1
|
Park JH, Lim JH, Kim S, Kim CH, Choi JS, Lim JH, Kim L, Chang JW, Park D, Lee MW, Kim S, Park IS, Han SH, Shin E, Roh J, Heo J. Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images. J Pathol Clin Res 2024; 10:e70004. [PMID: 39358807 PMCID: PMC11446692 DOI: 10.1002/2056-4538.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
EGFR mutations are a major prognostic factor in lung adenocarcinoma. However, current detection methods require sufficient samples and are costly. Deep learning is promising for mutation prediction in histopathological image analysis but has limitations in that it does not sufficiently reflect tumor heterogeneity and lacks interpretability. In this study, we developed a deep learning model to predict the presence of EGFR mutations by analyzing histopathological patterns in whole slide images (WSIs). We also introduced the EGFR mutation prevalence (EMP) score, which quantifies EGFR prevalence in WSIs based on patch-level predictions, and evaluated its interpretability and utility. Our model estimates the probability of EGFR prevalence in each patch by partitioning the WSI based on multiple-instance learning and predicts the presence of EGFR mutations at the slide level. We utilized a patch-masking scheduler training strategy to enable the model to learn various histopathological patterns of EGFR. This study included 868 WSI samples from lung adenocarcinoma patients collected from three medical institutions: Hallym University Medical Center, Inha University Hospital, and Chungnam National University Hospital. For the test dataset, 197 WSIs were collected from Ajou University Medical Center to evaluate the presence of EGFR mutations. Our model demonstrated prediction performance with an area under the receiver operating characteristic curve of 0.7680 (0.7607-0.7720) and an area under the precision-recall curve of 0.8391 (0.8326-0.8430). The EMP score showed Spearman correlation coefficients of 0.4705 (p = 0.0087) for p.L858R and 0.5918 (p = 0.0037) for exon 19 deletions in 64 samples subjected to next-generation sequencing analysis. Additionally, high EMP scores were associated with papillary and acinar patterns (p = 0.0038 and p = 0.0255, respectively), whereas low EMP scores were associated with solid patterns (p = 0.0001). These results validate the reliability of our model and suggest that it can provide crucial information for rapid screening and treatment plans.
Collapse
Affiliation(s)
- Jun Hyeong Park
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - June Hyuck Lim
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seonhwa Kim
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jun Hyeok Lim
- Division of Pulmonology, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Lucia Kim
- Department of Pathology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Dongil Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Myung-Won Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sup Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Il-Seok Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Dontan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Seung Hoon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Dontan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Eun Shin
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jaesung Heo
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
2
|
Gonzalez-Sanchez E, Vaquero J, Caballero-Diaz D, Grzelak J, Fusté NP, Bertran E, Amengual J, Garcia-Saez J, Martín-Mur B, Gut M, Esteve-Codina A, Alay A, Coulouarn C, Calero-Perez S, Valdecantos P, Valverde AM, Sánchez A, Herrera B, Fabregat I. The hepatocyte epidermal growth factor receptor (EGFR) pathway regulates the cellular interactome within the liver fibrotic niche. J Pathol 2024; 263:482-495. [PMID: 38872438 DOI: 10.1002/path.6299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Liver fibrosis is the consequence of chronic liver injury in the presence of an inflammatory component. Although the main executors of this activation are known, the mechanisms that lead to the inflammatory process that mediates the production of pro-fibrotic factors are not well characterized. Epidermal growth factor receptor (EGFR) signaling in hepatocytes is essential for the regenerative processes of the liver; however, its potential role in regulating the fibrotic niche is not yet clear. Our group generated a mouse model that expresses an inactive truncated form of the EGFR specifically in hepatocytes (ΔEGFR mice). Here, we have analyzed the response of WT and ΔEGFR mice to chronic treatment with carbon tetrachloride (CCl4), which induces a pro-inflammatory and fibrotic process in the liver. The results indicated that the hallmarks of liver fibrosis were attenuated in CCl4-treated ΔEGFR mice when compared with CCl4-treated WT mice, coinciding with a faster resolution of the fibrotic process and ameliorated damage. The absence of EGFR activity in hepatocytes induced changes in the pattern of immune cells in the liver, with a notable increase in the population of M2 macrophages, more related to fibrosis resolution, as well as in the population of lymphocytes related to eradication of the damage. Transcriptome analysis of hepatocytes, and secretome studies of extracellular media from in vitro experiments, allowed us to elucidate the specific molecular mechanisms regulated by EGFR that mediate hepatocyte production of both pro-fibrotic and pro-inflammatory mediators; these have consequences for the deposition of extracellular matrix proteins, as well as for the immune microenvironment. Overall, our study uncovered novel mechanistic insights regarding EGFR kinase-dependent actions in hepatocytes that reveal its key role in chronic liver damage. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Grants
