1
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GMT, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International recommendations for screening and preventative practices for long-term survivors of transplantation and cellular therapy: a 2023 update. Bone Marrow Transplant 2024; 59:717-741. [PMID: 38413823 DOI: 10.1038/s41409-023-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the volume of HCT performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long-term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pre-, peri- and post-transplant exposures and other underlying risk-factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and updated in 2012. To review contemporary literature and update the recommendations while considering the changing practice of HCT and cellular therapy, an international group of experts was again convened. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed but cGVHD management is not covered in detail. These guidelines emphasize special needs of patients with distinct underlying HCT indications or comorbidities (e.g., hemoglobinopathies, older adults) but do not replace more detailed group, disease, or condition specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, MA, USA
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, AZ, USA
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, CA, USA
| | - Peggy Burkhard
- National Bone Marrow Transplant Link, Southfield, MI, USA
| | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, Halifax, NS, Canada
- QEII Health Sciences Center, Halifax, NS, Canada
| | - Gregory M T Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, Sydney, NSW, Australia
- St Vincent's Clinical School Sydney, University of New South Wales, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Sydney, WA, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, WA, Australia
- PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, WI, USA
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, UK
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Public Health and Primary Care, ACCENT VV, KU Leuven-University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Susan K Stewart
- Blood & Marrow Transplant Information Network, Highland Park, IL, 60035, USA
| | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, TN, USA
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Hayek SS, Zaha VG, Bogle C, Deswal A, Langston A, Rotz S, Vasbinder A, Yang E, Okwuosa T. Cardiovascular Management of Patients Undergoing Hematopoietic Stem Cell Transplantation: From Pretransplantation to Survivorship: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1113-e1127. [PMID: 38465648 DOI: 10.1161/cir.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hematopoietic stem cell transplantation can cure various disorders but poses cardiovascular risks, especially for elderly patients and those with cardiovascular diseases. Cardiovascular evaluations are crucial in pretransplantation assessments, but guidelines are lacking. This American Heart Association scientific statement summarizes the data on transplantation-related complications and provides guidance for the cardiovascular management throughout transplantation. Hematopoietic stem cell transplantation consists of 4 phases: pretransplantation workup, conditioning therapy and infusion, immediate posttransplantation period, and long-term survivorship. Complications can occur during each phase, with long-term survivors facing increased risks for late effects such as cardiovascular disease, secondary malignancies, and endocrinopathies. In adults, arrhythmias such as atrial fibrillation and flutter are the most frequent acute cardiovascular complication. Acute heart failure has an incidence ranging from 0.4% to 2.2%. In pediatric patients, left ventricular systolic dysfunction and pericardial effusion are the most common cardiovascular complications. Factors influencing the incidence and risk of complications include pretransplantation therapies, transplantation type (autologous versus allogeneic), conditioning regimen, comorbid conditions, and patient age. The pretransplantation cardiovascular evaluation consists of 4 steps: (1) initial risk stratification, (2) exclusion of high-risk cardiovascular disease, (3) assessment of cardiac reserve, and (4) optimization of cardiovascular reserve. Clinical risk scores could be useful tools for the risk stratification of adult patients. Long-term cardiovascular management of hematopoietic stem cell transplantation survivors includes optimizing risk factors, monitoring, and maintaining a low threshold for evaluating cardiovascular causes of symptoms. Future research should prioritize refining risk stratification and creating evidence-based guidelines and strategies to optimize outcomes in this growing patient population.
Collapse
|
3
|
Rotz SJ, Bhatt NS, Hamilton BK, Duncan C, Aljurf M, Atsuta Y, Beebe K, Buchbinder D, Burkhard P, Carpenter PA, Chaudhri N, Elemary M, Elsawy M, Guilcher GM, Hamad N, Karduss A, Peric Z, Purtill D, Rizzo D, Rodrigues M, Ostriz MBR, Salooja N, Schoemans H, Seber A, Sharma A, Srivastava A, Stewart SK, Baker KS, Majhail NS, Phelan R. International Recommendations for Screening and Preventative Practices for Long-Term Survivors of Transplantation and Cellular Therapy: A 2023 Update. Transplant Cell Ther 2024; 30:349-385. [PMID: 38413247 PMCID: PMC11181337 DOI: 10.1016/j.jtct.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024]
Abstract
