1
|
BalaYadav R, Pathak DP, Varshney R, Arora R. Design and optimization of a novel herbosomal-loaded PEG-poloxamer topical formulation for the treatment of cold injuries: a quality-by-design approach. Drug Deliv Transl Res 2022; 12:2793-2823. [PMID: 35445943 DOI: 10.1007/s13346-022-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
The spectrum of cold injuries ranges from frostnip, chilblains to severe frostbite. Cold injuries occur upon prolonged exposure to freezing temperature and are pathologically a combination of ice crystal formation in the tissue resulting in inflammation, thrombosis and ischemia in the extremities, often necessitating limb amputation in extreme cases due to tissue necrosis. Severe forms of frostbite are a cause of major concern to patients as well as the treating physician. Due to the lack of effective treatment modalities and paucity of research on prophylaxis and therapeutics of cold injuries, we developed a novel herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF) employing quality-by-design (QBD) approach. Natural compounds exhibiting potent therapeutic potential for the management of cold injuries were incorporated in novel lipid vesicles (herbosomes) loaded in PEG-poloxamer polymers. The herbosomal formulation effectively creates an occlusion barrier that promotes epithelial regeneration, desmosome scale-up and angiogenesis and thus promotes rapid healing, indicating controlled release of herbosomes. Optimized novel herbosomes showed entrapment efficiency > 90% and < 300 nm mean particle size and in vitro drug permeation of about 2 µg/cm2 followed Higuchi's release kinetics. Skin irritancy study on female Sprague-Dawley rats showed no edema or erythema. In vivo bio-efficacy study revealed significant efficacy (p < 0.05) when compared to the standard treatment groups. Graphical abstract presenting the designing and optimization of novel herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF) and predictive model for the in vivo study of the developed n-HPTF on cold injury rat skin model.
Collapse
Affiliation(s)
- Renu BalaYadav
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Science and Research, Pushp Vihar, New Delhi, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Rajesh Arora
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
2
|
Parab Gaonkar V, Mannur VK, Hullatti K. Quality assessment and Analytical Quality by Design-based RP-HPLC method development for quantification of Piperine in Piper nigrum L. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Piper nigrum L. is one of the widely used herbs in Ayurvedic medicine. Piperine is a major phytoconstituent that is responsible for most of the activity of the herb. Quality assessment and standardization of such phytoconstituents is the need of the hour. The present study aims at developing a Quality by design (QbD)-based RP-HPLC Method for marker-based standardization of Piper nigrum L. fruits along with its quality assessment.
Results
The quality assessment of the crude sample was carried out by evaluating pharmacognostic parameters and analysis of toxic contaminants. The analytical target profile and critical quality attributes were determined and 22 factorial design was employed for optimization of the method. By performing the experiments as per the QbD concept the optimized mobile phase was identified as Acetonitrile and Water with 0.05% Acetic acid in the ratio of 70:30, with a flow rate of 1 mL/min and UV detection at 342 nm. The retention time of Piperine was found to be 5.5 min and the amount of Piperine in crude P. nigrum fruits and its extract was found to be 3.6% w/w 5.62% w/w, respectively. The Pharmacognostic parameters showed the results within specified limits and the crude drug sample showed the absence of toxic contaminants in it thus indicating the purity of the drug.
Conclusion
The utilization of the QbD approach leads to the development of a more precise and reliable method for the quantification of phytocompounds.
Collapse
|
3
|
Hou Z, Sun G. Predictive quality control for compound liquorice tablets by the intelligent mergence fingerprint method combined with the systematic quantitative fingerprint method. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:1118-1130. [PMID: 33955089 DOI: 10.1002/pca.3053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Compound liquorice tablet (CLT) is a herbal compound preparation and is used as a classic antitussive and expectorant in China. It is composed of liquorice extract powder, opioid powder, star anise oil, camphor, and sodium benzoate. The complexity of herbal materials brings a huge challenge in producing compound preparations with stable and uniform quality consistency. OBJECTIVE To establish a new intelligent model for predicting the quality of CLT. METHODS The HPLC fingerprints of raw materials including liquorice extract powder, powdered opium, star anise oil, and sodium benzoate were tested and merged to generate the intelligent mergence fingerprints, whose correlation with the raw materials and the CLT samples was studied. The consistency of the intelligently merged fingerprints with the standard fingerprints was observed by using the systematic quantitative fingerprint method in order to calculate quality evaluation results. RESULTS The intelligent mergence fingerprints covered all the main fingerprint peaks of four raw materials and had a good correlation with the CLT sample fingerprint. There were no significant quality differences either among the six intelligent mergence models obtained by combining different batches of raw materials or between the reference fingerprint of the intelligent mergence connection fingerprints (RFPIMFC ) and the theoretical standard preparation (RFPS ). CONCLUSION The computer-aided model of intelligent mergence fingerprints could be used to predict the quality of herbal compound preparations based on raw materials. In this way, preproduction quality prediction can be realised in order to avoid low-quality medicinal materials and improve the quality consistency among different batches.