- EHDG1703 CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases
- CERCA Programme/Generalitat de Catalunya
- CIVP20A6593 Fundacion Ramon Areces
- PID2019-108651RJ-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PID2021-122551OB-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PID-2021-122766OB-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTC2019-007125-1 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-094052-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-094079-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-099098-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RYC2021-034121-I Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- European Regional Development Fund
- Instituto de Salud Carlos III
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Department of Physiology and Pharmacology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Centro de Investigación del Cancer and Instituto de Biología Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Daniel Caballero-Diaz
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Jan Grzelak
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Noel P Fusté
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Esther Bertran
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Josep Amengual
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Juan Garcia-Saez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ania Alay
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Cedric Coulouarn
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Silvia Calero-Perez
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Pilar Valdecantos
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Angela M Valverde
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Aránzazu Sánchez
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Blanca Herrera
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Chu ZY, Zi XJ. Network toxicology and molecular docking for the toxicity analysis of food contaminants: A case of Aflatoxin B 1. Food Chem Toxicol 2024; 188:114687. [PMID: 38663764 DOI: 10.1016/j.fct.2024.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The present study aims to promote network toxicology and molecular docking strategies for the efficient evaluation of the toxicity of food contaminants. With the example of liver injury induced by the food contaminant Aflatoxin B1(AFB1), this study effectively investigated the putative toxicity of food contaminants and the potentially molecular mechanisms. The study found that AFB1 regulates multiple signalling pathways by modulating core targets such as AKT1, BCL2, TNF, CASP3, SRC and EGFR. These pathways encompass Pathways in cancer, PI3K-Akt signalling pathway, Endocrine resistance, Lipid and atherosclerosis, Apoptosis and other pathways, subsequently impacting immunotoxicity, inflammatory responses, apoptosis, cytogenetic mutations, and ultimately leading to liver injury. We provide a theoretical basis for understanding the molecular mechanisms of AFB1 hepatotoxicity and for the prevention and treatment of cancers caused by the food contaminant AFB1. Furthermore, our network toxicology and molecular docking methods also provide an effective method for the rapid evaluation of the toxicity of food contaminants, which effectively solves the cost and ethical problems associated with the use of experimental animals.
Collapse
Affiliation(s)
- Zi-Yong Chu
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Xue-Jiao Zi
- College of Life Science and Technology, Tarim University, Alaer, 843300, Xinjiang, PR China
| |
Collapse
|
4
|
Blázquez-García I, Guerrero L, Cacho-Navas C, Djouder N, Millan J, Paradela A, Carmona-Rodríguez L, Corrales FJ. Molecular Insights of Cholestasis in MDR2 Knockout Murine Liver Organoids. J Proteome Res 2024; 23:1433-1442. [PMID: 38488493 PMCID: PMC11002922 DOI: 10.1021/acs.jproteome.3c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
MDR3 (multidrug resistance 3) deficiency in humans (MDR2 in mice) causes progressive familial intrahepatic cholestasis type 3 (PFIC3). PFIC3 is a lethal disease characterized by an early onset of intrahepatic cholestasis progressing to liver cirrhosis, a preneoplastic condition, putting individuals at risk of hepatocellular carcinoma (HCC). Hepatocyte-like organoids from MDR2-deficient mice (MDR2KO) were used in this work to study the molecular alterations caused by the deficiency of this transporter. Proteomic analysis by mass spectrometry allowed characterization of 279 proteins that were differentially expressed in MDR2KO compared with wild-type organoids. Functional enrichment analysis indicated alterations in three main cellular functions: (1) interaction with the extracellular matrix, (2) remodeling intermediary metabolism, and (3) cell proliferation and differentiation. The affected cellular processes were validated by orthogonal molecular biology techniques. Our results point to molecular mechanisms associated with PFIC3 that may drive the progression to liver cirrhosis and HCC and suggest proteins and cellular processes that could be targeted for the development of early detection strategies for these severe liver diseases.
