1
|
Dong Y, Wu X, Hao Y, Liu W, Hu X, Zhou J, Li X, Wang B. Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts. J Bone Miner Res 2025; 40:428-444. [PMID: 39862425 DOI: 10.1093/jbmr/zjaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis. Functionally, epiregulin promoted osteoblast differentiation while inhibiting adipocyte differentiation from mesenchymal progenitor cells. Epidermal growth factor receptor (EGFR), one of the two known receptors for epiregulin, exerted opposing effects compared to epiregulin. Intriguingly, silencing EGFR almost completely abolished the dysregulation of osteoblast and adipocyte differentiation induced by epiregulin, suggesting that EGFR is indispensable for mediating epiregulin function. Further mechanistic exploration indicated that epiregulin/EGFR signaled via the inactivation of mechanistic target of rapamycin complex 1 (mTORC1) pathway. Moreover, epiregulin downregulated RANKL expression in bone marrow stromal cells (BMSCs) and inhibited the differentiation of bone marrow osteoclast precursor cells into osteoclasts. Treatment of ovariectomized female mice with recombinant epiregulin increased osteoblasts and bone formation, decreased osteoclasts and bone resorption, and ameliorated cancellous bone loss. Consistently, epiregulin treatment improved the potential of BMSCs to differentiate into osteoblasts. Collectively, this study has identified a critical role of epiregulin in regulating osteoblast differentiation through EGFR-mediated inactivation of the mTORC1 pathway, as well as osteoclast differentiation via a mechanism associated with RANKL signaling. Additionally, it highlights the potential of epiregulin as a strategy for combating osteoporosis.
Collapse
Affiliation(s)
- Yuan Dong
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaowen Wu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yinglong Hao
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Wei Liu
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xingli Hu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| |
Collapse
|
2
|
Nagao M, Fukuda A, Kashima H, Matsuyama S, Iimori K, Nakayama S, Mizukoshi K, Kawai M, Yamakawa G, Omatsu M, Namikawa M, Masuda T, Hiramatsu Y, Muta Y, Maruno T, Nakanishi Y, Tsuruyama T, Seno H. Cholangiocyte organoids for disease, cancer, and regenerative medicine. Eur J Cell Biol 2025; 104:151472. [PMID: 39721346 DOI: 10.1016/j.ejcb.2024.151472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
The biliary tract is a ductal network comprising the intrahepatic (IHBDs) and extrahepatic bile duct (EHBDs). Biliary duct disorders include cholangitis, neoplasms, and injury. However, the underlying mechanisms are not fully understood. With advancements in 3D culture technology, cholangiocyte organoids (COs) derived from primary tissues or induced pluripotent stem cells (iPSCs) can accurately replicate the structural and functional properties of biliary tissues. These organoids have become powerful tools for studying the pathogenesis of biliary diseases, such as cystic fibrosis and primary sclerosing cholangitis, and for developing new therapeutic strategies for cholangiocarcinoma. Additionally, COs have the potential to repair bile duct injuries and facilitate transplantation therapies. This review also discusses the use of organoids in genetically engineered mouse models to provide mechanistic insights into tumorigenesis and cancer progression. Continued innovation and standardization of organoid technology are crucial for advancing precision medicine for biliary diseases and cancer.
Collapse
Affiliation(s)
- Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hirotaka Kashima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sho Matsuyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kei Iimori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinnosuke Nakayama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, The Japan Baptist Hospital, 47 Yamanomoto-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8273, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Pang Q, Huang S, Li X, Cao J. Hyodeoxycholic acid inhibits colorectal cancer proliferation through the FXR/EREG/EGFR axis. Front Cell Dev Biol 2025; 12:1480998. [PMID: 39834394 PMCID: PMC11743714 DOI: 10.3389/fcell.2024.1480998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Background The high morbidity and mortality rates of colorectal cancer (CRC) have been a public health concern globally, and the search for additional therapeutic options is imminent. Hyodeoxycholic acid (HDCA) has been receiving attention in recent years and has demonstrated potent efficacy in several diseases. Nonetheless, the antitumor effects and molecular pathways of HDCA in CRC remain largely unexplored. Methods In this study, we investigated how HDCA influences the growth potential of CRC cells using techniques such as flow cytometry, Edu assay, CCK-8, colony formation assay, Western blot analysis, and animal experiments. Results It was found that HDCA treatment of CRC cells was able to significantly inhibit the proliferative capacity of the cells. Furthermore, it was discovered that HDCA primarily stimulated Farnesoid X Receptor (FXR) rather than Takeda G protein coupled receptor 5 (TGR5) to suppress CRC growth. It was also confirmed that HDCA inhibited the Epiregulin (EREG)/Epidermal Growth Factor Receptor (EGFR) pathway by activating FXR, and a negative correlation between FXR and EREG was analyzed in CRC tissue samples. Finally, in vivo animal studies confirmed that HDCA inhibited CRC proliferation without hepatotoxicity. Conclusion Our findings indicate that HDCA suppresses the EREG/EGFR signaling route by activating FXR, thereby hindering the growth of CRC cells and demonstrating a tumor-inhibiting effect in CRC. This study may provide a new therapeutic strategy to improve the prognosis of CRC.
