1
|
Okuda T, Kitamura M, Kato K. A zirconia-based column chromatography system optimized for the purification of IgM from hybridoma culture supernatants. Anal Biochem 2022; 657:114900. [PMID: 36122604 DOI: 10.1016/j.ab.2022.114900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
By using EDTPA-modified zirconia particles that selectively adsorb immunoglobulins in a column, we developed a chromatography separation system for efficient concentrating and purifying of IgM from hybridoma culture supernatants. Hybridoma culture supernatants containing IgMs were diluted 3-fold with 10 mM phosphate buffer (pH 7.0) and passed through the column. During this process, zirconia particles selectively adsorbed these IgMs, and most of the contaminating proteins flowed out into the flow-through. The adsorbed IgMs were easily eluted with a small volume of 400 mM phosphate buffer (pH 8.0), and high-concentration IgM solutions were prepared. Subsequent simple processing using a Capto™ Core 400 cartridge column provided highly purified IgM. The operation is easy, and the activity of IgM is maintained because the purification process is performed using only neutral ranges of phosphate buffers. Here, we showed that anti-globoside and anti-CDw75 IgM purified by this method can be used to stain cervical cancer and Burkitt lymphoma cells that specifically express these respective tumor-associated carbohydrate antigens.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Japan.
| | - Masahiro Kitamura
- NGK Spark Plug-AIST Healthcare, Materials Cooperative Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Katsuya Kato
- NGK Spark Plug-AIST Healthcare, Materials Cooperative Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| |
Collapse
|
2
|
Pourmontaseri H, Habibzadeh N, Entezari S, Samadian F, Kiyani S, Taheri M, Ahmadi A, Fallahi MS, Sheikhzadeh F, Ansari A, Tamimi A, Deravi N. Monoclonal antibodies for the treatment of acute lymphocytic leukemia: A literature review. Hum Antibodies 2022; 30:117-130. [PMID: 35662114 DOI: 10.3233/hab-211511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Acute lymphocytic leukemia (ALL) is a type of blood cancer that is more prevalent in children. Several treatment methods are available for ALL, including chemotherapy, upfront treatment regimens, and pediatric-inspired regimens for adults. Monoclonal antibodies (Mabs) are the novel Food and Drug Administration (FDA) approved remedies for the relapsed/refractory (R/R) adult ALL. In this article, we aimed to review studies that investigated the efficacy and safety of Mabs on ALL. METHODS We gathered studies through a complete search with all proper related keywords in ISI Web of Science, SID, Scopus, Google Scholar, Science Direct, and PubMed for English language publications up to 2020. RESULTS The most commonly studied Mabs for ALL therapies are CD-19, CD-20, CD-22, and CD-52. The best results have been reported in the administration of blinatumomab, rituximab, ofatumumab, and inotuzumab with acceptable low side effects. CONCLUSION Appling personalized approach for achieving higher efficacy is one of the most important aspects of treatment. Moreover, we recommend that the wide use of these Mabs depends on designing further cost-effectiveness trials in this field.
Collapse
Affiliation(s)
- Hossein Pourmontaseri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.,Bitab knowledge enterprise, Fasa University of Medical Sciences, Fasa, Iran
| | - Niloofar Habibzadeh
- Student Research Committee, School of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sarina Entezari
- Student Research Committee, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Samadian
- Nursing Department, Shahid Beheshti University of Medical science, Tehran, Iran
| | - Shamim Kiyani
- Midwifery Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Taheri
- Student Research Committee, School of Pharmacy Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Ahmadi
- Faculty of Biological Sciences and Technologies, Islamic Azad University Sari Branch, Sari, Iran
| | | | - Farzad Sheikhzadeh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Tamimi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Application of the Antibody-Inducing Activity of Glycosphingolipids to Human Diseases. Int J Mol Sci 2021; 22:ijms22073776. [PMID: 33917390 PMCID: PMC8038663 DOI: 10.3390/ijms22073776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosphingolipids (GSLs) are composed of a mono-, di-, or oligosaccharide and a ceramide and function as constituents of cell membranes. Various molecular species of GSLs have been identified in mammalian cells due to differences in the structures of oligosaccharides. The oligosaccharide structure can vary depending on cell lineage, differentiation stage, and pathology; this property can be used as a cell identification marker. Furthermore, GSLs are involved in various aspects of the immune response, such as cytokine production, immune signaling, migration of immune cells, and antibody production. GSLs containing certain structures exhibit strong immunogenicity in immunized animals and promote the production of anti-GSL antibodies. By exploiting this property, it is possible to generate antibodies that recognize the fine oligosaccharide structure of specific GSLs or glycoproteins. In our study using artificially synthesized GSLs (artGSLs), we found that several structural features are correlated with the antibody-inducing activity of GSLs. Based on these findings, we designed artGSLs that efficiently induce the production of antibodies accompanied by class switching and developed several antibodies that recognize not only certain glycan structures of GSLs but also those of glycoproteins. This review comprehensively introduces the immune activities of GSLs and their application as pharmaceuticals.