As hematopoietic cell transplantation (HCT) and cellular therapy expand to new indications and international access improves, the number of HCTs performed annually continues to rise. Parallel improvements in HCT techniques and supportive care entails more patients surviving long term, creating further emphasis on survivorship needs. Survivors are at risk for developing late complications secondary to pretransplantation, peritransplantation, and post-transplantation exposures and other underlying risk factors. Guidelines for screening and preventive practices for HCT survivors were originally published in 2006 and then updated in 2012. An international group of experts was convened to review the contemporary literature and update the recommendations while considering the changing practices of HCT and cellular therapy. This review provides updated pediatric and adult survivorship guidelines for HCT and cellular therapy. The contributory role of chronic graft-versus-host disease (cGVHD) to the development of late effects is discussed, but cGVHD management is not covered in detail. These guidelines emphasize the special needs of patients with distinct underlying HCT indications or comorbidities (eg, hemoglobinopathies, older adults) but do not replace more detailed group-, disease-, or condition-specific guidelines. Although these recommendations should be applicable to the vast majority of HCT recipients, resource constraints may limit their implementation in some settings.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Neel S Bhatt
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Betty K Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christine Duncan
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard University, Boston, Massachusetts
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Yoshiko Atsuta
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
| | - Kristen Beebe
- Phoenix Children's Hospital and Mayo Clinic Arizona, Phoenix, Arizona
| | - David Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, California
| | | | | | - Naeem Chaudhri
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohamed Elemary
- Hematology and BMT, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mahmoud Elsawy
- Division of Hematology, Dalhousie University, QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | - Gregory Mt Guilcher
- Section of Pediatric Oncology/Transplant and Cellular Therapy, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital Sydney, St Vincent's Clinical School Sydney, University of New South Wales, School of Medicine Sydney, University of Notre Dame Australia, Australia
| | - Amado Karduss
- Bone Marrow Transplant Program, Clinica las Americas, Medellin, Colombia
| | - Zinaida Peric
- BMT Unit, Department of Hematology, University Hospital Centre Zagreb and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, PathWest Laboratory Medicine WA, Australia
| | - Douglas Rizzo
- Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Maria Belén Rosales Ostriz
- Division of hematology and bone marrow transplantation, Instituto de trasplante y alta complejidad (ITAC), Buenos Aires, Argentina
| | - Nina Salooja
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Helene Schoemans
- Department of Hematology, University Hospitals Leuven, Department of Public Health and Primary Care, ACCENT VV, KU Leuven, University of Leuven, Leuven, Belgium
| | | | - Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Navneet S Majhail
- Sarah Cannon Transplant and Cellular Therapy Network, Nashville, Tennessee
| | - Rachel Phelan
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
4
|
Vaitiekiene A, Kulboke M, Bieseviciene M, Bartnykaite A, Kireilis B, Rinkuniene D, Jankauskas A, Zemaitis J, Gaidamavicius I, Gerbutavicius R, Vaitiekus D, Vaskelyte JJ, Sakalyte G. Early Impact of Mobilization Process on Cardiac Function and Size in Patients Undergoing Autologous Hematopoietic Stem Cell Transplantation. J Clin Med 2024; 13:773. [PMID: 38337467 PMCID: PMC10856069 DOI: 10.3390/jcm13030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Background: The hematopoietic stem cell transplantation (HSCT) process is known to cause cardiac toxicity of different grades. In this paper, we aimed to evaluate the impact of mobilization procedure of hematopoietic stem cells for autologous HSCT process for left and right ventricle sizes and functions. Material and Methods: The data of 47 patients undergoing autologous HSCT were analyzed. All patients underwent hematopoietic stem cell mobilization with chemotherapy and filgrastim at 10 µg/kg/d. Echocardiography was performed two times: before enrolling in the transplantation process and after mobilization before the conditioning regimen for transplantation. Changes in left and right ventricle (RV) diameter and systolic and diastolic function of the left ventricle and systolic function of the RV were measured. Results: A statistically significant difference was observed in the change of right ventricular function (S')-it slightly decreased. Mean S' before mobilization was 13.93 ± 2.85 cm/s, and after mobilization it was 12.19 ± 2.64 cm/s (p = 0.003). No statistically significant change in left ventricular diameter and systolic and diastolic function and RV diameter was observed. Conclusions: The mobilization procedure in patients undergoing autologous HSCT is associated with reduced RV systolic function. S' could be used as a reliable tool to evaluate early cardiotoxicity in HSCT patients and guide further follow-up.
Collapse
Affiliation(s)
- Audrone Vaitiekiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Migle Kulboke
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Monika Bieseviciene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Agne Bartnykaite
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Benas Kireilis
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Diana Rinkuniene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Antanas Jankauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Justinas Zemaitis
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
| | - Ignas Gaidamavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rolandas Gerbutavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Jolanta Justina Vaskelyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| | - Gintare Sakalyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania (J.J.V.)