Collapse
Affiliation(s)
- Zhifei Hou
- Department of Pharmacy and Health Management, Hebei Chemical and Pharmaceutical College, Shijiazhuang, 050026, China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
4
|
Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, Heyden YV. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. PLANTA MEDICA 2021; 87:964-988. [PMID: 34412146 DOI: 10.1055/a-1529-8339] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herbal medicines are important options for the treatment of several illnesses. Although their therapeutic applicability has been demonstrated throughout history, several concerns about their safety and efficacy are raised regularly. Quality control of articles of botanical origin, including plant materials, plant extracts, and herbal medicines, remains a challenge. Traditionally, qualitative (e.g., identification and chromatographic profile) and quantitative (e.g., content analyses) markers are applied for this purpose. The compound-oriented approach may stand alone in some cases (e.g., atropine in Atropa belladonna). However, for most plant materials, plant extracts, and herbal medicines, it is not possible to assure quality based only on the content or presence/absence of one (sometimes randomly selected) compound. In this sense, pattern-oriented approaches have been extensively studied, introducing the use of multivariate data analysis on chromatographic/spectroscopic fingerprints. The use of genetic methods for plant material/plant extract authentication has also been proposed. In this study, traditional approaches are reviewed, although the focus is on the applicability of fingerprints for quality control, highlighting the most used approaches, as well as demonstrating their usefulness. The literature review shows that a pattern-oriented approach may be successfully applied to the quality assessment of articles of botanical origin, while also providing directions for a compound-oriented approach and a rational marker selection. These observations indicate that it may be worth considering to include fingerprints and their data analysis in the regulatory framework for herbal medicines concerning quality control since this is the foundation of the holistic view that these complex products demand.
Collapse
Affiliation(s)
- Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - Maira R de Souza
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Tania M B Bresolin
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - André L de Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau - FURB, Blumenau/SC, Brazil
| | - Amélia T Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| |
Collapse
|
5
|
Tai Y, Shen J, Luo Y, Qu H, Gong X. Research progress on the ethanol precipitation process of traditional Chinese medicine. Chin Med 2020; 15:84. [PMID: 32793299 PMCID: PMC7418433 DOI: 10.1186/s13020-020-00366-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Ethanol precipitation is a purification process widely used in the purification of Chinese medicine concentrates. This article reviews the research progress on the process mechanism of ethanol precipitation, ethanol precipitation process application for bioactive component purification, ethanol precipitation and traditional Chinese medicine quality, ethanol precipitation equipment, critical parameters, parameter research methods, process modeling and calculation methods, and process monitoring technology. This review proposes that ethanol precipitation technology should be further developed in terms of five aspects, namely, an in-depth study of the mechanism, further study of the effects on traditional Chinese medicine quality, improvement of the quality control of concentrates, development of new process detection methods, and development of a complete intelligent set of equipment.
