1
|
John E, Lesluyes T, Baker TM, Tarabichi M, Gillenwater A, Wang JR, Van Loo P, Zhao X. Reconstructing oral cavity tumor evolution through brush biopsy. Sci Rep 2024; 14:22591. [PMID: 39343812 PMCID: PMC11439926 DOI: 10.1038/s41598-024-72946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Oral potentially malignant disorders (OPMDs) with genomic alterations have a heightened risk of evolving into oral squamous cell carcinoma (OSCC). Currently, genomic data are typically obtained through invasive tissue biopsy. However, brush biopsy is a non-invasive method that has been utilized for identifying dysplastic cells in OPMD but its effectiveness in reflecting the genomic landscape of OPMDs remains uncertain. This pilot study investigates the potential of brush biopsy samples in accurately reconstructing the genomic profile and tumor evolution in a patient with both OPMD and OSCC. We analyzed single nucleotide variants (SNVs), copy number aberrations (CNAs), and subclonal architectures in paired tissue and brush biopsy samples. The results showed that brush biopsy effectively captured 90% of SNVs and had similar CNA profiles as those seen in its paired tissue biopsies in all lesions. It was specific, as normal buccal mucosa did not share these genomic alterations. Interestingly, brush biopsy revealed shared SNVs and CNAs between the distinct OPMD and OSCC lesions from the same patient, indicating a common ancestral origin. Subclonal reconstruction confirmed this shared ancestry, followed by divergent evolution of the lesions. These findings highlight the potential of brush biopsies in accurately representing the genomic profile of OPL and OSCC, proving insight into reconstructing tumor evolution.
Collapse
Affiliation(s)
- Evit John
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
| | | | - Toby M Baker
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
- The Francis Crick Institute, London, UK
| | - Maxime Tarabichi
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Ann Gillenwater
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Jennifer R Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Peter Van Loo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
- The Francis Crick Institute, London, UK
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Xiao Zhao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA.
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|
2
|
Chakravarty S, Ghosh A, Das C, Das S, Patra S, Maitra A, Ghose S, Biswas NK. Multi-regional genomic and transcriptomic characterization of a melanoma-associated oral cavity cancer provide evidence for CASP8 alteration-mediated field cancerization. Hum Genomics 2024; 18:96. [PMID: 39244622 PMCID: PMC11380775 DOI: 10.1186/s40246-024-00668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Precancerous and malignant tumours arise within the oral cavity from a predisposed "field" of epithelial cells upon exposure to carcinogenic stimulus. This phenomenon is known as "Field Cancerization". The molecular genomic and transcriptomic alterations that lead to field cancerization and tumour progression is unknown in Indian Oral squamous cell carcinoma (OSCC) patients. METHODS We have performed whole exome sequencing, copy-number variation array and whole transcriptome sequencing from five tumours and dysplastic lesions (sampled from distinct anatomical subsites - one each from buccal anterior and posterior alveolus, dorsum of tongue-mucosal melanoma, lip and left buccal mucosa) and blood from a rare OSCC patient with field cancerization. RESULTS A missense CASP8 gene mutation (p.S375F) was observed to be the initiating event in oral tumour field development. APOBEC mutation signatures, arm-level copy number alterations, depletion of CD8 + T cells and activated NK cells and enrichment of pro-inflammatory mast cells were features of early-originating tumours. Pharmacological inhibition of CASP8 protein in a CASP8-wild type OSCC cell line showed enhanced levels of cellular migration and viability. CONCLUSION CASP8 alterations are the earliest driving events in oral field carcinogenesis, whereas additional somatic mutational, copy number and transcriptomic alterations ultimately lead to OSCC tumour formation and progression.
Collapse
Affiliation(s)
- Shouvik Chakravarty
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, India
- Biotechnology Research and Innovation Council-Regional Centre for Biotechnology (BRIC- RCB), Faridabad, India
| | - Arnab Ghosh
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, India
- Biotechnology Research and Innovation Council-Regional Centre for Biotechnology (BRIC- RCB), Faridabad, India
| | - Chitrarpita Das
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, India
| | - Subrata Das
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, India
| | - Subrata Patra
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, India
| | - Arindam Maitra
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, India
| | - Sandip Ghose
- Dr R Ahmed Dental College and Hospital, Kolkata, 700014, India.
| | - Nidhan K Biswas
- Biotechnology Research and Innovation Council, National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, 741251, India.
