1
|
Jones L, Carol H, Evans K, Richmond J, Houghton PJ, Smith MA, Lock RB. A review of new agents evaluated against pediatric acute lymphoblastic leukemia by the Pediatric Preclinical Testing Program. Leukemia 2016; 30:2133-2141. [PMID: 27416986 DOI: 10.1038/leu.2016.192] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/31/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
Abstract
Acute lymphoblastic leukemia (ALL) in children exemplifies how multi-agent chemotherapy has improved the outcome for patients. Refinements in treatment protocols and improvements in supportive care for this most common pediatric malignancy have led to a cure rate that now approaches 90%. However, certain pediatric ALL subgroups remain relatively intractable to treatment and many patients who relapse face a similarly dismal outcome. Moreover, survivors of pediatric ALL suffer the long-term sequelae of their intensive treatment throughout their lives. Therefore, the development of drugs to treat relapsed/refractory pediatric ALL, as well as those that more specifically target leukemia cells, remains a high priority. As pediatric malignancies represent a minority of the overall cancer burden, it is not surprising that they are generally underrepresented in drug development efforts. The identification of novel therapies relies largely on the reappropriation of drugs developed for adult malignancies. However, despite the large number of experimental agents available, clinical evaluation of novel drugs for pediatric ALL is hindered by limited patient numbers and the availability of effective established drugs. The Pediatric Preclinical Testing Program (PPTP) was established in 2005 to provide a mechanism by which novel therapeutics could be evaluated against xenograft and cell line models of the most common childhood malignancies, including ALL, to prioritize those with the greatest activity for clinical evaluation. In this article, we review the results of >50 novel agents and combinations tested against the PPTP ALL xenografts, highlighting comparisons between PPTP results and clinical data where possible.
Collapse
Affiliation(s)
- L Jones
- Leukaemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - H Carol
- Leukaemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - K Evans
- Leukaemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - J Richmond
- Leukaemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - P J Houghton
- Molecular Medicine, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - M A Smith
- Cancer Therapy Evaluation Program, NCI, Bethesda, MD, USA
| | - R B Lock
- Leukaemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Gamerith G, Auer T, Amann A, Putzer D, Schenk B, Kircher B, Hilbe W, Zwierzina H, Loeffler-Ragg J. Increase in antibody-dependent cellular cytotoxicity (ADCC) in a patient with advanced colorectal carcinoma carrying a KRAS mutation under lenalidomide therapy. Cancer Biol Ther 2013; 15:266-70. [PMID: 24351336 DOI: 10.4161/cbt.27327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The failure of EGFR inhibitors in colorectal tumors with KRAS mutations requires the development of alternative treatment strategies for this patient subgroup. Among the hallmarks of cancer the disturbed immunosurveillance and cancer immune evasion have become emerging targets for cancer therapy. Due to their pleiotropic functions immunomodulatory drugs (IMiDs) are interesting agents for combination therapies in solid tumors. However, their possible contribution and a way of monitoring their biological effects have yet to be revealed. In a heavily pretreated patient with advanced colorectal cancer carrying mutations in APC and KRAS genes, we show an early metabolic response and enhanced NK cell activity to monotherapy with lenalidomide. After subsequent lenalidomide/cetuximab combination treatment, the patient had progressive disease. At the same time a reduced performance status, complicated by febrile neutropenia, occurred, as well as a slight increase in metabolic activity. Concordantly NK cell activity dropped back to baseline. Thus, laboratory measurements and metabolic response assessment correlated with clinical conditions. This case report describes the feasibility and potential of a functional assessment of patient derived immune competent cells in combination with functional imaging for the detection of a biological response.
Collapse
Affiliation(s)
- Gabriele Gamerith
- Clinic for Internal Medicine V; Innsbruck Medical University; Innsbruck, Austria
| | - Thomas Auer
- Clinic for Radiology; Innsbruck Medical University; Innsbruck, Austria
| | - Arno Amann
- Clinic for Internal Medicine V; Innsbruck Medical University; Innsbruck, Austria
| | - Daniel Putzer
- Clinic for Radiology; Innsbruck Medical University; Innsbruck, Austria
| | - Bettina Schenk
- Clinic for General and Surgical Intensive Care; Innsbruck Medical University; Innsbruck, Austria
| | - Brigitte Kircher
- Clinic for Internal Medicine V; Innsbruck Medical University; Innsbruck, Austria
| | - Wolfgang Hilbe
- Clinic for Internal Medicine V; Innsbruck Medical University; Innsbruck, Austria
| | - Heinz Zwierzina
- Clinic for Internal Medicine V; Innsbruck Medical University; Innsbruck, Austria
| | - Judith Loeffler-Ragg
- Clinic for Internal Medicine VI; Innsbruck Medical University; Innsbruck, Austria
| |
Collapse
|
3
|
Sampson VB, Gorlick R, Kamara D, Anders Kolb E. A review of targeted therapies evaluated by the pediatric preclinical testing program for osteosarcoma. Front Oncol 2013; 3:132. [PMID: 23755370 PMCID: PMC3668267 DOI: 10.3389/fonc.2013.00132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/12/2013] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma, the most common malignant bone tumor of childhood, is a high-grade primary bone sarcoma that occurs mostly in adolescence. Standard treatment consists of surgery in combination with multi-agent chemotherapy regimens. The development and approval of imatinib for Philadelphia chromosome-positive acute lymphoblastic leukemia in children and the fully human monoclonal antibody, anti-GD2, as part of an immune therapy for high-risk neuroblastoma patients have established the precedent for use of targeted inhibitors along with standard chemotherapy backbones. However, few targeted agents tested have achieved traditional clinical endpoints for osteosarcoma. Many biological agents demonstrating anti-tumor responses in preclinical and early-phase clinical testing have failed to reach response thresholds to justify randomized trials with large numbers of patients. The development of targeted therapies for pediatric cancer remains a significant challenge. To aid in the prioritization of new agents for clinical testing, the Pediatric Preclinical Testing Program (PPTP) has developed reliable and robust preclinical pediatric cancer models to rapidly screen agents for activity in multiple childhood cancers and establish pharmacological parameters and effective drug concentrations for clinical trials. In this article, we examine a range of standard and novel agents that have been evaluated by the PPTP, and we discuss the preclinical and clinical development of these for the treatment of osteosarcoma. We further demonstrate that committed resources for hypothesis-driven drug discovery and development are needed to yield clinical successes in the search for new therapies for this pediatric disease.
Collapse
Affiliation(s)
- Valerie B Sampson
- Nemours Center for Childhood Cancer and Blood Disorders, Alfred I. duPont Hospital for Children , Wilmington, DE , USA
| | | | | | | |
Collapse
|