- Institute of Cardiology, Lithuanian University of Health Sciences, 47181 Kaunas, Lithuania
| |
Collapse
|
5
|
Heemelaar JC, Heemelaar S, Hertel SN, Jukema JW, Sueters M, Louwerens M, Antoni ML. Cardiac and obstetric outcomes of pregnancies for women after cardiotoxic therapy in childhood: a single center observational study. BMC Cancer 2023; 23:115. [PMID: 36732710 PMCID: PMC9893596 DOI: 10.1186/s12885-023-10578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Childhood cancer survivors (CCS) are at increased risk of cardiomyopathy during pregnancy if they have prior cardiotoxic exposure. Currently, there is no consensus on the necessity, timing and modality of cardiac monitoring during and after pregnancy. Therefore, we examined cardiac function using contemporary echocardiographic parameters during pregnancy in CCS with cardiotoxic treatment exposure, and we observed obstetric outcomes in CCS, including in women without previous cardiotoxic treatment exposure. METHOD A single-center retrospective cohort study was conducted among 39 women enrolled in our institution's cancer survivorship outpatient clinic. Information on potential cardiotoxic exposure in childhood, cancer diagnosis and outcomes of all pregnancies were collected through interviews and review of health records. Echocardiographic exams before and during pregnancy were retrospectively analyzed for left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) if available. The primary outcomes were (i) left ventricular dysfunction (LVD) during pregnancy, defined as LVEF < 50% or a decline of ≥ 10% in LVEF below normal (< 54%), and (ii) symptomatic heart failure (HF). Rate of obstetric and fetal complications was compared to the general population through the national perinatal registry (PERINED). RESULTS All pregnancies (91) of 39 women were included in this study. The most common malignancy was leukemia (N = 17, 43.6%). In 22 patients, echocardiograms were retrospectively analyzed. LVEFbaseline was 55.4 ± 1.2% and pre-existing subnormal LVEF was common (7/22, 31.8/%). The minimum value of LVEF during pregnancy was 3.8% lower than baseline (p = 0.002). LVD occurred in 9/22 (40.9%) patients and HF was not observed. When GLS was normal at baseline (< -18.0%; N = 12), none of the women developed LVD. Nine of out ten women with abnormal GLS at baseline developed LVD later in pregnancy. In our cohort, the obstetric outcomes seemed comparable with the general population unless patients underwent abdominal irradiation (N = 5), where high rates of preterm birth (only 5/18 born at term) and miscarriage (6/18 pregnancies) were observed. CONCLUSION Our study suggests that women with prior cardiotoxic treatment have a low risk of LVD during pregnancy if GLS at baseline was normal. Pregnancy outcomes are similar to the healthy population except when patients underwent abdominal irradiation.
Collapse
Affiliation(s)
- Julius C. Heemelaar
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Steffie Heemelaar
- grid.10419.3d0000000089452978Department of Obstetrics and Gynaecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Svenja N. Hertel
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - J. Wouter Jukema
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands ,grid.411737.7Netherlands Heart Institute, Moreelsepark 1, 3511 EP Utrecht, The Netherlands
| | - Marieke Sueters
- grid.10419.3d0000000089452978Department of Obstetrics and Gynaecology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Marloes Louwerens
- grid.10419.3d0000000089452978Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - M. Louisa Antoni
- grid.10419.3d0000000089452978Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
6
|
Hegazy M, Ghaleb S, Das BB. Diagnosis and Management of Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10010149. [PMID: 36670699 PMCID: PMC9856743 DOI: 10.3390/children10010149] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
It is disheartening for parents to discover that their children have long-term cardiac dysfunction after being cured of life-threatening childhood cancers. As the number of childhood cancer survivors increases, early and late oncology-therapy-related cardiovascular complications continues to rise. It is essential to understand that cardiotoxicity in childhood cancer survivors is persistent and progressive. A child's cancer experience extends throughout his lifetime, and ongoing care for long-term survivors is recognized as an essential part of the cancer care continuum. Initially, there was a lack of recognition of late cardiotoxicities related to cancer therapy. About 38 years ago, in 1984, pioneers like Dr. Lipshultz and others published anecdotal case reports of late cardiotoxicities in children and adolescents exposed to chemotherapy, including some who ended up with heart transplantation. At that time, cardiac tests for cancer survivors were denied by insurance companies because they did not meet appropriate use criteria. Since then, cardio-oncology has been an emerging field of cardiology that focuses on the early detection of cancer therapy-related cardiac dysfunction occurring during and after oncological treatment. The passionate pursuit of many healthcare professionals to make life better for childhood cancer survivors led to more than 10,000 peer-reviewed publications in the last 40 years. We synthesized the existing evidence-based practice and described our experiences in this review to share our current method of surveillance and management of cardiac dysfunction related to cancer therapy. This review aims to discuss the pathological basis of cancer therapy-related cardiac dysfunction and heart failure, how to stratify patients prone to cardiotoxicity by identifying modifiable risk factors, early detection of cardiac dysfunction, and prevention and management of heart failure during and after cancer therapy in children. We emphasize serial longitudinal follow-ups of childhood cancer survivors and targeted intervention for high-risk patients. We describe our experience with the new paradigm of cardio-oncology care, and collaboration between cardiologist and oncologist is needed to maximize cancer survival while minimizing late cardiotoxicity.
Collapse
Affiliation(s)
- Mohamed Hegazy
- University of Mississippi Medical Center Program, Jackson, MS 39216, USA
| | - Stephanie Ghaleb
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bibhuti B Das
- Division of Pediatric Cardiology, Department of Pediatrics, McLane Children’s Baylor Scott and White Medical Center, Baylor College of Medicine-Temple, Temple, TX 76502, USA
- Correspondence: ; Tel.: +1-254-935-4980
| |
Collapse
|
7
|
Long-Term Health Effects of Curative Therapies on Heart, Lungs, and Kidneys for Individuals with Sickle Cell Disease Compared to Those with Hematologic Malignancies. J Clin Med 2022; 11:jcm11113118. [PMID: 35683502 PMCID: PMC9181610 DOI: 10.3390/jcm11113118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/30/2022] Open
Abstract
The goal of curing children and adults with sickle cell disease (SCD) is to maximize benefits and minimize intermediate and long-term adverse outcomes so that individuals can live an average life span with a high quality of life. While greater than 2000 individuals with SCD have been treated with curative therapy, systematic studies have not been performed to evaluate the long-term health effects of hematopoietic stem cell transplant (HSCT) in this population. Individuals with SCD suffer progressive heart, lung, and kidney disease prior to curative therapy. In adults, these sequalae are associated with earlier death. In comparison, individuals who undergo HSCT for cancer are heavily pretreated with chemotherapy, resulting in potential acute and chronic heart, lung, and kidney disease. The long-term health effects on the heart, lung, and kidney for children and adults undergoing HSCT for cancer have been extensively investigated. These studies provide the best available data to extrapolate the possible late health effects after curative therapy for SCD. Future research is needed to evaluate whether HSCT abates, stabilizes, or exacerbates heart, lung, kidney, and other diseases in children and adults with SCD receiving myeloablative and non-myeloablative conditioning regimens for curative therapy.
