1
|
Wang L, Wang H, Liu D, Han Z, Fan J. A review of the polyphenols purification from apple products. Crit Rev Food Sci Nutr 2024; 64:7397-7407. [PMID: 36876502 DOI: 10.1080/10408398.2023.2185199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Apple polyphenols are one of the major bioactive compounds in apple products and have strong anti-inflammatory effects and the ability to prevent chronic diseases with health benefits. The development of apple polyphenol products is dependent on the extraction, purification and identification of apple polyphenols. The extracted polyphenols need to be further purified to improve the concentration of the extracted polyphenols. This review, therefore, presents the studies on the conventional and novel methods for polyphenols purification from apple products. The different chromatography methods, as one of the most widely used conventional purification methods, for polyphenol purification from various apple products are introduced. In addition, the perspective of the adsorption-desorption process and membrane filtration technique in enhancing the purification of polyphenols from apple products are presented in this review. The advantages and disadvantages of these purification techniques are also discussed and compared in depth. However, each of the reviewed technologies has some disadvantages that need to be overcome, and some mechanisms need to be further identified. Therefore, more competitive polyphenols purification techniques need to emerge in the future. It is hoped that this review can provide a research basis for the efficient purification of apple polyphenols, which can facilitate their application in various fields.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Research Institute, Jilin University, Yibin, People's Republic of China
| | - Hanyue Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Zhiwu Han
- Key Laboratory of Bionics Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
2
|
Nosrati Gazafroudi K, Mailänder LK, Daniels R, Kammerer DR, Stintzing FC. From Stem to Spectrum: Phytochemical Characterization of Five Equisetum Species and Evaluation of Their Antioxidant Potential. Molecules 2024; 29:2821. [PMID: 38930889 PMCID: PMC11206348 DOI: 10.3390/molecules29122821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Equisetaceae family, commonly known as horsetails, has been of scientific interest for decades due to its status as one of the most ancient extant vascular plant families. Notably, the corresponding species have found their place in traditional medicine, offering a wide array of applications. This study presents a comprehensive phytochemical analysis of polar secondary metabolites within the sterile stems of five distinct Equisetum species using HPLC-DAD-ESI-MSn. For this purpose, fresh plant material was extracted with acetone/water, and the resulting crude extracts were fractionated using dichloromethane, ethyl acetate, and n-butanol, respectively. The results reveal a complex array of compounds, including hydroxycinnamic acids, hydroxybenzoic acids, flavonoids, and other phenolic compounds. In addition, total phenolic contents (Folin-Ciocalteu assay) and antioxidant activities (DPPH assay) of the plant extracts were evaluated using spectrophotometric methods. The present comparative analysis across the five species highlights both shared and species-specific metabolites, providing valuable insights into their chemical diversity and potential pharmacological properties.
Collapse
Affiliation(s)
- Khadijeh Nosrati Gazafroudi
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Lilo K. Mailänder
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Rolf Daniels
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076 Tübingen, Germany;
| | - Dietmar R. Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
| | - Florian C. Stintzing
- Department of Analytical Development and Research, Section Phytochemical Research, Wala Heilmittel GmbH, Dorfstraße 1, DE-73087 Bad Boll/Eckwälden, Germany; (K.N.G.); (L.K.M.); (D.R.K.)
