the Netherlands
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, CB2 0QQ Cambridge, UK; Early Cancer Institute, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Oncode Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Diagnostic Oncology, Netherlands Cancer Institute - Antonie van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Colinda L G J Scheele
- Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Bernhardt SM, Mitchell E, Stamnes S, Hoffmann RJ, Calhoun A, Klug A, Russell TD, Pennock ND, Walker JM, Schedin P. Isogenic Mammary Models of Intraductal Carcinoma Reveal Progression to Invasiveness in the Absence of a Non-Obligatory In Situ Stage. Cancers (Basel) 2023; 15:2257. [PMID: 37190184 PMCID: PMC10136757 DOI: 10.3390/cancers15082257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
In breast cancer, progression to invasive ductal carcinoma (IDC) involves interactions between immune, myoepithelial, and tumor cells. Development of IDC can proceed through ductal carcinoma in situ (DCIS), a non-obligate, non-invasive stage, or IDC can develop without evidence of DCIS and these cases associate with poorer prognosis. Tractable, immune-competent mouse models are needed to help delineate distinct mechanisms of local tumor cell invasion and prognostic implications. To address these gaps, we delivered murine mammary carcinoma cell lines directly into the main mammary lactiferous duct of immune-competent mice. Using two strains of immune-competent mice (BALB/c, C57BL/6), one immune-compromised (severe combined immunodeficiency; SCID) C57BL/6 strain, and six different murine mammary cancer cell lines (D2.OR, D2A1, 4T1, EMT6, EO771, Py230), we found early loss of ductal myoepithelial cell differentiation markers p63, α-smooth muscle actin, and calponin, and rapid formation of IDC in the absence of DCIS. Rapid IDC formation also occurred in the absence of adaptive immunity. Combined, these studies demonstrate that loss of myoepithelial barrier function does not require an intact immune system, and suggest that these isogenic murine models may prove a useful tool to study IDC in the absence of a non-obligatory DCIS stage-an under-investigated subset of poor prognostic human breast cancer.
Collapse
Affiliation(s)
- Sarah M. Bernhardt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth Mitchell
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephanie Stamnes
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Reuben J. Hoffmann
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrea Calhoun
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alex Klug
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tanya D. Russell
- Center for Advancing Professional Excellence, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nathan D. Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joshua M. Walker
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Gibson SV, Roozitalab RM, Allen MD, Jones JL, Carter EP, Grose RP. Everybody needs good neighbours: the progressive DCIS microenvironment. Trends Cancer 2023; 9:326-338. [PMID: 36739265 DOI: 10.1016/j.trecan.2023.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a pre-invasive form of breast cancer where neoplastic luminal cells are confined to the ductal tree. While as many as 70% of DCIS cases will remain indolent, most women are treated with surgery, often combined with endocrine and radiotherapies. Overtreatment is therefore a major issue, demanding new methods to stratify patients. Somewhat paradoxically, the neoplastic cells in DCIS are genetically comparable to those in invasive disease, suggesting the tumour microenvironment is the driving force for progression. Clinical and mechanistic studies highlight the complex DCIS microenvironment, with multiple cell types competing to regulate progression. Here, we examine recent studies detailing distinct aspects of the DCIS microenvironment and discuss how these may inform more effective care.
