1
|
Carvalho ARV, Reis JDE, Gomes PWP, Ferraz AC, Mardegan HA, Menegatto MBDS, Souza Lima RL, de Sarges MRV, Pamplona SDGSR, Jeunon Gontijo KS, de Magalhães JC, da Silva MN, Magalhães CLDB, Silva CYYE. Untargeted-based metabolomics analysis and in vitro/in silico antiviral activity of extracts from Phyllanthus brasiliensis (Aubl.) Poir. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:869-883. [PMID: 37403427 DOI: 10.1002/pca.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION This study describes the molecular profile and the potential antiviral activity of extracts from Phyllanthus brasiliensis, a plant widely found in the Brazilian Amazon. The research aims to shed light on the potential use of this species as a natural antiviral agent. METHODS The extracts were analysed using liquid chromatography-mass spectrometry (LC-MS) system, a potent analytical technique to discover drug candidates. In the meantime, in vitro antiviral assays were performed against Mayaro, Oropouche, Chikungunya, and Zika viruses. In addition, the antiviral activity of annotated compounds was predicted by in silico methods. RESULTS Overall, 44 compounds were annotated in this study. The results revealed that P. brasiliensis has a high content of fatty acids, flavones, flavan-3-ols, and lignans. Furthermore, in vitro assays revealed potent antiviral activity against different arboviruses, especially lignan-rich extracts against Zika virus (ZIKV), as follows: methanolic extract from bark (MEB) [effective concentration for 50% of the cells (EC50 ) = 0.80 μg/mL, selectivity index (SI) = 377.59], methanolic extract from the leaf (MEL) (EC50 = 0.84 μg/mL, SI = 297.62), and hydroalcoholic extract from the leaf (HEL) (EC50 = 1.36 μg/mL, SI = 735.29). These results were supported by interesting in silico prediction, where tuberculatin (a lignan) showed a high antiviral activity score. CONCLUSIONS Phyllanthus brasiliensis extracts contain metabolites that could be a new kick-off point for the discovery of candidates for antiviral drug development, with lignans becoming a promising trend for further virology research.
Collapse
Affiliation(s)
- Alice Rhelly V Carvalho
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - José Diogo E Reis
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Centre, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Horrana A Mardegan
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Maria Rosilda V de Sarges
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Sônia das G S R Pamplona
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | | | - José Carlos de Magalhães
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
| | - Milton N da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Consuelo Yumiko Yoshioka E Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
2
|
Tóth G, Horváti K, Kraszni M, Ausbüttel T, Pályi B, Kis Z, Mucsi Z, Kovács GM, Bősze S, Boldizsár I. Arylnaphthalene Lignans with Anti-SARS-CoV-2 and Antiproliferative Activities from the Underground Organs of Linum austriacum and Linum perenne. JOURNAL OF NATURAL PRODUCTS 2023; 86:672-682. [PMID: 36857518 PMCID: PMC10005813 DOI: 10.1021/acs.jnatprod.2c00580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 06/18/2023]
Abstract
Diphyllin (1) and justicidin B (2) are arylnaphthalene lignans with antiviral and antiproliferative effects. Compound 1 is also known as an effective inhibitor of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To evaluate the in vitro antiviral and cytotoxic potency of both lignans in SARS-CoV-2 -infected cells and various cancer cell lines, respectively, 1 and 2 were isolated from the underground organs of Linum austriacum and Linum perenne. Two previously undescribed arylnaphthalene lignans, denominated linadiacin A and B (3 and 4), were also isolated and identified. In acidic media, 3 was converted by a two-step reaction into 2 via the intermediate 4. Optimum acid treatment conditions were determined to isolate lignans by one-step preparative high-performance liquid chromatography (HPLC). The results of the conversion, HPLC-tandem mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling studies allowed complete structure analysis. Compounds 1 and 2 were the most effective against SARS-CoV-2 with a 3-log reduction in the viral copy number at a 12.5 μM concentration. Ten human cancer cell lines showed sensitivity to at least one of the isolated lignans.