Collapse
|
8
|
Cuomo A, Mercurio V, Pugliese M, Capasso M, Ruotolo S, Antignano A, Tocchetti CG, Passariello A. Cardiovascular events and treatment of children with high risk medulloblastoma. EClinicalMedicine 2022; 43:101251. [PMID: 35024594 PMCID: PMC8732789 DOI: 10.1016/j.eclinm.2021.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Children with high-risk medulloblastoma are treated with chemotherapeutic protocols which may affect heart function. We aimed to assesscardiovascular events (CVE) in children with medulloblastoma/primitive neuroectodermal tumors (PNET). METHODS We retrospectively collected data from a case series of 22 children with high-risk medulloblastoma/PNET admitted to the Santobono-Pausilipon Hospital, Naples, Italy from 2008 to 2016. All patients received the Milan HART protocol for high-risk brain malignancies as first line treatment (induction phase), followed by a consolidation phase with Thiotepa and hematopoietic stem cells transplantation, except for 1 patient who received the Milan HART as second line therapy. Four patients also received second line treatment, while 4 patients also received maintenance therapy. Patients underwent cardiac examination, including ECG, echocardiography and serum biomarkers, before antineoplastic treatment initiation and then when clinically needed. Six patients developed CVE (CVE group); 16 patients had no CVE (NO-CVE group). FINDINGS In the CVE group, 3 patients presented acute CVE during chemotherapy (2 patients with left ventricular (LV) dysfunction, 1 patient with arterial hypertension), while 3 patients presented chronic CVE after chemotherapy completion (2 patients with LV dysfunction, 1 patient with ectopic atrial tachycardia). After a 51 months median follow-up, 9 patients died: 4 from the CVE group (in 2 cases heart failure-related deaths) and 5 from the NO-CVE group (progression of disease). INTERPRETATION A relevant percentage of children treated for medulloblastoma/PNET develops CVE. Heart failure potentially due to chemotherapy may represent a cause of death. Hence, in these patients, strict cardiac surveillance is essential. FUNDING No funding was associated with this study.
Collapse
Affiliation(s)
- Alessandra Cuomo
- Department of Translational Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Valentina Mercurio
- Department of Translational Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Manuela Pugliese
- Department of Translational Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
| | - Maria Capasso
- Department of Pediatric Oncology, Santobono-Pausilipon Hospital, Naples, Italy
| | - Serena Ruotolo
- Department of Pediatric Oncology, Santobono-Pausilipon Hospital, Naples, Italy
| | - Anita Antignano
- Department of Pediatric Oncology, Santobono-Pausilipon Hospital, Naples, Italy
| | - Carlo G Tocchetti
- Department of Translational Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
- Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Annalisa Passariello
- Department of Translational Sciences, Federico II University, Via Pansini 5, Naples 80131, Italy
- Department of Translational Medical Sciences, Inherited and Rare Cardiovascular Disease, Monaldi Hospital, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
9
|
Mechanisms and Insights for the Development of Heart Failure Associated with Cancer Therapy. CHILDREN-BASEL 2021; 8:children8090829. [PMID: 34572260 PMCID: PMC8468170 DOI: 10.3390/children8090829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 01/01/2023]
Abstract
Cardiotoxicity is a well-recognized late effect among childhood cancer survivors. With various pediatric cancers becoming increasingly curable, it is imperative to understand the disease burdens that survivors may face in the future. In order to prevent or mitigate cardiovascular complications, we must first understand the mechanistic underpinnings. This review will examine the underlying mechanisms of cardiotoxicity that arise from traditional antineoplastic chemotherapies, radiation therapy, hematopoietic stem cell transplantation, as well as newer cellular therapies and targeted cancer therapies. We will then propose areas for prevention, primarily drawing from the anthracycline-induced cardiotoxicity literature. Finally, we will explore the role of human induced pluripotent stem cell cardiomyocytes and genetics in advancing the field of cardio-oncology.
