1
|
Ishiwa S, Kamei K, Tanase-Nakao K, Shibata S, Matsunami K, Takeuchi I, Sato M, Ishikura K, Narumi S. A girl with MIRAGE syndrome who developed steroid-resistant nephrotic syndrome: a case report. BMC Nephrol 2020; 21:340. [PMID: 32787808 PMCID: PMC7424677 DOI: 10.1186/s12882-020-02011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MIRAGE syndrome is a recently discovered rare genetic disease characterized by myelodysplasia (M), infection (I), growth restriction (R), adrenal hypoplasia (A), genital phenotypes (G), and enteropathy (E), caused by a gain-of-function mutation in the SAMD9 gene. We encountered a girl with molecularly-confirmed MIRAGE syndrome who developed steroid-resistant nephrotic syndrome. CASE PRESENTATION She was born at 33 weeks gestational age with a birth weight of 1064 g. She showed growth failure, mild developmental delays, intractable enteropathy and recurrent pneumonia. She was diagnosed as MIRAGE syndrome by whole exome sequencing and a novel SAMD9 variant (c.4615 T > A, p.Leu1539Ile) was identified at age four. Biopsied skin fibroblast cells showed changes in the endosome system that are characteristic of MIRAGE syndrome, supporting the genetic diagnosis. Proteinuria was noted at age one, following nephrotic syndrome at age five. A renal biopsy showed focal segmental glomerulosclerosis (FSGS) with immune deposits. Steroid treatment was ineffective. Because we speculated that her nephrosis was a result of genetic FSGS, we decided not to introduce immunosuppressive agents and instead started enalapril to reduce proteinuria. Although her proteinuria persisted, her renal function was normal at age eight. CONCLUSIONS This is the first detailed report of a MIRAGE syndrome patient with nephrotic syndrome. Because patients with MIRAGE syndrome have structural abnormalities in the endosomal system, we speculate that dysfunction of endocytosis in podocytes might be a possible mechanism for proteinuria.
Collapse
Affiliation(s)
- Sho Ishiwa
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Kanako Tanase-Nakao
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kunihiro Matsunami
- Department of Pediatrics, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Ichiro Takeuchi
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Mai Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kenji Ishikura
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
2
|
Wilson DB, Bessler M, Ferkol TW, Shenoy S, Amano N, Ishii T, Shima H, Narumi S. Comment on: Acquired monosomy 7 myelodysplastic syndrome in a child with clinical features of dyskeratosis congenita and IMAGe association. Pediatr Blood Cancer 2018; 65. [PMID: 28834235 DOI: 10.1002/pbc.26747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 11/10/2022]
Affiliation(s)
- David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | - Monica Bessler
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas W Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | - Shalini Shenoy
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | - Naoko Amano
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hirohito Shima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Buonocore F, Kühnen P, Suntharalingham JP, Del Valle I, Digweed M, Stachelscheid H, Khajavi N, Didi M, Brady AF, Blankenstein O, Procter AM, Dimitri P, Wales JK, Ghirri P, Knöbl D, Strahm B, Erlacher M, Wlodarski MW, Chen W, Kokai GK, Anderson G, Morrogh D, Moulding DA, McKee SA, Niemeyer CM, Grüters A, Achermann JC. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. J Clin Invest 2017; 127:1700-1713. [PMID: 28346228 PMCID: PMC5409795 DOI: 10.1172/jci91913] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain-containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (-7), deletions of 7q (7q-), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with -7 and 7q- developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized.