- Biotechnology Research and Innovation Council-Regional Centre for Biotechnology (BRIC- RCB), Faridabad, India.
| |
Collapse
|
3
|
Cai X, Zhang J, Zhang H, Zhou X, Zhou Z, Jing F, Luo H, Li T. Architectural and cytological features of epithelial dysplasia associated with transformation risk. Oral Dis 2024; 30:3028-3038. [PMID: 37983891 DOI: 10.1111/odi.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVES This study explored associations between histological features of dysplasia and malignant transformation, as well as genomic copy number alterations. MATERIALS AND METHODS Overall, 201 samples were collected from patients of oral leukoplakia. The associations of dysplastic features with malignant transformation and copy number alterations were investigated by Cox proportional hazards regression analysis and the Mann-Whitney U-test. RESULTS Eight individual histological features, such as irregular epithelial stratification (p = 0.001), mitoses high in epithelium (p = 0.033), extension of changes along minor gland ducts (p < 0.001), etc., were associated with greater risk of malignant transformation. A model including histological features and age showed good performance for predicting malignant transformation (area under receiver operating characteristic curve: 0.806). Irregular epithelial stratification (p = 0.007), abnormal nuclear shape (p = 0.005), abnormal cell size (p = 0.004), etc. were associated with greater genomic instability. CONCLUSIONS A Cox proportional hazards model using eight histological features and patient age reliably predicted the malignant potential of oral epithelial dysplasia. Identification of these histological features closely related to malignant transformation may aid the management of oral potentially malignant disorders and early detection of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xinjia Cai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Zheng Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Haiyan Luo
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| |
Collapse
|
4
|
Prime SS, Darski P, Hunter KD, Cirillo N, Parkinson EK. A Review of the Repair of DNA Double Strand Breaks in the Development of Oral Cancer. Int J Mol Sci 2024; 25:4092. [PMID: 38612901 PMCID: PMC11012950 DOI: 10.3390/ijms25074092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Piotr Darski
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Keith D. Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (P.D.); (K.D.H.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, VIC 3053, Australia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
5
|
da Silva Santos ME, de Carvalho Abreu AK, Martins da Silva FW, Barros Ferreira E, Diniz Dos Reis PE, do Amaral Rabello Ramos D. KMT2 (MLL) family of methyltransferases in head and neck squamous cell carcinoma: A systematic review. Head Neck 2024; 46:417-434. [PMID: 38102754 DOI: 10.1002/hed.27597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The involvement of the KMT2 methyltransferase family in the pathogenesis of head and neck squamous cell carcinoma (HNSCC) remains elusive. METHOD This study adhered to the PRISMA guidelines, employing a search strategy in the LIVIVO, PubMed, Scopus, Embase, Web of Science, and Google Scholar databases. The methodological quality of the studies was assessed by the Joanna Briggs Institute. RESULTS A total of 33 studies involving 4294 individuals with HNSCC were included in this review. The most important alteration was the high mutational frequency in the KMT2C and KMT2D genes, with reported co-occurrence. The expression of the KMT2D gene exhibited considerable heterogeneity across the studies, while limited data was available for the remaining genes. CONCLUSIONS KMT2C and KMT2D genes seem to have tumor suppressor activities, with involvement of cell cycle inhibitors, regulating different pathways that can lead to tumor progression, disease aggressiveness, and DNA damage accumulation.