Collapse
|
10
|
Rapid cardiac MRI protocol for cardiac assessment in paediatric and young adult patients undergoing haematopoietic stem cell transplant: a feasibility study. Cardiol Young 2021; 31:973-978. [PMID: 33504397 DOI: 10.1017/s1047951120004990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Haematopoietic stem cell transplantation is an important and effective treatment strategy for many malignancies, marrow failure syndromes, and immunodeficiencies in children, adolescents, and young adults. Despite advances in supportive care, patients undergoing transplant are at increased risk to develop cardiovascular co-morbidities. METHODS This study was performed as a feasibility study of a rapid cardiac MRI protocol to substitute for echocardiography in the assessment of left ventricular size and function, pericardial effusion, and right ventricular hypertension. RESULTS A total of 13 patients were enrolled for the study (age 17.5 ± 7.7 years, 77% male, 77% white). Mean study time was 13.2 ± 5.6 minutes for MRI and 18.8 ± 5.7 minutes for echocardiogram (p = 0.064). Correlation between left ventricular ejection fraction by MRI and echocardiogram was good (ICC 0.76; 95% CI 0.47, 0.92). None of the patients had documented right ventricular hypertension. Patients were given a survey regarding their experiences, with the majority both perceiving that the echocardiogram took longer (7/13) and indicating they would prefer the MRI if given a choice (10/13). CONCLUSION A rapid cardiac MRI protocol was shown feasible to substitute for echocardiogram in the assessment of key factors prior to or in follow-up after haematopoietic stem cell transplantation.
Collapse
|
11
|
Goldberg JF, Peters EJ, Tolley EA, Hagler MN, Joshi VM, Wallace SE, Nouer SS, Beasley GS, Martinez HR, Ryan KA, Absi MA, Strelsin JR, Towbin JA, Triplett BM. Association of persistent tachycardia with early myocardial dysfunction in children undergoing allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2021; 56:2544-2554. [PMID: 34017071 DOI: 10.1038/s41409-021-01330-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Cancer survivors who have undergone hematopoietic cell transplantation (HCT) are at risk for myocardial dysfunction. Children who receive allogenic HCT encounter systemic inflammation resulting in tachycardia and hypertension. The effect of these abnormalities on myocardial function is not known. The aim of this study was to determine whether cardiac dysfunction early after HCT can be predicted by tachycardia or hypertension, within a retrospective single-center sample of pediatric HCT recipients. Early tachycardia or hypertension was defined as a majority of values taken from infusion date to 90 days post-infusion being abnormal. Ejection fraction <53% determined systolic dysfunction. A composite score of accepted pediatric diastolic abnormalities determined diastolic dysfunction. Among 80 subjects (median age 8 years), early tachycardia, systolic dysfunction, and diastolic dysfunction were present in 64%, 25%, and 48% of the sample, respectively. In multivariable models, early tachycardia was an independent predictor of early systolic dysfunction (OR = 12.6 [1.4-112.8], p = 0.024) and diastolic dysfunction (OR = 3.9 [1.3-11.5], p = 0.013). Tachycardia and cardiac dysfunction are common and associated with one another in the early period after pediatric HCT. Future studies may elucidate the role of tachycardia and myocardial dysfunction early after HCT as important predictors of future cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jason F Goldberg
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA. .,Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emily J Peters
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Elizabeth A Tolley
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Mazal N Hagler
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Vijaya M Joshi
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shelby E Wallace
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Simonne S Nouer
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Gary S Beasley
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hugo R Martinez
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaitlin A Ryan
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammed A Absi
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jenny R Strelsin
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey A Towbin
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon M Triplett
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Rotz SJ, Ryan TD, Hayek SS. Cardiovascular disease and its management in children and adults undergoing hematopoietic stem cell transplantation. J Thromb Thrombolysis 2021; 51:854-869. [PMID: 33230704 PMCID: PMC8085022 DOI: 10.1007/s11239-020-02344-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment for many malignancies, hemoglobinopathies, metabolic diseases, bone marrow failure syndromes, and primary immune deficiencies. Despite the significant improvement in survival afforded by HSCT, the therapy is associated with major short and long-term morbidity and mortality. Cardiovascular complications such as cardiomyopathy, arrhythmias, pulmonary hypertension, and pericardial effusions are increasingly recognized as potential outcomes following HSCT. The incidence of cardiac complications is related to various factors such as age, co-morbid medical conditions, whether patients received cardiotoxic chemotherapy prior to HSCT, the type of HSCT (autologous versus allogeneic), and the specific conditioning regimen. Thus, the cardiovascular evaluation has become a core component of the pre-transplant assessment, however, the practice differs from center to center as national guidelines and contemporary high-quality studies are lacking. We review the incidence of cardiotoxicity in pediatric and adult HSCT, potential mechanisms of injury, and effects on long-term outcomes. We also discuss the possible therapeutic approaches when disease arises, as well as the indications and need for surveillance before, during, and after transplantation.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Pediatric Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Thomas D Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Salim S Hayek
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Saunders IM, Tan M, Koura D, Young R. Long-term Follow-up of Hematopoietic Stem Cell Transplant Survivors: A Focus on Screening, Monitoring, and Therapeutics. Pharmacotherapy 2020; 40:808-841. [PMID: 32652612 DOI: 10.1002/phar.2443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/19/2023]
Abstract
Annually, ~50,000 patients undergo hematopoietic stem cell transplantation (HCT) worldwide with almost 22,000 of these patients receiving HCT in the United States. HCT is a curative option for a wide range of hematologic malignancies, and advances in transplantation medicine have resulted in an increase in HCT survivors. It is anticipated that the number of HCT survivors will more than double from 242,000 in 2020 to ~500,000 in 2030. Survivors of HCT are at an increased risk of developing late complications due to exposure to chemotherapy and/or radiation in the pre-, peri-, and post-HCT phases and these cumulative exposures have the potential to damage normal tissue. This tissue damage leads to the early onset of chronic health conditions resulting in premature mortality in HCT survivors, who have a 15-year cumulative incidence of severe or life-threatening chronic health conditions exceeding 40%. Due to the significant burden of morbidity in HCT survivors and the delay in the development of long-term complications, this delicate patient population requires life-long monitoring due to the risk for neuropsychological, cardiac, pulmonary, renal, hepatic, ocular, skeletal, cardiac, endocrine, fertility, and sexual health complications, as well as secondary neoplasms. This review will focus on recent advances in screening, monitoring, and therapeutics for late-occurring or long-term complications in HCT survivors.