Collapse
Affiliation(s)
- Gergő Tóth
- Department of Pharmaceutical Chemistry,
Semmelweis University, Hőgyes Endre u. 9, Budapest
1092, Hungary
| | - Kata Horváti
- MTA-TTK Lendület “Momentum”
Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry,
Research Centre for Natural Sciences, Magyar Tudósok
krt 2, Budapest 1117, Hungary
| | - Márta Kraszni
- Department of Pharmaceutical Chemistry,
Semmelweis University, Hőgyes Endre u. 9, Budapest
1092, Hungary
| | - Tim Ausbüttel
- Department of Pharmacognosy, Semmelweis
University, Üllői út 26, Budapest 1085,
Hungary
- Department of Plant Anatomy, Institute of Biology,
Eötvös Loránd University,
Pázmány Péter sétány 1/C, Budapest 1117,
Hungary
| | - Bernadett Pályi
- National Biosafety Laboratory, National
Public Health Center, Albert Flórián út 2-6, Budapest
1097, Hungary
| | - Zoltán Kis
- National Biosafety Laboratory, National
Public Health Center, Albert Flórián út 2-6, Budapest
1097, Hungary
| | - Zoltán Mucsi
- Femtonics Ltd.,
Tűzoltó u. 59, Budapest 1094, Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy, Institute of Biology,
Eötvös Loránd University,
Pázmány Péter sétány 1/C, Budapest 1117,
Hungary
| | - Szilvia Bősze
- National Biosafety Laboratory, National
Public Health Center, Albert Flórián út 2-6, Budapest
1097, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry,
Eötvös Loránd Research Network (ELKH),
Eötvös Loránd University, Pázmány
Péter sétány 1/A, Budapest 1117, Hungary
| | - Imre Boldizsár
- Department of Pharmacognosy, Semmelweis
University, Üllői út 26, Budapest 1085,
Hungary
- Department of Plant Anatomy, Institute of Biology,
Eötvös Loránd University,
Pázmány Péter sétány 1/C, Budapest 1117,
Hungary
| |
Collapse
|
3
|
Kim T, Kim YJ, Jeong KH, Park YT, Kwon H, Choi P, Ju HN, Yoon CH, Kim JY, Ham J. The efficient synthesis and biological evaluation of justicidin B. Nat Prod Res 2023; 37:56-62. [PMID: 34227447 DOI: 10.1080/14786419.2021.1948843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile new synthetic method for the preparation of a Type-A 1-arylnaphthalene lactone skeleton was developed and used to synthesise justicidin B and several derivatives. Key synthesis steps included Hauser-Kraus annulation of a phthalide intermediate and Suzuki-Miyaura cross coupling between a triflated naphthalene lactone intermediate and various potassium organotrifluoroborates. With two exceptions, the derivatives showed significant inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse macrophages. Moreover, several compounds, including justicidin B, had marked cytotoxicity towards six human tumour cell lines.
Collapse
Affiliation(s)
- Taejung Kim
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Young-Joo Kim
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Kyu-Hyuk Jeong
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Young-Tae Park
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Hyukjoon Kwon
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Pilju Choi
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Ha-Neul Ju
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Cheol Hee Yoon
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Ji-Yool Kim
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea.,Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jungyeob Ham
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea.,Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Consonni R, Ottolina G. NMR Characterization of Lignans. Molecules 2022; 27:2340. [PMID: 35408739 PMCID: PMC9000441 DOI: 10.3390/molecules27072340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
Lignans are particularly interesting secondary metabolites belonging to the phenyl-propanoid biosynthetic pathway. From the structural point of view, these molecules could belong to the aryltetralin, arylnaphtalene, or dibenzylbutyrolactone molecular skeleton. Lignans are present in different tissues of plants but are mainly accumulated in seeds. Extracts from plant tissues could be characterized by using the NMR-based approach, which provides a profile of aromatic molecules and detailed structural information for their elucidation. In order to improve the production of these secondary metabolites, elicitors could effectively stimulate lignan production. Several plant species are considered in this review with a particular focus on Linum species, well recognized as the main producer of lignans.