Collapse
Affiliation(s)
| | | | | | - Jiaqing Cao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Park JH, Lim JH, Kim S, Kim CH, Choi JS, Lim JH, Kim L, Chang JW, Park D, Lee MW, Kim S, Park IS, Han SH, Shin E, Roh J, Heo J. Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images. J Pathol Clin Res 2024; 10:e70004. [PMID: 39358807 PMCID: PMC11446692 DOI: 10.1002/2056-4538.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
EGFR mutations are a major prognostic factor in lung adenocarcinoma. However, current detection methods require sufficient samples and are costly. Deep learning is promising for mutation prediction in histopathological image analysis but has limitations in that it does not sufficiently reflect tumor heterogeneity and lacks interpretability. In this study, we developed a deep learning model to predict the presence of EGFR mutations by analyzing histopathological patterns in whole slide images (WSIs). We also introduced the EGFR mutation prevalence (EMP) score, which quantifies EGFR prevalence in WSIs based on patch-level predictions, and evaluated its interpretability and utility. Our model estimates the probability of EGFR prevalence in each patch by partitioning the WSI based on multiple-instance learning and predicts the presence of EGFR mutations at the slide level. We utilized a patch-masking scheduler training strategy to enable the model to learn various histopathological patterns of EGFR. This study included 868 WSI samples from lung adenocarcinoma patients collected from three medical institutions: Hallym University Medical Center, Inha University Hospital, and Chungnam National University Hospital. For the test dataset, 197 WSIs were collected from Ajou University Medical Center to evaluate the presence of EGFR mutations. Our model demonstrated prediction performance with an area under the receiver operating characteristic curve of 0.7680 (0.7607-0.7720) and an area under the precision-recall curve of 0.8391 (0.8326-0.8430). The EMP score showed Spearman correlation coefficients of 0.4705 (p = 0.0087) for p.L858R and 0.5918 (p = 0.0037) for exon 19 deletions in 64 samples subjected to next-generation sequencing analysis. Additionally, high EMP scores were associated with papillary and acinar patterns (p = 0.0038 and p = 0.0255, respectively), whereas low EMP scores were associated with solid patterns (p = 0.0001). These results validate the reliability of our model and suggest that it can provide crucial information for rapid screening and treatment plans.
Collapse
Affiliation(s)
- Jun Hyeong Park
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - June Hyuck Lim
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seonhwa Kim
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jun Hyeok Lim
- Division of Pulmonology, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Lucia Kim
- Department of Pathology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Dongil Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Myung-Won Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sup Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Il-Seok Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Dontan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Seung Hoon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Dontan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Eun Shin
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jaesung Heo
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
5
|
Zhu X, Wang H. Revisiting the role and mechanism of ELF3 in circadian clock modulation. Gene 2024; 913:148378. [PMID: 38490512 DOI: 10.1016/j.gene.2024.148378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The gene encoding EARLY FLOWERING3 (ELF3) is necessary for photoperiodic flowering and the normal regulation of circadian rhythms. It provides important information at the cellular level to uncover the biological mechanisms that improve plant growth and development. ELF3 interactions with transcription factors such as BROTHER OF LUX ARRHYTHMO (BOA), LIGHT-REGULATED WD1 (LWD1), PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), PHYTOCHROME-INTERACTING FACTOR 7 (PIF7), and LUX ARRHYTHMO (LUX) suggest a role in evening complex (EC) independent pathways, demanding further investigation to elucidate the EC-dependent versus EC-independent mechanisms. The ELF3 regulation of flowering time about photoperiod and temperature variations can also optimize crop cultivation across diverse latitudes. In this review paper, we summarize how ELF3's role in the circadian clock and light-responsive flowering control in crops offers substantial potential for scientific advancement and practical applications in biotechnology and agriculture. Despite its essential role in crop adaptation, very little is known in many important crops. Consequently, comprehensive and targeted research is essential for extrapolating ELF3-related insights from Arabidopsis to other crops, utilizing both computational and experimental methodologies. This research should prioritize investigations into ELF3's protein-protein interactions, post-translational modifications, and genomic targets to elucidate its contribution to accurate circadian clock regulation.