Collapse
Affiliation(s)
| | | | | | - Elaine Barros Ferreira
- Interdisciplinary Laboratory of Applied Research on Clinical Practice in Oncology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Paula Elaine Diniz Dos Reis
- Interdisciplinary Laboratory of Applied Research on Clinical Practice in Oncology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | | |
Collapse
|
6
|
Inchanalkar M, Srivatsa S, Ambatipudi S, Bhosale PG, Patil A, Schäffer AA, Beerenwinkel N, Mahimkar MB. Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers. Clin Epigenetics 2023; 15:93. [PMID: 37245006 DOI: 10.1186/s13148-023-01510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Gingivobuccal complex oral squamous cell carcinoma (GBC-OSCC) is an aggressive malignancy with high mortality often preceded by premalignant lesions, including leukoplakia. Previous studies have reported genomic drivers in OSCC, but much remains to be elucidated about DNA methylation patterns across different stages of oral carcinogenesis. RESULTS There is a serious lack of biomarkers and clinical application of biomarkers for early detection and prognosis of gingivobuccal complex cancers. Hence, in search of novel biomarkers, we measured genome-wide DNA methylation in 22 normal oral tissues, 22 leukoplakia, and 74 GBC-OSCC tissue samples. Both leukoplakia and GBC-OSCC had distinct methylation profiles as compared to normal oral tissue samples. Aberrant DNA methylation increases during the different stages of oral carcinogenesis, from premalignant lesions to carcinoma. We identified 846 and 5111 differentially methylated promoters in leukoplakia and GBC-OSCC, respectively, with a sizable fraction shared between the two sets. Further, we identified potential biomarkers from integrative analysis in gingivobuccal complex cancers and validated them in an independent cohort. Integration of genome, epigenome, and transcriptome data revealed candidate genes with gene expression synergistically regulated by copy number and DNA methylation changes. Regularised Cox regression identified 32 genes associated with patient survival. In an independent set of samples, we validated eight genes (FAT1, GLDC, HOXB13, CST7, CYB5A, MLLT11, GHR, LY75) from the integrative analysis and 30 genes from previously published reports. Bisulfite pyrosequencing validated GLDC (P = 0.036), HOXB13 (P < 0.0001) promoter hypermethylation, and FAT1 (P < 0.0001) hypomethylation in GBC-OSCC compared to normal controls. CONCLUSIONS Our findings identified methylation signatures associated with leukoplakia and gingivobuccal complex cancers. The integrative analysis in GBC-OSCC identified putative biomarkers that enhance existing knowledge of oral carcinogenesis and may potentially help in risk stratification and prognosis of GBC-OSCC.
Collapse
Affiliation(s)
- Mayuri Inchanalkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Srikant Ambatipudi
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Priyanka G Bhosale
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, King's College London, Tower Wing, London, UK
| | - Asawari Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, and National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Manoj B Mahimkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
7
|
Cai X, Zhang J, Zhang H, Li T. Biomarkers of malignant transformation in oral leukoplakia: from bench to bedside. J Zhejiang Univ Sci B 2023; 24:868-882. [PMID: 37752089 PMCID: PMC10522567 DOI: 10.1631/jzus.b2200589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 05/16/2023]
Abstract
Oral leukoplakia is a common precursor lesion of oral squamous cell carcinoma, which indicates a high potential of malignancy. The malignant transformation of oral leukoplakia seriously affects patient survival and quality of life; however, it is difficult to identify oral leukoplakia patients who will develop carcinoma because no biomarker exists to predict malignant transformation for effective clinical management. As a major problem in the field of head and neck pathologies, it is imperative to identify biomarkers of malignant transformation in oral leukoplakia. In this review, we discuss the potential biomarkers of malignant transformation reported in the literature and explore the translational probabilities from bench to bedside. Although no single biomarker has yet been applied in the clinical setting, profiling for genomic instability might be a promising adjunct.