Collapse
|
4
|
Okuda T, Kato K, Kitamura M, Kasahara S. Purification of anti-glycoconjugate monoclonal antibodies using newly developed porous zirconia particles. Sci Rep 2021; 11:3233. [PMID: 33564002 PMCID: PMC7873262 DOI: 10.1038/s41598-021-82457-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 11/09/2022] Open
Abstract
Here, we describe porous zirconia particles (PZPs) optimized for the purification of immunoglobulins. PZPs, with a pore size of approximately 10 nm, were designed to specifically interact with antibodies via surface modification with a phosphate functional group. A simple PZP purification method based on precipitation enabled efficient purification of mouse anti-glycosphingolipid globoside/Gb4Cer monoclonal IgM (κ-light chains) from hybridoma culture supernatants. Over 99% of contaminating proteins were removed by the PZP purification process, and approximately 50% of the IgM was recovered in the purified fraction after eluting the PZP-adsorbed antibodies with 100 mM phosphate buffer. Other IgG3 and IgM monoclonal antibodies that react with Gb4Cer or α2,6-sialyl LacNAc-modified glycoproteins could also be purified using PZPs and elution buffer at concentrations of 100–500 mM. All of the purified antibodies retained their antigen reactivity and specificity, indicating that PZP purification does not affect antibody function. As PZP purification is also suitable for purification of IgM consisting of λ-light chains and IgG derived from other mammalian species, it is expected to be applied to the purification of a variety of antibodies, including anti-glycoconjugate IgMs.
Collapse
Affiliation(s)
- Tetsuya Okuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Katsuya Kato
- NGK Spark Plug-AIST Healthcare ・ Materials Cooperative Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Masahiro Kitamura
- NGK Spark Plug-AIST Healthcare ・ Materials Cooperative Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Shinjiro Kasahara
- NGK Spark Plug Co., Ltd., 2808 Iwasaki, Komaki, Aichi, 485-8510, Japan
| |
Collapse
|
5
|
Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y, Yu Y. Therapeutic Inducers of Apoptosis in Ovarian Cancer. Cancers (Basel) 2019; 11:E1786. [PMID: 31766284 PMCID: PMC6896143 DOI: 10.3390/cancers11111786] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancers remain one of the most common causes of gynecologic cancer-related death in women worldwide. The standard treatment comprises platinum-based chemotherapy, and most tumors develop resistance to therapeutic drugs. One mechanism of developing drug resistance is alterations of molecules involved in apoptosis, ultimately assisting in the cells' capability to evade death. Thus, there is a need to focus on identifying potential drugs that restore apoptosis in cancer cells. Here, we discuss the major inducers of apoptosis mediated through various mechanisms and their usefulness as potential future treatment options for ovarian cancer. Broadly, they can target the apoptotic pathways directly or affect apoptosis indirectly through major cancer-pathways in cells. The direct apoptotic targets include the Bcl-2 family of proteins and the inhibitor of apoptotic proteins (IAPs). However, indirect targets include processes related to homologous recombination DNA repair, micro-RNA, and p53 mutation. Besides, apoptosis inducers may also disturb major pathways converging into apoptotic signals including janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), wingless-related integration site (Wnt)/β-Catenin, mesenchymal-epithelial transition factor (MET)/hepatocyte growth factor (HGF), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homologue (AKT)/mammalian target of rapamycin (mTOR) pathways. Several drugs in our review are undergoing clinical trials, for example, birinapant, DEBIO-1143, Alisertib, and other small molecules are in preclinical investigations showing promising results in combination with chemotherapy. Molecules that exhibit better efficacy in the treatment of chemo-resistant cancer cells are of interest but require more extensive preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Mudra Binju
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Monica Angelica Amaya-Padilla
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Graeme Wan
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Yu Yu
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
- University of Western Australia Medical School, Division of Obstetrics & Gynaecology, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Chen Y, Bieber MM, Bhat NM, Teng NNH. Ovarian carcinoma glyco-antigen targeted by human IgM antibody. PLoS One 2017; 12:e0187222. [PMID: 29267289 PMCID: PMC5739388 DOI: 10.1371/journal.pone.0187222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/16/2017] [Indexed: 12/05/2022] Open
Abstract
Epithelial Ovarian Cancer (EOC) cells expression of a novel carbohydrate antigen was defined using a human VH4-34 encoded IgM monoclonal antibody (mAb216). MAb216 binds to a poly N-acetyllactosamine epitope expressed on B cells and kills normal and malignant B cells in vitro and in vivo. EOC patient ascites and EOC cell lines were used to study the anti tumor effect of mAb216. Various assays were used to characterize the epitope and demonstrate antibody-mediated binding and cytotoxicity in EOC. Drug and antibody combination effects were determined by calculating the combination index values using the Chou and Talalay method. MAb216 displays direct antibody mediated cytotoxicity on a population of human EOC tumor and ascites samples and EOC cell lines, which express high amounts of poly N-acetyllactosamine epitope, carried by CD147/CD98. Eighty four percent of patient samples, including platin resistant, had a tumor population that bound the monoclonal antibody. The binding pattern of mAb216 and mechanism of cytotoxicity was similar to that seen on normal and malignant B cells with unique general membrane disruption and “pore” formation. In vitro incubation with mAb216 and cisplatin enhanced killing of OVCAR3 cell line. In EOC cell lines percent cytotoxicity correlated with percent expression of epitope. Although in vitro data shows specific EOC cytotoxicity, for possible treatment of EOC MAb216 would need to be evaluated in a clinical trial with or without chemotherapy.