| |
Collapse
|
3
|
Zhang X, Xue Q, Zhao J, Zhang H, Dong J, Cao J, Wang Y, Liu Y, Cheng G. Chemical Constituents, Hypolipidemic, and Hypoglycemic Activities of Edgeworthia gardneri Flowers. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:440-450. [PMID: 38441843 DOI: 10.1007/s11130-024-01154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 06/15/2024]
Abstract
The flowers of Edgeworthia gardneri are used as herbal tea and medicine to treat various metabolic diseases including hyperglycemia, hypertension, and hyperlipidemia. This paper investigate the chemical constituents and biological activities of ethanolic extract and its different fractions from E. gardneri flowers. Firstly, the E. gardneri flowers was extracted by ethanol-aqueous solution to obtain crude extract (CE), which was subsequently fractionated by different polar organic solution to yield precipitated crystal (PC), dichloromethane (DCF), ethyl acetate (EAF), n-butanol (n-BuF), and residue water (RWF) fractions. UHPLC-ESI-HRMS/MS analysis resulted in the identification of 25 compounds, and the main compounds were flavonoids and coumarins. The precipitated crystal fraction showed the highest phenolic and flavonoid contents with 344.4 ± 3.38 mg GAE/g extract and 305.86 ± 0.87 mg RE/g extract. The EAF had the strongest antioxidant capacity and inhibitory effect on α-glucosidase and pancreatic lipase with IC50 values of 126.459 ± 7.82 and 23.16 ± 0.79 µg/mL. Besides, both PC and EAF significantly regulated the glucose and lipid metabolism disorders by increasing glucose consumption and reducing TG levels in HepG2 cells. Molecular docking results suggested that kaempferol-3-O-glucoside and tiliroside had good binding ability with enzymes, indicating that they may be potential α-glucosidase and pancreatic lipase inhibitors. Therefore, the E. gardneri flowers could be served as a bioactive agent for the regulation of metabolic disorders.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650500, China
| | - Hongbin Zhang
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiahong Dong
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jianxin Cao
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming, 650500, China
| | - Yaping Liu
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Guiguang Cheng
- The Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
4
|
Vieira RV, Peiter GC, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. In silico prospective analysis of the medicinal plants activity on the CagA oncoprotein from Helicobacter pylori. World J Clin Oncol 2024; 15:653-663. [PMID: 38835850 PMCID: PMC11145963 DOI: 10.5306/wjco.v15.i5.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Colonization with Helicobacter pylori (H. pylori) has a strong correlation with gastric cancer, and the virulence factor CagA is implicated in carcinogenesis. Studies have been conducted using medicinal plants with the aim of eliminating the pathogen; however, the possibility of blocking H. pylori-induced cell differentiation to prevent the onset and/or progression of tumors has not been addressed. This type of study is expensive and time-consuming, requiring in vitro and/or in vivo tests, which can be solved using bioinformatics. Therefore, prospective computational analyses were conducted to assess the feasibility of interaction between phenolic compounds from medicinal plants and the CagA oncoprotein. AIM To perform a computational prospecting of the interactions between phenolic compounds from medicinal plants and the CagA oncoprotein of H. pylori. METHODS In this in silico study, the structures of the phenolic compounds (ligands) kaempferol, myricetin, quercetin, ponciretin (flavonoids), and chlorogenic acid (phenolic acid) were selected from the PubChem database. These phenolic compounds were chosen based on previous studies that suggested medicinal plants as non-drug treatments to eliminate H. pylori infection. The three-dimensional structure model of the CagA oncoprotein of H. pylori (receptor) was obtained through molecular modeling using computational tools from the I-Tasser platform, employing the threading methodology. The primary sequence of CagA was sourced from GenBank (BAK52797.1). A screening was conducted to identify binding sites in the structure of the CagA oncoprotein that could potentially interact with the ligands, utilizing the GRaSP online platform. Both the ligands and receptor were prepared for molecular docking using AutoDock Tools 4 (ADT) software, and the simulations were carried out using a combination of ADT and AutoDock Vina v.1.2.0 software. Two sets of simulations were performed: One involving the central region of CagA with phenolic compounds, and another involving the carboxy-terminus region of CagA with phenolic compounds. The receptor-ligand complexes were then analyzed using PyMol and BIOVIA Discovery Studio software. RESULTS The structure model obtained for the CagA oncoprotein exhibited high quality (C-score = 0.09) and was validated using parameters from the MolProbity platform. The GRaSP online platform identified 24 residues (phenylalanine and leucine) as potential binding sites on the CagA oncoprotein. Molecular docking simulations were conducted with the three-dimensional model of the CagA oncoprotein. No complexes were observed in the simulations between the carboxy-terminus region of CagA and the phenolic compounds; however, all phenolic compounds interacted with the central region of the oncoprotein. Phenolic compounds and CagA exhibited significant affinity energy (-7.9 to -9.1 kcal/mol): CagA/kaempferol formed 28 chemical bonds, CagA/myricetin formed 18 chemical bonds, CagA/quercetin formed 16 chemical bonds, CagA/ponciretin formed 13 chemical bonds, and CagA/chlorogenic acid formed 17 chemical bonds. Although none of the phenolic compounds directly bound to the amino acid residues of the K-Xn-R-X-R membrane binding motif, all of them bound to residues, mostly positively or negatively charged, located near this region. CONCLUSION In silico, the tested phenolic compounds formed stable complexes with CagA. Therefore, they could be tested in vitro and/or in vivo to validate the findings, and to assess interference in CagA/cellular target interactions and in the oncogenic differentiation of gastric cells.