Collapse
Affiliation(s)
- Roberto Consonni
- Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council, Via Corti 12, 20133 Milan, Italy;
| | | |
Collapse
|
5
|
Diphyllin Shows a Broad-Spectrum Antiviral Activity against Multiple Medically Important Enveloped RNA and DNA Viruses. Viruses 2022; 14:v14020354. [PMID: 35215947 PMCID: PMC8874615 DOI: 10.3390/v14020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from Flaviviridae, Phenuiviridae, Rhabdoviridae, and Herpesviridae families. Diphyllin is not cytotoxic for Vero and BHK-21 cells up to 100 µM and exerts a sub-micromolar or low-micromolar antiviral activity against tick-borne encephalitis virus, West Nile virus, Zika virus, Rift Valley fever virus, rabies virus, and herpes-simplex virus type 1. Our study shows that diphyllin is a broad-spectrum host cell-targeting antiviral agent that blocks the replication of multiple phylogenetically unrelated enveloped RNA and DNA viruses. In support of this, we also demonstrate that diphyllin is more than just a vacuolar (H+)ATPase inhibitor but may employ other antiviral mechanisms of action to inhibit the replication cycles of those viruses that do not enter host cells by endocytosis followed by low pH-dependent membrane fusion.
Collapse
|
6
|
Feng H, Chen G, Zhang Y, Guo M. Exploring Multifunctional Bioactive Components from Podophyllum sinense Using Multi-Target Ultrafiltration. Front Pharmacol 2021; 12:749189. [PMID: 34759823 PMCID: PMC8573357 DOI: 10.3389/fphar.2021.749189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Podophyllum sinense (P. sinense) has been used as a traditional herbal medicine for ages due to its extensive pharmaceutical activities, including antiproliferative, anti-inflammatory, antiviral, insecticidal effects, etc. Nevertheless, the specific bioactive constituents responsible for its antiproliferative, anti-inflammatory, and antiviral activities remain elusive, owing to its complicated and diversified chemical components. In order to explore these specific bioactive components and their potential interaction targets, affinity ultrafiltration with multiple drug targets coupled with high performance liquid chromatography/mass spectrometry (UF–HPLC/MS) strategy was developed to rapidly screen out and identify bioactive compounds against four well-known drug targets that are correlated to the application of P. sinense as a traditional medicine, namely, Topo I, Topo II, COX-2, and ACE2. As a result, 7, 10, 6, and 7 phytochemicals were screened out as the potential Topo I, Topo II, COX-2, and ACE2 ligands, respectively. Further confirmation of these potential bioactive components with antiproliferative and COX-2 inhibitory assays in vitro was also implemented. Herein, diphyllin and podophyllotoxin with higher EF values demonstrated higher inhibitory rates against A549 and HT-29 cells as compared with those of 5-FU and etoposide. The IC50 values of diphyllin were calculated at 6.46 ± 1.79 and 30.73 ± 0.56 μM on A549 and HT-29 cells, respectively. Moreover, diphyllin exhibited good COX-2 inhibitory activity with the IC50 value at 1.29 ± 0.14 μM, whereas indomethacin was 1.22 ± 0.08 μM. In addition, those representative constituents with good affinity on Topo I, Topo II, COX-2, or ACE2, such as diphyllin, podophyllotoxin, and diphyllin O-glucoside, were further validated with molecular docking analysis. Above all, the integrated method of UF–HPLC/MS with multiple drug targets rapidly singled out multi-target bioactive components and partly elucidated their action mechanisms regarding its multiple pharmacological effects from P. sinense, which could provide valuable information about its further development for the new multi-target drug discovery from natural medicines.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Desmet S, Morreel K, Dauwe R. Origin and Function of Structural Diversity in the Plant Specialized Metabolome. PLANTS (BASEL, SWITZERLAND) 2021; 10:2393. [PMID: 34834756 PMCID: PMC8621143 DOI: 10.3390/plants10112393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