Collapse
Affiliation(s)
- Ila M Saunders
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Marisela Tan
- Department of Pharmaceutical Services, San Francisco Medical Center, University of California, San Francisco, California, USA
| | - Divya Koura
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rebecca Young
- Department of Pharmaceutical Services, San Francisco Medical Center, University of California, San Francisco, California, USA
| |
Collapse
|
14
|
Mitchell R. Hematopoietic Stem Cell Transplantation Beyond Severe Combined Immunodeficiency: Seeking a Cure for Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 7:776-785. [PMID: 30832892 DOI: 10.1016/j.jaip.2018.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) can provide definitive therapy for patients with primary immunodeficiency disease (PIDD). Modern HSCT techniques and supportive care have significantly improved outcomes for patients with PIDD. This review examines current HSCT practice for PIDD other than severe combined immunodeficiency, and explores indications, risks, and long-term outcomes for this group of challenging diseases.
Collapse
Affiliation(s)
- Richard Mitchell
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia; School of Women and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Rotz SJ, Dandoy CE. The microbiome in pediatric oncology. Cancer 2020; 126:3629-3637. [PMID: 32533793 DOI: 10.1002/cncr.33030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The human microbiome comprises a diverse set of microorganisms, which play a mostly cooperative role in processes such as metabolism and host defense. Next-generation genomic sequencing of bacterial nucleic acids now can contribute a much broader understanding of the diverse organisms composing the microbiome. Emerging evidence has suggested several roles of the microbiome in pediatric hematology/oncology, including susceptibility to infectious diseases, immune response to neoplasia, and contributions to the tumor microenvironment as well as changes to the microbiome from chemotherapy and antibiotics with unclear consequences. In this review, the authors have examined the evidence of the role of the microbiome in pediatric hematology/oncology, discussed how the microbiome may be modulated, and suggested key questions in need of further exploration.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Christopher E Dandoy
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
16
|
Horn SR, Stoltzfus KC, Mackley HB, Lehrer EJ, Zhou S, Dandekar SC, Fox EJ, Rizk EB, Trifiletti DM, Rao PM, Zaorsky NG. Long-term causes of death among pediatric patients with cancer. Cancer 2020; 126:3102-3113. [PMID: 32298481 DOI: 10.1002/cncr.32885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/23/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND The objectives of this study were to characterize the risk of death (1) from the primary cancer vs competing cause of death; and (2) from various causes of death vs the general poplation. The relative risk of death after a pediatric cancer diagnosis versus the general population and the risk of death from a primary cancer diagnosis versus competing causes of death. METHODS This retrospective, population-based study used the Surveillance, Epidemiology, and End Results database (1980-2015) and included patients aged 0 to 19 years at the time of diagnosis. Observed deaths were calculated; the risk of death versus the general population was assessed with standardized mortality ratios (SMRs). Competing risk models for the cause of death were performed. RESULTS There were 58,356 patients who were diagnosed, and the mortality rate was 22.8%. To assess causes of death, 6996 patients who died during the study period were included (45,580 total person-years at risk): 5128 (73%) died of their primary cancer, and 1868 (27%) died of a competing cause. Among all patients, the rate of death from the index cancer was higher than the rate of death from another cause within the first 5 years after diagnosis. The risk of death from a nonprimary cancer began to supersede the rate of death from the primary cancer 10 years after diagnosis for patients with germ cell tumors, lymphomas, and sarcomas. SMRs for the primary cancer were highest within the first 5 years after diagnosis for all cancers (SMRs, 100-50,000; P < .0001). The risk of death from competing causes (heart disease, suicide, and sepsis) was elevated (SMR, >100; P < .001). The risk of dying of heart disease was high, especially for patients with astrocytomas (SMR, 47.84; 95% confidence interval [CI], 27.87-76.59) and neuroblastomas (SMR, 98.59; 95% CI, 47.28-181.32). The risk of dying of suicide was high in most patients, particularly for those with osteosarcomas (SMR, 111.40; 95% CI, 2.82-620.69), Hodgkin lymphomas (SMR, 62.35; 95% CI, 34.89-102.83), and gonadal germ cell tumors (SMR, 28.97; 95% CI, 12.51-57.09). CONCLUSIONS The cause of death for patients with gonadal germ cell tumors, lymphomas, and sarcomas is more commonly a secondary cancer or noncancerous cause than the primary disease; their risk of death from competing causes (heart disease, suicide, and sepsis) rises throughout life.