Collapse
Affiliation(s)
- Yi Chen
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, California, United States of America
| | - Marcia M. Bieber
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Neelima M. Bhat
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, California, United States of America
| | - Nelson N. H. Teng
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
7
|
Podgornik A, Yamamoto S, Peterka M, Krajnc NL. Fast separation of large biomolecules using short monolithic columns. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:80-9. [DOI: 10.1016/j.jchromb.2013.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
8
|
|
9
|
Gautam S, Loh KC. Immunoglobulin-M purification — Challenges and perspectives. Biotechnol Adv 2011; 29:840-9. [DOI: 10.1016/j.biotechadv.2011.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/15/2022]
|
10
|
Liedtke M, Twist CJ, Medeiros BC, Gotlib JR, Berube C, Bieber MM, Bhat NM, Teng NN, Coutre SE. Phase I trial of a novel human monoclonal antibody mAb216 in patients with relapsed or refractory B-cell acute lymphoblastic leukemia. Haematologica 2011; 97:30-7. [PMID: 21993685 DOI: 10.3324/haematol.2011.045997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This phase I trial was conducted to determine the safety and pharmacokinetics of monoclonal antibody 216, a human monoclonal Immunoglobulin M antibody targeting a linear B-cell lactosamine antigen, administered alone and in combination with vincristine in patients with relapsed or refractory B-cell acute lymphoblastic leukemia, and to preliminarily assess tumor targeting and efficacy. DESIGN AND METHODS Three cohorts of patients received escalating doses of monoclonal antibody 216 administered as an intravenous infusion. In the case of poor response to the first dose of monoclonal antibody 216 alone, defined as less than 75% reduction in peripheral blood blast count, a second dose of the antibody with vincristine was given between days 4 and 7. Responses were assessed weekly until day 35. Serum concentration of monoclonal antibody 216 was measured before and after infusion. Monoclonal antibody 216 targeting was determined with an anti-idiotypic antibody to monoclonal antibody 216 and preliminary efficacy was analyzed by changes in peripheral blood blasts. RESULTS Thirteen patients were enrolled. One episode of grade 3 epistaxis was the only dose-limiting toxicity observed. All patients showed a poor response to the first monoclonal antibody 216 infusion with a decrease in peripheral blasts from 6-65% in 9 patients. In 8 patients, addition of vincristine to monoclonal antibody 216 resulted in an average reduction of the peripheral blasts of 81%. One patient without peripheral blasts achieved a hypoplastic marrow without evidence of leukemia after one infusion of monoclonal antibody 216 and monoclonal antibody 216/vincristine each. Monoclonal antibody 216 was detected on peripheral blasts in all patients. CONCLUSIONS Treatment with monoclonal antibody 216 in combination with vincristine is feasible and well tolerated in patients with relapsed or refractory B-cell acute lymphoblastic leukemia. Binding of monoclonal antibody 216 to leukemic blasts was efficient, and favorable early responses were observed.
Collapse
Affiliation(s)
- Michaela Liedtke
- Department of Medicine, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chromatographic behavior of IgM:DNA complexes. J Chromatogr A 2011; 1218:2405-12. [DOI: 10.1016/j.chroma.2010.12.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/27/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022]
|
12
|
|
13
|
Abstract
Recent advances in immunotherapy of cancer may represent a successful example in translational research, in which progress in knowledge and technology in immunology has led to new strategies of immunotherapy, and even past failures in many clinical trials have led to a better understanding of basic cancer immunobiology. This article reviews the latest concepts in antitumor immunology and its application in the treatment of cancer, with particular focus on acute leukemia.
Collapse
Affiliation(s)
- Wing Leung
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Oncology, St. Jude Children's Research Hospital, and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| |
Collapse
|