Collapse
Affiliation(s)
- Xinjia Cai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology / National Center of Stomatology / National Clinical Research Center for Oral Diseases / National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| |
Collapse
|
8
|
Anne A, Kumar L, Salavadi RK, Anand PS, Nuguri S, Bindra S, Reddy KVR, Gummanur MR, Mohan KN. Somatic Variants and Exon-Level Copy Number Changes in Five Hyperplastic Oral Leukoplakias. Cytogenet Genome Res 2023; 162:560-569. [PMID: 36630923 DOI: 10.1159/000528890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Oral leukoplakia (OL), an oral potentially malignant disorder, begins with a hyperplastic/hyperkeratotic stage at which no genome-scale somatic single nucleotide variant profiles have been described so far. We performed exome sequencing of five cases at this stage with no evidence of dysplasia to identify genetic alterations (exon-level copy number alterations, indels, and single nucleotide variants), their association with transcript levels, and relationship with oral cancer susceptibility. Pathway enrichment analysis of genes associated with tobacco chewing and age-related mutation signatures, transcripts with variants predicted to be functionally damaging and those with significantly altered levels all indicated the involvement of focal adhesion, ECM-receptor interactions, regulation of cytoskeleton, and DNA repair. Two novel mutations identified in FAT1 tumor suppressor gene were associated with decreased transcript levels. In addition, 16 expressed cancer driver genes contained functionally damaging variants. Many of the affected genes were also reported in dysplastic OL lesions. The presence of variants in cancer driver genes and those shared with oral dysplasias possibly provides a basis for further progression and increased susceptibility to oral cancer.
Collapse
Affiliation(s)
- Anuhya Anne
- Molecular Biology and Genetics Laboratory, BITS Pilani Hyderabad Campus, Hyderabad, India
- Centre for Human Disease Research, BITS Pilani Hyderabad Campus, Hyderabad, India
| | - Lov Kumar
- Computer Science and Information Systems, BITS Pilani Hyderabad Campus, Hyderabad, India
| | | | | | | | | | | | | | - Kommu N Mohan
- Molecular Biology and Genetics Laboratory, BITS Pilani Hyderabad Campus, Hyderabad, India
- Centre for Human Disease Research, BITS Pilani Hyderabad Campus, Hyderabad, India
| |
Collapse
|
9
|
Gu X, Wang L, Coates PJ, Gnanasundram SV, Sgaramella N, Sörlin J, Erdogan B, Magan M, Nylander K. Evidence for etiologic field changes in tongue distant from tumor in patients with squamous cell carcinoma of the oral tongue. J Pathol 2023; 259:93-102. [PMID: 36314576 PMCID: PMC10108103 DOI: 10.1002/path.6025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Oral cancer is a paradigm of Slaughter's concept of field cancerization, where tumors are thought to originate within an area of cells containing genetic alterations that predispose to cancer development. The field size is unclear but may represent a large area of tissue, and the origin of mutations is also unclear. Here, we analyzed whole exome and transcriptome features in contralateral tumor-distal tongue (i.e. distant from the tumor, not tumor-adjacent) and corresponding tumor tissues of 15 patients with squamous cell carcinoma of the oral tongue. The number of point mutations ranged from 41 to 237 in tumors and from one to 78 in tumor-distal samples. Tumor-distal samples showed mainly clock-like (associated with aging) or tobacco smoking mutational signatures. Tumors additionally showed mutations that associate with cytidine deaminase AID/APOBEC enzyme activities or a UV-like signature. Importantly, no point mutations were shared between a tumor and the matched tumor-distal sample in any patient. TP53 was the most frequently mutated gene in tumors (67%), whereas a TP53 mutation was detected in only one tumor-distal sample, and this mutation was not shared with the matched tumor. Arm-level copy number variation (CNV) was found in 12 tumors, with loss of chromosome (Chr) 8p or gain of 8q being the most frequent events. Two tumor-distal samples showed a gain of Chr8, which was associated with increased expression of Chr8-located genes in these samples, although gene ontology did not show a role for these genes in oncogenic processes. In situ hybridization revealed a mixed pattern of Chr8 gain and neutral copy number in both tumor cells and adjacent nontumor epithelium in one patient. We conclude that distant field cancerization exists but does not present as tumor-related mutational events. The data are compatible with etiologic field effects, rather than classical monoclonal field cancerization theory. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Philip J Coates