Collapse
Affiliation(s)
- Federica Buonocore
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Peter Kühnen
- Institute of Experimental Pediatric Endocrinology and Department of Pediatric Endocrinology, Charité, Berlin, Germany
| | - Jenifer P. Suntharalingham
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ignacio Del Valle
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Martin Digweed
- Department of Human and Medical Genetics, Charité, Berlin, Germany
| | - Harald Stachelscheid
- Berlin Institute of Health, Berlin, Germany, and Berlin-Brandenburg Centrum for Regenerative Therapies, Charité, Berlin, Germany
| | - Noushafarin Khajavi
- Institute of Experimental Pediatric Endocrinology and Department of Pediatric Endocrinology, Charité, Berlin, Germany
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Angela F. Brady
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, United Kingdom
| | - Oliver Blankenstein
- Institute of Experimental Pediatric Endocrinology and Department of Pediatric Endocrinology, Charité, Berlin, Germany
| | - Annie M. Procter
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, United Kingdom
| | - Paul Dimitri
- Academic Unit of Child Health, University of Sheffield, Sheffield, United Kingdom
| | - Jerry K.H. Wales
- Department of Endocrinology, Children’s Health Queensland Clinical Unit, University of Queensland, Brisbane, Australia
| | - Paolo Ghirri
- Department of Neonatology, University of Pisa, Pisa, Italy
| | | | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Research Center (DKFZ), Heidelberg, Germany
| | - Marcin W. Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Research Center (DKFZ), Heidelberg, Germany
| | - Wei Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - George K. Kokai
- Department of Paediatric Histopathology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Deborah Morrogh
- North East Thames Regional Genetics Laboratory Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Dale A. Moulding
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Shane A. McKee
- Department of Genetic Medicine, Belfast City Hospital, Belfast, United Kingdom
| | - Charlotte M. Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Research Center (DKFZ), Heidelberg, Germany
| | - Annette Grüters
- Institute of Experimental Pediatric Endocrinology and Department of Pediatric Endocrinology, Charité, Berlin, Germany
| | - John C. Achermann
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
4
|
Nounamo B, Li Y, O'Byrne P, Kearney AM, Khan A, Liu J. An interaction domain in human SAMD9 is essential for myxoma virus host-range determinant M062 antagonism of host anti-viral function. Virology 2017; 503:94-102. [PMID: 28157624 DOI: 10.1016/j.virol.2017.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 11/26/2022]
Abstract
In humans, deleterious mutations in the sterile α motif domain protein 9 (SAMD9) gene are associated with cancer, inflammation, weakening of the immune response, and developmental arrest. However, the biological function of SAMD9 and its sequence-structure relationships remain to be characterized. Previously, we found that an essential host range factor, M062 protein from myxoma virus (MYXV), antagonized the function of human SAMD9. In this study, we examine the interaction between M062 and human SAMD9 to identify regions that are critical to SAMD9 function. We also characterize the in vitro kinetics of the interaction. In an infection assay, exogenous expression of SAMD9 N-terminus leads to a potent inhibition of wild-type MYXV infection. We reason that this effect is due to the sequestration of viral M062 by the exogenously expressed N-terminal SAMD9 region. Our studies reveal the first molecular insight into viral M062-dependent mechanisms that suppress human SAMD9-associated antiviral function.
Collapse
Affiliation(s)
- Bernice Nounamo
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yibo Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Peter O'Byrne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife M Kearney
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Amir Khan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
5
|
SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet 2016; 48:792-7. [PMID: 27182967 DOI: 10.1038/ng.3569] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
Adrenal hypoplasia is a rare, life-threatening congenital disorder. Here we define a new form of syndromic adrenal hypoplasia, which we propose to term MIRAGE (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy) syndrome. By exome sequencing and follow-up studies, we identified 11 patients with adrenal hypoplasia and common extra-adrenal features harboring mutations in SAMD9. Expression of the wild-type SAMD9 protein, a facilitator of endosome fusion, caused mild growth restriction in cultured cells, whereas expression of mutants caused profound growth inhibition. Patient-derived fibroblasts had restricted growth, decreased plasma membrane EGFR expression, increased size of early endosomes, and intracellular accumulation of giant vesicles carrying a late endosome marker. Of interest, two patients developed myelodysplasitc syndrome (MDS) that was accompanied by loss of the chromosome 7 carrying the SAMD9 mutation. Considering the potent growth-restricting activity of the SAMD9 mutants, the loss of chromosome 7 presumably occurred as an adaptation to the growth-restricting condition.
Collapse
|