Collapse
Affiliation(s)
- Yanni Tai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jichen Shen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yu Luo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
6
|
Viraragavan A, Hlengwa N, de Beer D, Riedel S, Miller N, Bowles S, Walczak B, Muller C, Joubert E. Model development for predicting in vitro bio-capacity of green rooibos extract based on composition for application as screening tool in quality control. Food Funct 2020; 11:3084-3094. [PMID: 32195502 DOI: 10.1039/c9fo02480h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mounting evidence of the ability of aspalathin to target underlying metabolic dysfunction relevant to the development or progression of obesity and type 2 diabetes created a market for green rooibos extract as a functional food ingredient. Aspalathin is the obvious choice as a chemical marker for extract standardisation and quality control, however, often the concentration of a single constituent of a complex mixture such as a plant extract is not directly related to its bio-capacity, i.e. the level of in vitro bioactivity effected in a cell system at a fixed concentration. Three solvents (hot water and two EtOH-water mixtures), previously shown to produce bioactive green rooibos extracts, were selected for extraction of different batches of rooibos plant material (n = 10). Bio-capacity of the extracts, tested at 10 μg ml-1, was evaluated in terms of glucose uptake by C2C12 and C3A cells and lipid accumulation in 3T3-L1 cells. The different solvents and inter-batch plant variation delivered extracts ranging in aspalathin content from 54.1 to 213.8 g kg-1. The extracts were further characterised in terms of other major flavonoids (n = 10) and an enolic phenylpyruvic acid glucoside, using HPLC-DAD. The 80% EtOH-water extracts, with the highest mean aspalathin content (170.9 g kg-1), had the highest mean bio-capacity in the respective assays. Despite this, no significant (P≥ 0.05) correlation existed between aspalathin content and bio-capacity, while the orientin, isoorientin and vitexin content correlated moderately (r≥ 0.487; P < 0.05) with increased glucose uptake by C2C12 cells. Various multivariate analysis methods were then applied with Evolution Program-Partial Least Squares (EP-PLS) resulting in models with the best predictive power. These EP-PLS models, based on all quantified compounds, predicted the bio-capacity of the extracts for the respective cell types with RMSECV values ≤ 11.5, confirming that a complement of compounds, and not aspalathin content alone, is needed to predict the in vitro bio-capacity of green rooibos extracts. Additionally, the composition of hot water infusions of different production batches of green rooibos (n = 29) at 'cup-of-tea' equivalence was determined to relate dietary supplementation with the extract to intake in the form of herbal tea.
Collapse
Affiliation(s)
- Amsha Viraragavan
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yan X, Li W, Zhang X, Liu S, Qu H. Development of an on-line Raman spectral analytical method for monitoring and endpoint determination of the Cornu Caprae Hircus hydrolysis process. J Pharm Pharmacol 2019; 72:132-148. [PMID: 31713245 DOI: 10.1111/jphp.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Cornu Caprae Hircus (goat horn, GH), a medicinal animal horn, is frequently used in traditional Chinese medicine, and hydrolysis is one of the most important processes for GH pretreatment in pharmaceutical manufacturing. In this study, on-line Raman spectroscopy was applied to monitor the GH hydrolysis process by the development of partial least squares (PLS) calibration models for different groups of amino acids. METHODS Three steps were considered in model development. In the first step, design of experiments (DOE)-based preprocessing method selection was conducted. In the second step, the optimal spectral co-addition number was determined. In the third step, sample selection or reconstruction methods based on hierarchical clustering analysis (HCA) were used to extract or reconstruct representative calibration sets from the pool of hydrolysis process samples and investigated for their ability to improve model performance. KEY FINDINGS This study has shown the feasibility of using on-line Raman spectral analysis for monitoring the GH hydrolysis process based on the designed measurement system and appropriate model development steps. CONCLUSIONS The proposed Raman-based calibration models are expected to be used in GH hydrolysis process monitoring, leading to more rapid material information acquisition, deeper process understanding, more accurate endpoint determination and thus better product quality consistency.