Collapse
Affiliation(s)
- Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Reza M Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
11
|
Ku AT, Young AI, Ibrahim AA, Bu W, Jiang W, Lin M, Williams LC, McCue BL, Miles G, Nagi C, Behbod F, Li Y. Short-term PI3K Inhibition Prevents Breast Cancer in Preclinical Models. Cancer Prev Res (Phila) 2023; 16:65-73. [PMID: 36343340 PMCID: PMC9905287 DOI: 10.1158/1940-6207.capr-22-0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Antiestrogen medication is the only chemoprevention currently available for women at a high risk of developing breast cancer; however, antiestrogen therapy requires years to achieve efficacy and has adverse side effects. Therefore, it is important to develop an efficacious chemoprevention strategy that requires only a short course of treatment. PIK3CA is commonly activated in breast atypical hyperplasia, the known precancerous precursor of breast cancer. Targeting PI3K signaling in these precancerous lesions may offer a new strategy for chemoprevention. Here, we first established a mouse model that mimics the progression from precancerous lesions to breast cancer. Next, we demonstrated that a short-course prophylactic treatment with the clinically approved PI3K inhibitor alpelisib slowed early lesion expansion and prevented cancer formation in this model. Furthermore, we showed that alpelisib suppressed ex vivo expansion of patient-derived atypical hyperplasia. Together, these data indicate that the progression of precancerous breast lesions heavily depends on the PI3K signaling, and that prophylactic targeting of PI3K activity can prevent breast cancer. PREVENTION RELEVANCE PI3K protein is abnormally high in breast precancerous lesions. This preclinical study demonstrates that the FDA-approved anti-PI3K inhibitor alpelisib can prevent breast cancer and thus warrant future clinical trials in high-risk women.
Collapse
Affiliation(s)
- Amy T. Ku
- Lester & Sue Smith Breast Center, Baylor College of Medicine
| | | | | | - Wen Bu
- Lester & Sue Smith Breast Center, Baylor College of Medicine,Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Weiyu Jiang
- Lester & Sue Smith Breast Center, Baylor College of Medicine
| | - Meng Lin
- Lester & Sue Smith Breast Center, Baylor College of Medicine
| | | | | | - George Miles
- Lester & Sue Smith Breast Center, Baylor College of Medicine,Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine
| | - Fariba Behbod
- Pathology and Laboratory Medicine, University of Kansas
| | - Yi Li
- Lester & Sue Smith Breast Center, Baylor College of Medicine,Department of Molecular and Cellular Biology, Baylor College of Medicine,Correspondence: Yi Li, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA, Phone: 713-798-3963,
| |
Collapse
|
12
|
Takeuchi Y, Gotoh N. Inflammatory cytokine-enriched microenvironment plays key roles in the development of breast cancers. Cancer Sci 2023; 114:1792-1799. [PMID: 36704829 PMCID: PMC10154879 DOI: 10.1111/cas.15734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
As the incidence of breast cancer continues to increase, it is critical to develop prevention strategies for this disease. Inflammation underlies the onset of the disease, and NF-κB is a master transcription factor for inflammation. Nuclear factor-κB (NF-κB) is activated in a variety of cell types, including normal epithelial cells, cancer cells, cancer-associated fibroblasts (CAFs), and immune cells. Ductal carcinoma in situ (DCIS) is the earliest stage of breast cancer, and not all DCIS lesions develop into invasive breast cancers (IBC). Currently, most patients with DCIS undergo surgery with postoperative therapy, although there is a risk of overtreatment. In BRCA mutants, receptor activator of NF-κB (RANK)-positive progenitors serve as the cell of origin, and treatment using the RANK monoclonal antibody reduces the risk of IBC. There is still an unmet need to diagnose malignant DCIS, which has the potential to progress to IBC, and to establish appropriate prevention strategies. We recently demonstrated novel molecular mechanisms for NF-κB activation in premalignant mammary tissues, which include DCIS, and the resultant cytokine-enriched microenvironment is essential for breast cancer development. On the early endosomes in a few epithelial cells, the adaptor protein FRS2β, forming a complex with ErbB2, carries the IκB kinase (IKK) complex and leads to the activation of NF-κB, thereby inducing a variety of cytokines. Therefore, the FRS2β-NFκB axis in the inflammatory premalignant environment could be targetable to prevent IBC. Further analysis of the molecular mechanisms of inflammation in the premalignant microenvironment is necessary to prevent the risk of IBC.