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Jonas Sörlin
- Clinical Genetics, Laboratory Medicine, Norrlands Universitetssjukhus, Umeå, Sweden
| | - Baris Erdogan
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Mustafa Magan
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Ghosh A, Ghosh A, Sinha A, Mathai S, Bhaumik J, Mukhopadhyay A, Maitra A, Biswas NK, Majumder PP, Sengupta S. Identification of HPV16 positive cervical cancer subsets characterized by divergent immune and oncogenic phenotypes with potential implications for immunotherapy. Tumour Biol 2023; 45:55-69. [PMID: 37599552 DOI: 10.3233/tub-220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Cervical cancers (CaCx), like many other cancer types, portray high molecular heterogeneity that affects response to therapy, including immunotherapy. In India and other developing countries, CaCx mortality rates are very high because women report to the clinics with advanced cancers in absence of organized screening programs. This calls for implementation of newer therapeutic regimens for CaCx, like immunotherapy, which is again not used commonly in such countries. OBJECTIVE Therefore, we focused on dissecting tumour immune heterogeneity, if any, identify immune gene-based biomarkers of heterogeneity and subsets of such cancers with the potential for immunotherapy. We also attempted to characterize the cancer-associated phenotypes of such subsets, including viral load, to decipher the relationship of tumour immunogenicity with oncogenicity. METHODS Employing RNA-seq analysis of 44 HPV16 positive CaCx patients, immune subtypes were identified by unsupervised hierarchical clustering of global immune-gene expression profiles. Proportions of tumor infiltrating immune cells in the tumor milieu were estimated, employing Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT), using gene expression data from RNA-seq. The oncogenic phenotypes of the immune subtypes of CaCx were deciphered through differential gene expression (DEGs) and pathway enrichment analysis. Viral load was estimated through TaqMan-based qRT-PCR analysis. RESULTS Analysis revealed the presence of two immune subtypes of CaCx, A (26/44; 59.09%) and B (18/44; 40.90%). Compared to Subtype-A, Subtype-B portrayed overexpression of immune genes and high infiltration of immune cells, specifically CD8+ T cells (p < 0.0001). Besides, a significant correlation between PD-1 and PD-L1 co-expression among Subtype-B, as opposed to Subtype-A, confirmed the interactive roles of these immune checkpoint molecules in Subtype B. Stepwise discriminant analysis pin-pointed ten immune-genes that could classify 100% of the patients significantly (p < 0.0001) into the two immune subtypes and serve as potential biomarkers of CaCx immunity. Differential gene expression analysis between the subtypes unveiled that Subtype-B was more biologically aggressive than Subtype-A, reflecting loss of structural integrity and promotion of cancer progression. The viral load was significantly lower in Subtype-B (average viral load = 10.74/100 ng of genomic DNA) compared to Subtype-A (average viral load = 14.29/100 ng of genomic DNA). Thus viral load and the ten-gene panel underscore their association with immunogenicity and oncogenicity. CONCLUSION Our study provides strong evidence that only a subset, about 41% of HPV16 positive CaCx patients in India, portray immune enrichment of the tumor milieu coupled with aggressive phenotypes. Such subtypes are therefore likely to benefit through checkpoint molecule-based or tumor infiltrating lymphocyte-based immunotherapy, which could be a leap forward in tackling aggressive forms of such CaCx in India and other developing countries.