Collapse
Affiliation(s)
- Xu Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenlong Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Zhang
- Shanghai Kaibao Pharmaceutical Co., Ltd, Shanghai, China
| | - Shaoyong Liu
- Shanghai Kaibao Pharmaceutical Co., Ltd, Shanghai, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Development and validation of in-line near-infrared spectroscopy based analytical method for commercial production of a botanical drug product. J Pharm Biomed Anal 2019; 174:674-682. [DOI: 10.1016/j.jpba.2019.06.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/21/2022]
|
9
|
Vinayak M. Molecular Action of Herbal Antioxidants in Regulation of Cancer Growth: Scope for Novel Anticancer Drugs. Nutr Cancer 2018; 70:1199-1209. [DOI: 10.1080/01635581.2018.1539187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Yin H, Zou L, Sheng Y, Bai X, Liu Q, Yan B. Rapid HPLC Analytical Method Development for Herbal Medicine Formulae Based on Retention Rules Acquired from the Constituting Herbs. ANAL SCI 2018; 34:207-214. [PMID: 29434108 DOI: 10.2116/analsci.34.207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herbal medicine (HM) formulae are the combinations of two or more types of constituting herbs. This study has proposed a novel approach to efficiently develop HPLC methods for HM formulae, which take advantage of the mutual retention rules between HM formulae and their constituting herbs. An HM formula composed of two herbs, Radix Salviae Miltiorrhizae and Rhizoma Chuanxiong, was taken as a case study. Based on design of experiments and stepwise multiple linear regression, models relating the analytical parameters to the chromatographic parameters were built (correlation coefficients >0.9870) for chemical compounds in the two herbs. These models representing the retention rules were utilized to predict the elution profile of the formula. The analytical parameters were numerically optimized to ensure adequate separation of the analytes. In validation experiments, satisfactory separations were achieved without any pre-experiments on the formula. The approach can significantly increase the HPLC method development efficiency for HM formulae.
Collapse
Affiliation(s)
- Hua Yin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University
| | - Li Zou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University
| | - Yunjie Sheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University
| | - Xue Bai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University
| | - Qiang Liu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University
| | - Binjun Yan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University
| |
Collapse
|
11
|
Wei D, Cheng G, Huang K, Fang J, Yan B. Hydrodistillation condition adjustment for different material particle sizes: a method to increase batch-to-batch quality consistency. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Danni Wei
- College of Pharmaceutical Science; Zhejiang Chinese Medical University; Hangzhou 310053 China
| | - Guilin Cheng
- College of Chinese Medical Sciences; Zhejiang Chinese Medical University; Hangzhou 310053 China
| | - Kaiyi Huang
- College of Pharmaceutical Science; Zhejiang Chinese Medical University; Hangzhou 310053 China
| | - Jinyang Fang
- College of Pharmaceutical Science; Zhejiang Chinese Medical University; Hangzhou 310053 China
| | - Binjun Yan
- College of Pharmaceutical Science; Zhejiang Chinese Medical University; Hangzhou 310053 China
| |
Collapse
|
12
|
Miller N, De Beer D, Joubert E. Minimising variation in aspalathin content of aqueous green rooibos extract: optimising extraction and identifying critical material attributes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4937-4942. [PMID: 28397329 DOI: 10.1002/jsfa.8370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND High levels of aspalathin, an antidiabetic dihydrochalcone, in green rooibos underpins interest in the production of a standardised extract. Elements of a quality-by-design approach were applied to optimise extraction conditions, aiming at the delivery of a dry matter yield (DMY) ≥ 160 g kg-1 and an extract with an aspalathin content (AC) ≥ 80 g kg-1 . RESULTS Hot water extraction parameters, namely extraction time, extraction temperature and water-to-plant material ratio, were optimised for DMY and aspalathin extraction efficiency (AEE) using Design of Experiments. Good polynomial prediction models were obtained and multiresponse desirability plots indicated 37 min, 93 °C and 23:1 as optimal conditions. Even when using 30 min and 10:1 instead for practical reasons, the target DMY and AC values could be achieved with the caveat that plant material with an AC ≥ 30 g kg-1 is used. Particle size distribution and stem content were identified as contributing to variation in the AC of raw material. CONCLUSION By setting raw material specifications in terms of AC, as well as applying practical optimum extraction conditions, 160 g kg-1 extract with an AC ≥ 80 g kg-1 could be consistently achieved from green rooibos plant material. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neil Miller
- Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Dalene De Beer
- Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Matieland, Stellenbosch, South Africa
| |
Collapse
|
13
|
Martins PM, Lanchote AD, Thorat BN, Freitas LA. Turbo-extraction of glycosides from Stevia rebaudiana using a fractional factorial design. REVISTA BRASILEIRA DE FARMACOGNOSIA 2017. [DOI: 10.1016/j.bjp.2017.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Chen T, Gong X, Zhang Y, Chen H, Qu H. Optimization of a chromatographic process for the purification of saponins in Panax notoginseng extract using a design space approach. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|