The plant specialized metabolome consists of a multitude of structurally and functionally diverse metabolites, variable from species to species. The specialized metabolites play roles in the response to environmental changes and abiotic or biotic stresses, as well as in plant growth and development. At its basis, the specialized metabolism is built of four major pathways, each starting from a few distinct primary metabolism precursors, and leading to distinct basic carbon skeleton core structures: polyketides and fatty acid derivatives, terpenoids, alkaloids, and phenolics. Structural diversity in specialized metabolism, however, expands exponentially with each subsequent modification. We review here the major sources of structural variety and question if a specific role can be attributed to each distinct structure. We focus on the influences that various core structures and modifications have on flavonoid antioxidant activity and on the diversity generated by oxidative coupling reactions. We suggest that many oxidative coupling products, triggered by initial radical scavenging, may not have a function in se, but could potentially be enzymatically recycled to effective antioxidants. We further discuss the wide structural variety created by multiple decorations (glycosylations, acylations, prenylations), the formation of high-molecular weight conjugates and polyesters, and the plasticity of the specialized metabolism. We draw attention to the need for untargeted methods to identify the complex, multiply decorated and conjugated compounds, in order to study the functioning of the plant specialized metabolome.
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI), UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000 Amiens, France
| |
Collapse
|
8
|
|
9
|
Fragoso-Serrano M, Pereda-Miranda R. Dereplication of podophyllotoxin and related cytotoxic lignans in Hyptis verticillata by ultra-high-performance liquid chromatography tandem mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:81-87. [PMID: 31328323 DOI: 10.1002/pca.2868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Hyptis verticillata Jacq. (Lamiaceae) is a Mexican medicinal plant for the treatment of skin infections and illness affecting the respiratory and gastrointestinal systems. OBJECTIVE To associate the efficient resolution provided by ultra-high-performance liquid chromatography combined to the accuracy of a hybrid Fourier-transform (FT) mass spectrometer in order to dereplicate podophyllotoxin-type lignans in a plant extract. METHODS An ultra-high-performance liquid chromatography-photodiode array-high resolution electrospray ionisation tandem mass spectrometry (UHPLC-PDA-HRESI-MS/MS) method was applied in an Orbitrap hybrid FT spectrometer for dereplication of podophyllotoxin and related cytotoxic lignans in wild bushmint. This procedure included high-resolution mass values for positively charged ions [M + H]+ and [M + NH4 ]+ , MS/MS data, and comparison of UV maxima and retention times with pure compounds. RESULTS Podophyllotoxin in addition to seven aryltetralins, four arylnaphthalenes, and one dibenzylbutyrolactone were dereplicated from the methanol extract in a short-time analysis (5 min). 4'-O-Demethyl-dehydro-deoxypodophyllotoxin was identified as a new natural product. CONCLUSION The applied UHPLC-MS/MS dereplication method is suitable for a rapid analysis of podophyllotoxin-type lignans and the resulting chemical fingerprinting could be valuable in quality control of herbal drugs and their phytopharmaceuticals.