Collapse
Affiliation(s)
- Yasuto Takeuchi
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa City, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa City, Japan
| |
Collapse
|
13
|
Casasent AK, Almekinders MM, Mulder C, Bhattacharjee P, Collyar D, Thompson AM, Jonkers J, Lips EH, van Rheenen J, Hwang ES, Nik-Zainal S, Navin NE, Wesseling J. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 2022; 22:663-678. [PMID: 36261705 DOI: 10.1038/s41568-022-00512-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotta Mulder
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Nicholas E Navin
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
14
|
Morrissey RL, Thompson AM, Lozano G. Is loss of p53 a driver of ductal carcinoma in situ progression? Br J Cancer 2022; 127:1744-1754. [PMID: 35764786 DOI: 10.1038/s41416-022-01885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive carcinoma. Multiple studies have shown that DCIS lesions typically possess a driver mutation associated with cancer development. Mutation in the TP53 tumour suppressor gene is present in 15-30% of pure DCIS lesions and in ~30% of invasive breast cancers. Mutations in TP53 are significantly associated with high-grade DCIS, the most likely form of DCIS to progress to invasive carcinoma. In this review, we summarise published evidence on the prevalence of mutant TP53 in DCIS (including all DCIS subtypes), discuss the availability of mouse models for the study of DCIS and highlight the need for functional studies of the role of TP53 in the development of DCIS and progression from DCIS to invasive disease.
Collapse
Affiliation(s)
- Rhiannon L Morrissey
- Genetics and Epigenetics Program at The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alastair M Thompson
- Division of Surgical Oncology, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Guillermina Lozano
- Genetics and Epigenetics Program at The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. .,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Rodriguez-Tirado C, Kale N, Carlini MJ, Shrivastava N, Rodrigues AA, Khalil B, Bravo-Cordero JJ, Hong Y, Alexander M, Ji J, Behbod F, Sosa MS. NR2F1 Is a Barrier to Dissemination of Early-Stage Breast Cancer Cells. Cancer Res 2022; 82:2313-2326. [PMID: 35471456 PMCID: PMC9203932 DOI: 10.1158/0008-5472.can-21-4145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Cancer cells can disseminate during very early and sometimes asymptomatic stages of tumor progression. Though biological barriers to tumorigenesis have been identified and characterized, the mechanisms that limit early dissemination remain largely unknown. We report here that the orphan nuclear receptor nuclear receptor subfamily 2, group F, member 1 (NR2F1)/COUP-TF1 serves as a barrier to early dissemination. NR2F1 expression was decreased in patient ductal carcinoma in situ (DCIS) samples. High-resolution intravital imaging of HER2+ early-stage cancer cells revealed that loss of function of NR2F1 increased in vivo dissemination and was accompanied by decreased E-cadherin expression, activation of wingless-type MMTV integration site family, member 1 (WNT)-dependent β-catenin signaling, disorganized laminin 5 deposition, and increased expression of epithelial-mesenchymal transition (EMT) genes such as twist basic helix-loop-helix transcription factor 1 (TWIST1), zinc finger E-box binding homeobox 1 (ZEB1), and paired related homeobox 1 (PRRX1). Furthermore, downregulation of NR2F1 promoted a hybrid luminal/basal phenotype. NR2F1 expression was positively regulated by p38α signaling and repressed by HER2 and WNT4 pathways. Finally, early cancer cells with NR2F1LOW/PRRX1HIGH staining were observed in DCIS samples. Together, these findings reveal the existence of an inhibitory mechanism of dissemination regulated by NR2F1 in early-stage breast cancer cells. SIGNIFICANCE During early stages of breast cancer progression, HER2-mediated suppression of NR2F1 promotes dissemination by inducing EMT and a hybrid luminal/basal-like program.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nupura Kale
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: UCSF Helen Diller Comprehensive Family Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Maria J. Carlini
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Columbia University, NY, 10027, USA
| | - Nitisha Shrivastava
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alcina A. Rodrigues
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bassem Khalil
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Western Atlantic University School of Medicine, Plantation FL, USA 33324
| | - Jose J. Bravo-Cordero
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Melissa Alexander
- Department of Anatomic Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Sinai, New York, NY, 10029, USA
- Present address: Rutgers University, NJ, 08854
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Maria S. Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|