Collapse
Affiliation(s)
- Abhisikta Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Abarna Sinha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sonia Mathai
- Tata Medical Center, Kolkata, West Bengal, India
| | | | - Asima Mukhopadhyay
- Kolkata Gynecological Oncology Trials and Translational Research Group, Kolkata, West Bengal, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sharmila Sengupta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
11
|
Paine SK, Das S, Bhattacharyya C, Biswas NK, Rao R, De A, Basu A. Autosomal recessive inheritance of a novel missense mutation of ITGB4 for Epidermolysis-Bullosa pyloric-atresia: a case report. Mol Genet Genomics 2022; 297:1581-1586. [PMID: 35997841 DOI: 10.1007/s00438-022-01941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Epidermolysis-Bullosa (EB), a rare Mendelian disorder, exhibits complex phenotypic and locus-heterogeneity. We identified a nuclear family of clinically unaffected parents with two offsprings manifesting EB-Pyloric-Atresia (EB-PA), with a variable clinical severity. We generated whole exome sequence data on all four individuals to (1) identify the causal mutation behind EB-PA (2) understand the background genetic variation for phenotype variability of the siblings. We assumed an autosomal recessive mode of inheritance and used suites of bioinformatic and computational tools to collate information through global databases to identify the causal genetic variant for the disease. We also investigated variations in key genes that are likely to impact phenotype severity. We identified a novel missense mutation in the ITGB4 gene (p.Ala1227Asp), for which the parents were heterozygous and the children homozygous. The mutation in ITGB4 gene, predicted to reduce the stability of the primary alpha6beta4-plectin complex compared to all previously studied mutations on ITGB4 reported to cause EB.
Collapse
Affiliation(s)
| | - Subrata Das
- National Institute of BioMedical Genomics, Kalyani, India
| | | | | | | | - Abhishek De
- Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Analabha Basu
- National Institute of BioMedical Genomics, Kalyani, India.
| |
Collapse
|
12
|
Wang X, Xu K, Liao X, Rao J, Huang K, Gao J, Xu G, Wang D. Construction of a survival nomogram for gastric cancer based on the cancer genome atlas of m6A-related genes. Front Genet 2022; 13:936658. [PMID: 35991573 PMCID: PMC9389082 DOI: 10.3389/fgene.2022.936658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: Based on TCGA database, a prediction model for 1-, 3-, and 5-year overall survival rates of gastric cancer (GC) patients was constructed by analyzing the critical risk factors affecting the prognosis of gastric cancer patients.Method: Clinicopathological features as well as gene signature of GC patients were obtained from TCGA database. Patients were randomly divided into a training cohort and an internal validation cohort. Independent predictors of GC prognosis were analyzed by univariate and multivariate Cox analyses to construct nomogram. The accuracy and reliability of the model was further validated by calibration curves, ROC curves, and C-indexes, and the clinical utility of the model was analyzed by decision analysis curves.Result: Age, sex, N stage, M stage, METTL16, RBM15, FMR1, IGFBP1, and FTO were significantly associated with the prognosis of GC patients, and these predictors were further included in the construction of nomogram. The C-indexes for the training cohort and validation set were 0.735 and 0.688, respectively. The results of the ROC curve analysis indicated that the area under the curve (AUC) exceeded 0.6 in training and validation sets at 1, 3, and 5 years.Conclusion: We have constructed and validated a nomogram that provides individual survival condition prediction for GC patients. The prognostic model integrating gene signatures and clinicopathological characteristics would help clinicians determine the prognosis of patients with GC and develop individualized treatment plans.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
- *Correspondence: Xiaokang Wang,
| | - Kexin Xu
- Department of Clinical Medicine, School of the Second Clinical Medicine, Anhui Medical University, Hefei, China
| | - Xueyi Liao
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Kaiyuan Huang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Jianlin Gao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Dengchuan Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
13
|
Luginbuhl AJ, South AP. Understanding pre-cancerous lesions of the oral cavity †. J Pathol 2022; 258:103-105. [PMID: 35894839 DOI: 10.1002/path.5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/07/2022]
Abstract
Pre-cancerous lesions provide insight into tumor development as well as prognostication since distinguishing high-risk from benign disease will stratify clinical management. In a recent issue of The Journal of Pathology, Ghosh and colleagues perform comprehensive genomic characterization of the pre-cancerous lesion leukoplakia, comparing RNA and DNA with peripheral blood, normal mucosa, and squamous cell carcinoma (SCC) of the gingivobuccal region of the oral cavity from the same 28 individuals. The data paint a picture of increasing mutation and early caspase-8 inactivation on the background of inflammation with decreasing immune surveillance in the progression from benign leukoplakia to SCC. This research points to an opportunity for disease intercept at the premalignant niche prior to the development of malignancy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Adam J Luginbuhl
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew P South
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
- The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|