Collapse
Affiliation(s)
- Mabel Fragoso-Serrano
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Rogelio Pereda-Miranda
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
10
|
Lalaleo L, Testillano P, Risueño MC, Cusidó RM, Palazon J, Alcazar R, Bonfill M. Effect of in vitro morphogenesis on the production of podophyllotoxin derivatives in callus cultures of Linum album. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:47-58. [PMID: 29852334 DOI: 10.1016/j.jplph.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The anticancer compound podophyllotoxin and other related lignans can be produced in Linum album in vitro cultures, although their biosynthesis varies according to the degree of differentiation of the plant material. In general, L. album cell cultures do not form the same lignans as roots or other culture systems. Our aim was to explore how the lignan-producing capacity of organogenic cell masses is affected by the conditions that promote their formation and growth. Thus, L. album biomass obtained from plantlets was cultured in darkness or light, with or without the addition of plant growth regulators, and the levels of podophyllotoxin, methoxypodophyllotoxin and other related lignans were determined in each of these conditions. The organogenic capacity of the cell biomass grown in the different conditions was studied directly and also with light and scanning electronic microscopy, leading to the observation of.several somatic embryos and well-formed shoots. The main lignan produced was methoxypodophyllotoxin, whose production was clearly linked to the organogenic capacity of the cell biomass, which to a lesser extent was also the case for podophyllotoxin.
Collapse
Affiliation(s)
- Liliana Lalaleo
- Sección de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain
| | - Pilar Testillano
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Maria-Carmen Risueño
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Rosa M Cusidó
- Sección de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain
| | - Javier Palazon
- Sección de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain
| | - Ruben Alcazar
- Sección de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain
| | - Mercedes Bonfill
- Sección de Fisiologia Vegetal, Facultad de Farmacia, Universidad de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|
11
|
Recent advances on HPLC/MS in medicinal plant analysis—An update covering 2011–2016. J Pharm Biomed Anal 2018; 147:211-233. [DOI: 10.1016/j.jpba.2017.07.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
|
12
|
Kim T, Jeong KH, Kang KS, Nakata M, Ham J. An Optimized and General Synthetic Strategy To Prepare Arylnaphthalene Lactone Natural Products from Cyanophthalides. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Taejung Kim
- Natural Constituents Research Center; Korea Institute of Science and Technology (KIST); 25451 Gangneung Republic of Korea
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku 223-8522 Yokohama Japan
| | - Kyu Hyuk Jeong
- Natural Constituents Research Center; Korea Institute of Science and Technology (KIST); 25451 Gangneung Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine; Gachon University; 13120 Seongnam Republic of Korea
| | - Masaya Nakata
- Department of Applied Chemistry; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku 223-8522 Yokohama Japan
| | - Jungyeob Ham
- Natural Constituents Research Center; Korea Institute of Science and Technology (KIST); 25451 Gangneung Republic of Korea
- Department of Biological Chemistry; University of Science and Technology (UST); 34113 Daejeon Republic of Korea
| |
Collapse
|
13
|
Hemmati S, Seradj H. Justicidin B: A Promising Bioactive Lignan. Molecules 2016; 21:E820. [PMID: 27347906 PMCID: PMC6272961 DOI: 10.3390/molecules21070820] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
Adverse effects and drug resistance to the current onchopharmacologicals have increased the demand for alternative novel therapeutics. We herein introduce justicidin B, an arylnaphthalen lignan isolated from different plant origins, especially Justicia, Phyllanthus, Haplophyllum and Linum species. This cyclolignan exhibits a wide array of biological properties ranges from piscicidal to antifungal, antiviral and antibacterial activities. Activity against Trypanosoma brucei makes justicidin B a potential antiprotozoal agent for the treatment of neglected tropical diseases. Pharmacological properties like antiplatelet, anti-inflammatory and bone resorption inhibition have been also attributed to justicidin B. This compound is a potent cytotoxic substance on several cell lines, especially chronic myeloid and chronic lymphoid leukemia. Pharmacological values, natural variation, as well as biotechnological production of justicidin B by plant cell, tissue and organ culture are also described in this review. Chemical characteristics and chromatographic methods to identify justicidin B and its biosynthetic pathway have been discussed. Different approaches to the total synthesis of justicidin B are compared. This review would shed light on the role of justicidin B as an intriguing natural compound and provides a chance to optimize conditions for industrial applications.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P. O. Box 71345-1583 Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 71345-3119 Shiraz, Iran.
| | - Hassan Seradj
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, P. O. Box 71345-1583 Shiraz, Iran.
| |
Collapse
|