1
|
Zhou K, Gong D, He C, Xiao M, Zhang M, Huang W. Targeted therapy using larotrectinib and venetoclax for the relapsed/refractory T-cell acute lymphoblastic leukemia harboring a cryptic ETV6-NTRK3 fusion. Mol Carcinog 2023. [PMID: 37036164 DOI: 10.1002/mc.23534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023]
Abstract
Outcomes for patients with relapsed and refractory (R/R) T-cell acute lymphoblastic leukemia (T-ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) are dismal, with few available treatments. Recently, identification of cancer patients harboring neurotrophic tropomyosin receptor kinase (NTRK) gene fusions is constantly increasing, especially with the advent of NTRK inhibitors. However, the role of ETV6-NTRK3 in T-ALL has not been investigated. This case represented the first detailed report of T-ALL patient harboring a cryptic ETV6-NTRK3 fusion with an unfavorable prognosis, not only because of leukemia resistant to the standard multiagent chemotherapy but also early relapse after allo-HSCT. Acquired EP300 mutation was found at relapse, which could explain the cause of recurrence and affect the follow-up treatment. Combined targeted therapy like larotrectinib allied with pan-targeted BCL-2 inhibitor venetoclax, may be a potential maintenance treatment in R/R ETV6-NTRK3 positive leukemia after allo-HSCT. The leukemic clonal evolution might be revealed through transcriptome sequencing and overcome by drugs with universal targets. Our case demonstrated that both comprehensive profiling techniques (such as transcriptome sequencing, multiparameter flow cytometry, and digital droplet polymerase chain reaction) and a multimodality treatment strategy were critical for anticipating an early relapse and personalized therapy of R/R T-cell leukemia.
Collapse
Affiliation(s)
- Kuangguo Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duanhao Gong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng He
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Shirai R, Osumi T, Keino D, Nakabayashi K, Uchiyama T, Sekiguchi M, Hiwatari M, Yoshida M, Yoshida K, Yamada Y, Tomizawa D, Takae S, Kiyokawa N, Matsumoto K, Yoshioka T, Hata K, Hori T, Suzuki N, Kato M. Minimal residual disease detection by mutation-specific droplet digital PCR for leukemia/lymphoma. Int J Hematol 2023; 117:910-918. [PMID: 36867356 DOI: 10.1007/s12185-023-03566-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Minimal residual disease (MRD) is usually defined as the small number of cancer cells that remain in the body after treatment. The clinical significance of MRD kinetics is well recognized in treatment of hematologic malignancies, particularly acute lymphoblastic leukemia (ALL). Real time quantitative PCR targeting immunoglobulin (Ig) or T-cell receptor (TCR) rearrangement (PCR-MRD), as well as multiparametric flow cytometric analysis targeting antigen expression, are widely used in MRD detection. In this study, we devised an alternative method to detect MRD using droplet digital PCR (ddPCR), targeting somatic single nucleotide variants (SNVs). This ddPCR-based method (ddPCR-MRD) had sensitivity up to 1E-4. We assessed ddPCR-MRD at 26 time points from eight T-ALL patients, and compared it to the results of PCR-MRD. Almost all results were concordant between the two methods, but ddPCR-MRD detected micro-residual disease that was missed by PCR-MRD in one patient. We also measured MRD in stored ovarian tissue of four pediatric cancer patients, and detected 1E-2 of submicroscopic infiltration. Considering the universality of ddPCR-MRD, the methods can be used as a complement for not only ALL, but also other malignant diseases regardless of tumor-specific Ig/TCR or surface antigen patterns.
Collapse
Affiliation(s)
- Ryota Shirai
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Dai Keino
- Department of Pediatrics, St. Marianna University School of Medicine Hospital, Kawasaki, Japan.,Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.,Department of Pediatrics, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kaoru Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuji Yamada
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seido Takae
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Toshinori Hori
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan. .,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan. .,Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
3
|
Schultz L, Davis KL, Walkush A, Baggott C, Erickson C, Ramakrishna S, Aftandilian C, Lacayo N, Nadel HR, Oak J, Mackall CL. Role of peripheral blood MRD and 18F-FDG PET in the post-CAR relapse setting: a case study of discordant peripheral blood and bone marrow MRD. J Immunother Cancer 2023; 11:jitc-2022-004851. [PMID: 36849202 PMCID: PMC9972424 DOI: 10.1136/jitc-2022-004851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy is an effective salvage therapy for pediatric relapsed B-cell acute lymphoblastic leukemia (B-ALL), yet is challenged by high rates of post-CAR relapse. Literature describing specific relapse patterns and extramedullary (EM) sites of involvement in the post-CAR setting remains limited, and a clinical standard for post-CAR disease surveillance has yet to be established. We highlight the importance of integrating peripheral blood minimal residual disease (MRD) testing and radiologic imaging into surveillance strategies, to effectively characterize and capture post-CAR relapse. MAIN BODY Here, we describe the case of a child with multiply relapsed B-ALL who relapsed in the post-CAR setting with gross non-contiguous medullary and EM disease. Interestingly, her relapse was identified first from peripheral blood flow cytometry MRD surveillance, in context of a negative bone marrow aspirate (MRD <0.01%). Positron emission tomography with 18F-fluorodeoxyglucose revealed diffuse leukemia with innumerable bone and lymph node lesions, interestingly sparing her sacrum, the site of her bone marrow aspirate sampling. CONCLUSIONS We highlight this case as both peripheral blood MRD and 18F-fluorodeoxyglucose positron emission tomography imaging were more sensitive than standard bone marrow aspirate testing in detecting this patient's post-CAR relapse. Clinical/Biologic Insight: In the multiply relapsed B-ALL setting, where relapse patterns may include patchy medullary and/or EM disease, peripheral blood MRD and/or whole body imaging, may carry increased sensitivity at detecting relapse in patient subsets, as compared with standard bone marrow sampling.
Collapse
Affiliation(s)
- Liora Schultz
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Kara Lynn Davis
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Ann Walkush
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Christina Baggott
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Courtney Erickson
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Sneha Ramakrishna
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | | | - Norman Lacayo
- Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Helen Ruth Nadel
- Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Jean Oak
- Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Crystal L Mackall
- Pediatrics and Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|