Collapse
Affiliation(s)
- Irene Blázquez-García
- Functional
Proteomics Laboratory, Centro Nacional de
Biotecnología (CSIC), Madrid 28049, Spain
| | - Laura Guerrero
- Functional
Proteomics Laboratory, Centro Nacional de
Biotecnología (CSIC), Madrid 28049, Spain
| | | | - Nabil Djouder
- Centro
Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Jaime Millan
- Centro
de Biología Molecular Severo Ochoa (CBMSO), Madrid 28049, Spain
| | - Alberto Paradela
- Functional
Proteomics Laboratory, Centro Nacional de
Biotecnología (CSIC), Madrid 28049, Spain
| | | | - Fernando J. Corrales
- Functional
Proteomics Laboratory, Centro Nacional de
Biotecnología (CSIC), Madrid 28049, Spain
| |
Collapse
|
5
|
Zhang L, Shi J, Shen Q, Fu Y, Qi S, Wu J, Chen J, Zhang H, Mu Y, Chen G, Liu P, Liu W. Astragalus saponins protect against extrahepatic and intrahepatic cholestatic liver fibrosis models by activation of farnesoid X receptor. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116833. [PMID: 37400008 DOI: 10.1016/j.jep.2023.116833] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic Liver Fibrosis (CLF) is a hepatobiliary disease that typically arises as a late-stage complication of cholestasis, which can have multiple underlying causes. There are no satisfactory chemical or biological drugs for CLF. Total Astragalus saponins (TAS) are considered to be the main active constituents of the traditional Chinese herb Astragali Radix (AR), which has the obvious improvement effects for treating CLF. However, the mechanism of anti-CLF effects of TAS is still unclear. AIM OF THE STUDY The present study was undertaken to investigate the therapeutic effects of TAS against bile duct ligation (BDL) and 3, 5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC) -induced CLF models and to reveal the potential mechanism to support its clinic use with scientific evidence. MATERIALS AND METHODS In this study, BDL-induced CLF rats were treated with TAS (20 mg/kg, 40 mg/kg) and DDC-induced CLF mice were treated with 56 mg/kg TAS. The therapeutic effects of TAS on extrahepatic and intrahepatic CLF models were evaluated by serum biochemical analysis, liver histopathology and hydroxyproline (Hyp). Thirty-nine individual bile acids (BAs) in serum and liver were quantified by using UHPLC-Q-Exactive Orbitrap HRMS. qRT-PCR, Western blot and immunohistochemistry analysis were used to measure the expression of liver fibrosis and ductular reaction markers, inflammatory factors and BAs related metabolic transporters, along with nuclear receptor farnesoid X receptor (FXR). RESULTS The serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBiL), direct bilirubin (DBiL) and contents of liver Hyp were dose-dependently improved after treatment for TAS in BDL and DDC- induced CLF models. And the increased levels of ALT and AST were significantly improved by total extract from Astragali radix (ASE) in BDL model. The liver fibrosis and ductular reaction markers, α-smooth muscle actin (α-SMA) and cytokeratin 19 (CK19), were significantly ameliorated in TAS group. And the liver expression of inflammatory factors: interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) were significantly decreased after TAS treatment. In addition, TAS significantly ameliorated taurine-conjugated BAs (tau-BAs) levels, particularly α-TMCA, β-TMCA and TCA contents in serum and liver, which correlated with induced expressions of hepatic FXR and BAs secretion transporters. Furthermore, TAS significantly improved short heterodimer partner (SHP), cholesterol 7α-hydroxylase (Cyp7a1), Na+ taurocholate cotransport peptide (NTCP) and bile-salt export pump (BSEP) mRNA and protein expression. CONCLUSIONS TAS exerted a hepatoprotective effect against CLF by ameliorating liver injury, inflammation and restoring the altered tau-BAs metabolism to produce a positive regulatory effect on FXR-related receptors and transporters.
Collapse
Affiliation(s)
- Linzhang Zhang
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Jiewen Shi
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Qin Shen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Yadong Fu
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Shenglan Qi
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Jianjun Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Gaofeng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Ping Liu
- Basic Research Center of Traditional Chinese Medicine Prescription and Syndrome, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
6
|
He YH, Pan JX, Xu LM, Gu T, Chen YW. Ductular reaction in non-alcoholic fatty liver disease: When Macbeth is perverted. World J Hepatol 2023; 15:725-740. [PMID: 37397935 PMCID: PMC10308290 DOI: 10.4254/wjh.v15.i6.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated fatty liver disease is the leading cause of chronic liver diseases defined as a disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD prognosis. Ductular reaction (DR) is a common compensatory reaction associated with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their secreted substances. Recently, several studies have shown that the extent of DR parallels the stage of NASH and fibrosis. This review summarizes previous research on the correlation between DR and NASH, the potential interplay mechanism driving HPC differentiation, and NASH progression.
Collapse
Affiliation(s)
- Yang-Huan He
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Ting Gu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yuan-Wen Chen
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|