Collapse
Affiliation(s)
- Samantha R Horn
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Kelsey C Stoltzfus
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Heath B Mackley
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shouhao Zhou
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Smita C Dandekar
- Department of Pediatrics, Division of Hematology/Oncology, Penn State Health Children's Hospital, Hershey, Pennsylvania
| | - Edward J Fox
- Department of Orthopaedics and Rehabilitation, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Elias B Rizk
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, Pennsylvania
| | | | - Pooja M Rao
- Department of Pediatrics, Division of Hematology/Oncology, Penn State Health Children's Hospital, Hershey, Pennsylvania
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania.,Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
17
|
Treatment exposures stratify need for echocardiographic screening in asymptomatic long-term survivors of hematopoietic stem cell transplantation. Cardiol Young 2019; 29:338-343. [PMID: 30744727 DOI: 10.1017/s104795111800238x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We sought to define the prevalence of echocardiographic abnormalities in long-term survivors of paediatric hematopoietic stem cell transplantation and determine the utility of screening in asymptomatic patients. We analysed echocardiograms performed on survivors who underwent hematopoietic stem cell transplantation from 1982 to 2006. A total of 389 patients were alive in 2017, with 114 having an echocardiogram obtained ⩾5 years post-infusion. A total of 95 patients had echocardiogram performed for routine surveillance. The mean time post-hematopoietic stem cell transplantation was 13 years. Of 95 patients, 77 (82.1%) had ejection fraction measured, and 10/77 (13.0%) had ejection fraction z-scores ⩽-2.0, which is abnormally low. Those patients with abnormal ejection fraction were significantly more likely to have been exposed to anthracyclines or total body irradiation. Among individuals who received neither anthracyclines nor total body irradiation, only 1/31 (3.2%) was found to have an abnormal ejection fraction of 51.4%, z-score -2.73. In the cohort of 77 patients, the negative predictive value of having a normal ejection fraction given no exposure to total body irradiation or anthracyclines was 96.7% at 95% confidence interval (83.3-99.8%). Systolic dysfunction is relatively common in long-term survivors of paediatric hematopoietic stem cell transplantation who have received anthracyclines or total body irradiation. Survivors who are asymptomatic and did not receive radiation or anthracyclines likely do not require surveillance echocardiograms, unless otherwise indicated.
Collapse
|
18
|
Unique Challenges of Hematopoietic Cell Transplantation in Adolescent and Young Adults with Hematologic Malignancies. Biol Blood Marrow Transplant 2018; 24:e11-e19. [DOI: 10.1016/j.bbmt.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/08/2018] [Indexed: 12/16/2022]
|
19
|
Relationship between Aging and Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2018; 24:1965-1970. [PMID: 30130587 DOI: 10.1016/j.bbmt.2018.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
Hematopoietic cell transplantation (HCT) is increasingly utilized as a treatment for malignancies in the elderly population. At the same time, research has elucidated the impacts of HCT on bone marrow progenitor cells, one of which is accelerated aging. Clonal hematopoiesis has also been observed to occur in the aging population, both with and without HCT. The interplay between natural aging, clonal hemoatpoiesis, and the effects of HCT on the bone marrow, has not yet been addressed. Herein we explore this relationship, and its important clinical implications.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Heart failure is a rare but morbid diagnosis in the pediatric patient presenting to the emergency department (ED). Familiarity of the ED physician with the presentation, work-up, and management of pediatric heart failure is essential as accurate diagnosis is reliant on a high degree of suspicion. RECENT FINDINGS Studies evaluating pediatric heart failure are limited by its rarity and the heterogeneity of underlying conditions. However, recent reports have provided new data on the epidemiology, presentation, and outcomes of children with heart failure. SUMMARY The recent studies reviewed here highlight the significant diagnostic and management challenges that pediatric heart failure presents given the variety and lack of specificity of its presenting signs, symptoms, and diagnostic work-up. This review provides the ED physician with a framework for understanding of pediatric heart failure to allow for efficient diagnosis and management of these patients. The primary focus of this review is heart failure in structurally normal hearts.
Collapse
|
21
|
Keegan THM, Kushi LH, Li Q, Brunson A, Chawla X, Chew HK, Malogolowkin M, Wun T. Cardiovascular disease incidence in adolescent and young adult cancer survivors: a retrospective cohort study. J Cancer Surviv 2018; 12:388-397. [PMID: 29427203 DOI: 10.1007/s11764-018-0678-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/26/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Few population-based studies have focused on cardiovascular disease (CVD) risk in adolescent and young adult (AYA; 15-39 years) cancer survivors and none have considered whether CVD risk differs by sociodemographic factors. METHODS Analyses focused on 79,176 AYA patients diagnosed with 14 first primary cancers in 1996-2012 and surviving > 2 years after diagnosis with follow-up through 2014. Data were obtained from the California Cancer Registry and State hospital discharge data. CVD included coronary artery disease, heart failure, and stroke. The cumulative incidence of developing CVD accounted for the competing risk of death. Multivariable Cox proportional hazards regression evaluated factors associated with CVD and the impact of CVD on mortality. RESULTS Overall, 2249 (2.8%) patients developed CVD. Survivors of central nervous system cancer (7.3%), acute lymphoid leukemia (6.9%), acute myeloid leukemia (6.8%), and non-Hodgkin lymphoma (4.1%) had the highest 10-year CVD incidence. In multivariable models, African-Americans (hazard ratio (HR) = 1.55, 95% confidence interval (CI) = 1.33-1.81; versus non-Hispanic Whites), those with public/no health insurance (HR = 1.78, 95% CI = 1.61-1.96; versus private) and those who resided in lower socioeconomic status neighborhoods had a higher CVD risk. These sociodemographic differences in CVD incidence were apparent across most cancer sites. The risk of death was increased by eightfold or higher among AYAs who developed CVD. CONCLUSION While cancer therapies are known to increase the risk of CVD, this study additionally shows that CVD risk varies by sociodemographic factors. IMPLICATIONS FOR CANCER SURVIVORS The identification and mitigation of CVD risk factors in these subgroups may improve long-term patient outcomes.