Collapse
Affiliation(s)
- Xingzun Zhu
- College of Landscape Architecture, Changchun University, No.1 Weixinglu Changchun, Jilin, China.
| | - Hongtao Wang
- College of Life Sciences, Tonghua Normal University, Tonghua, 950, Yucai Road, China.
| |
Collapse
|
6
|
Ju Y, Fang S, Liu L, Ma H, Zheng L. The function of the ELF3 gene and its mechanism in cancers. Life Sci 2024; 346:122637. [PMID: 38614305 DOI: 10.1016/j.lfs.2024.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
E74-like factor 3 (ELF3) is an important member of the E-twenty-six (ETS) transcription factor family. ELF3 is expressed in various types of cells and regulates a variety of biological behaviors, such as cell proliferation, differentiation, apoptosis, migration, and invasion, by binding to DNA to regulate the expression of other genes. In recent years, studies have shown that ELF3 plays an important role in the occurrence and development of many tumors and inflammation and immune related diseases. ELF3 has different functions and expression patterns in different tumors; it can function as a tumor suppressor gene or an oncogene, highlighting its dual effects of tumor promotion and inhibition. ELF3 also affects the levels of tumor immunity-related cytokines and is involved in the regulation and expression of multiple signaling pathways. In tumor therapy, ELF3 is a complex and multifunctional gene and has become a key focus of targeted treatment research. An in-depth study of the biological function of ELF3 can help to elucidate its role in biological processes and provide ideas and a basis for the development and clinical application of ELF3-related therapeutic methods. This review introduces the structure and physiological and cellular functions of the ELF3 gene, summarizes the mechanisms of action of ELF3 in different types of malignant tumors and its role in immune regulation, inflammation, etc., and discusses treatment methods for ELF3-related diseases, providing significant reference value for scholars studying the ELF3 gene and related diseases.
Collapse
Affiliation(s)
- Yiheng Ju
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng Fang
- Yantai Penglai People's Hospital, Yantai, China
| | - Lei Liu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Ma
- Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Longbo Zheng
- Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Meng L, Yang J, Gao Y, Cao Q, Jiang S, Xiao Y, Wang H, Liu W, Yuan A, Li Y, Huang H. Biomimetic Nanomedicine Targeting Orchestrated Metabolism Coupled with Regulatory Factors to Disrupt the Metabolic Plasticity of Breast Cancer. ACS NANO 2024; 18:4360-4375. [PMID: 38277483 DOI: 10.1021/acsnano.3c10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Targeting nutrient metabolism has been proposed as an effective therapeutic strategy to combat breast cancer because of its high nutrient requirements. However, metabolic plasticity enables breast cancer cells to survive under unfavorable starvation conditions. The key mammalian target regulators rapamycin (mTOR) and hypoxia-inducible-factor-1 (HIF-1) tightly link the dynamic metabolism of glutamine and glucose to maintain nutrient flux. Blocking nutrient flow also induces autophagy to recycle nutrients in the autophagosome, which exacerbates metastasis and tumor progression. Compared to other common cancers, breast cancer is even more dependent on mTOR and HIF-1 to orchestrate the metabolic network. Therefore, we develop a cascade-boosting integrated nanomedicine to reprogram complementary metabolism coupled with regulators in breast cancer. Glucose oxidase efficiently consumes glucose, while the delivery of rapamycin inside limits the metabolic flux of glutamine and uncouples the feedback regulation of mTOR and HIF-1. The hydroxyl radical generated in a cascade blocks the later phase of autophagy without nutrient recycling. This nanomedicine targeting orchestrated metabolism can disrupt the coordination of glucose, amino acids, nucleotides, lipids, and other metabolic pathways in breast cancer tissues, effectively improving the durable antitumor effect and prognosis of breast cancer. Overall, the cascade-boosting integrated system provides a viable strategy to address cellular plasticity and efficient enzyme delivery.
Collapse
Affiliation(s)
- Lingtong Meng
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jingpeng Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Gao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Qinyan Cao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Shunjie Jiang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuyang Xiao
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Haoran Wang
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Wenzheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ahu Yuan
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Yanan Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - He Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|