Collapse
Affiliation(s)
- Theresa H M Keegan
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA. .,Division of Hematology and Oncology, University of California Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA, 95817, USA.
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Qian Li
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ann Brunson
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - X Chawla
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.,VA HSR&D Center for the Study of Healthcare Innovation, Implementation and Policy, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Helen K Chew
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Marcio Malogolowkin
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ted Wun
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
22
|
Changes in Bi-ventricular Function After Hematopoietic Stem Cell Transplant as Assessed by Speckle Tracking Echocardiography. Pediatr Cardiol 2018; 39:365-374. [PMID: 29094192 DOI: 10.1007/s00246-017-1764-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/25/2017] [Indexed: 01/25/2023]
Abstract
Hematopoietic stem cell transplant (HSCT) is a therapeutic option for patients with sickle cell disease (SCD) and severe acquired aplastic anemia (SAA). HSCT may have beneficial effects on ventricular function in damaged myocardium. We hypothesized improvement in ventricular performance and pulmonary hypertension following HSCT with strain echocardiography in SCD and SAA. Echocardiographic strain and other standard functional data were obtained via retrospective cohort analysis of patients (n = 23) with SCD and SAA who underwent HSCT and were followed at a single center between 2000 and 2014. Left ventricular global longitudinal strain was below normal at baseline, and decreased significantly (from - 16.6 to - 11.1, P = 0.05) from pre-HSCT to the initial post-HSCT echocardiogram at 109 (SD ± 83) days. At 351 (SD ± 115) days, longitudinal strain improved significantly from initial decline (from - 11.1 to - 17.5, P = 0.009) but was comparable to baseline (P = 0.43). Other measurements of bi-ventricular function did not change significantly. Tricuspid regurgitation velocities as surrogates for pulmonary hypertension improved in the subset of patients with baseline elevated values although data points were limited. Abnormal myocardial systolic function was detected at baseline with strain imaging. HSCT was associated with initial worsening longitudinal strain values, followed by improvement to baseline levels by 1 year. Insufficient data exist on whether pulmonary hypertension improves after HSCT.
Collapse
|
23
|
Nakamura H, Odani T, Yasuda S, Noguchi A, Fujieda Y, Kato M, Oku K, Bohgaki T, Sugita J, Endo T, Teshima T, Atsumi T. Autologous haematopoietic stem cell transplantation for Japanese patients with systemic sclerosis: Long-term follow-up on a phase II trial and treatment-related fatal cardiomyopathy. Mod Rheumatol 2018; 28:879-884. [DOI: 10.1080/14397595.2017.1416920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hiroyuki Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshio Odani
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Noguchi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Oku
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Bohgaki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Sugita
- Department of Haematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Haematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takanori Teshima
- Department of Haematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Long-term systolic function in children and young adults after hematopoietic stem cell transplant. Bone Marrow Transplant 2017; 52:1443-1447. [PMID: 28714947 DOI: 10.1038/bmt.2017.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
Congestive heart failure and subclinical left ventricular systolic dysfunction (LVSD) affect long-term survivors of hematopoietic stem cell transplant (HSCT). Echocardiographic measurements of global longitudinal and circumferential strain have shown promise in identifying subclinical LVSD in cancer survivors. We analyzed echocardiograms in 95 children and young adults with malignancies or bone marrow failure syndromes performed before HSCT and 1-6 years after HSCT. We additionally measured the biomarkers soluble suppression of tumorigenicity-2 (sST-2) and cardiac troponin-I (cTn-I) in the same children through 49 days post HSCT. Ejection fraction (EF) after HSCT was unchanged from baseline (baseline: z-score -0.73 vs long-term follow up: -0.44, P=0.11). Global longitudinal strain was unchanged from baseline (-20.66 vs -20.74%, P=0.90) as was global circumferential strain (-24.3 vs -23.5%, P=0.32). Levels of sST-2 were elevated at all time points compared with baseline samples and cTn-I was elevated at days 14 and 28. Cardiac biomarkers at any time point did not correlate with long-term follow-up EF. In children and young adult survivors of HSCT, EF was unchanged in the first years after HSCT. Elevation in cardiac biomarkers occurring after HSCT suggest subclinical cardiac injury occurs in many patients and long-term monitoring for LVSD should continue.
Collapse
|