Collapse
Affiliation(s)
| | | | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde-Campus Anísio Teixeira, Vitória da Conquista 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Universidade Federal do Paraná, Campus Toledo, Toledo 85919-899, Brazil
- Universidade Federal do Paraná-Setor Palotina, Programa de Pós-graduação em Biotecnologia, Palotina 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Universidade Federal do Paraná, Campus Toledo, Toledo 85919-899, Brazil
- Universidade Federal do Paraná-Setor Palotina, Programa de Pós-graduação em Biotecnologia, Palotina 85950-000, Brazil
| |
Collapse
|
5
|
Stefanakis MK, Tsiftsoglou OS, Mašković PZ, Lazari D, Katerinopoulos HE. Chemical Constituents and Anticancer Activities of the Extracts from Phlomis × commixta Rech. f. ( P. cretica × P. lanata). Int J Mol Sci 2024; 25:816. [PMID: 38255889 PMCID: PMC10815138 DOI: 10.3390/ijms25020816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The present work is the first report on the ingredients of the P. × commixta hybrid, a plant of the genus Phlomis. So far, thirty substances have been isolated by various chromatographic techniques and identified by spectroscopic methods, such as UV/Vis, NMR, GC-MS and LC-MS. The compounds are classified as flavonoids: naringenin, eriodyctiol, eriodyctiol-7-O-β-D-glucoside, luteolin, luteolin-7-O-β-D-glucoside, apigenin, apigenin-7-O-β-D-glucoside, diosmetin-7-O-β-D-glucoside, quercetin, hesperetin and quercetin-3-O-β-D-glucoside; phenylpropanoids: martynoside, verbascoside, forsythoside B, echinacoside and allysonoside; chromene: 5,7-dihydroxychromone; phenolic acids: caffeic acid, p-hydroxybenzoic acid, chlorogenic acid, chlorogenic acid methyl ester, gallic acid, p-coumaric acid and vanillic acid; aliphatic hydrocarbon: docos-1-ene; steroids: brassicasterol and stigmasterol; a glucoside of allylic alcohol, 3-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-oct-1-ene-3-ol, was fully characterized as a natural product for the first time. Two tyrosol esters were also isolated: tyrosol lignocerate and tyrosol methyl ether palmitate, the latter one being isolated as a natural product for the first time. Moreover, the biological activities of the extracts from the different polarities of the roots, leaves and flowers were estimated for their cytotoxic potency. All root extracts tested showed a high cytotoxic activity against the Hep2c and RD cell lines.
Collapse
Affiliation(s)
- Michalis K. Stefanakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece; (M.K.S.); (H.E.K.)
| | - Olga St. Tsiftsoglou
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pavle Z. Mašković
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
6
|
Orzelska-Górka J, Dos Santos Szewczyk K, Gawrońska-Grzywacz M, Herbet M, Lesniak A, Bielenica A, Bujalska-Zadrożny M, Biała G. Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice. Pharmaceuticals (Basel) 2023; 16:1691. [PMID: 38139817 PMCID: PMC10747003 DOI: 10.3390/ph16121691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Two polyphenols-hyperoside (HYP) and protocatechuic acid (PCA) were reported to exert antidepressant activity in rodents after acute treatment. Our previous study also showed that this activity might have been influenced by the monoaminergic system and the upregulation of the brain-derived neurotropic factor (BDNF) level. A very long-term pharmacological therapy is required for the treatment of a patient with depression. The repetitive use of antidepressants is recognized to impact the brain structures responsible for regulating both emotional and cognitive behaviors. Thus, we investigated the antidepressant, anxiolytic, and procognitive effects of HYP and PCA in mice after acute and prolonged treatment (14 days). Both polyphenols induced an anxiogenic-like effect after acute treatment, whereas an anxiolytic effect occurred after repetitive administration. PCA and HYP showed procognitive effects when they were administered acutely and chronically, but it seems that their influence on long-term memory was stronger than on short-term memory. In addition, the preset study showed that the dose of 7.5 mg/kg of PCA and HYP was effective in counteracting the effects of co-administered scopolamine in the long-term memory impairment model induced by scopolamine. Our experiments revealed the compounds have no affinity for 5-HT1A and 5-HT2A receptors, whereas a significant increase in serum serotonin level after prolonged administration of PCA and HYP at a dose of 3.75 mg/kg was observed. Thus, it supports the involvement of the serotonergic system in the polyphenol mechanisms. These findings led us to hypothesize that the polyphenols isolated from Impatiens glandulifera can hold promise in treating mental disorders with cognitive dysfunction. Consequently, extended studies are necessary to delve into their pharmacological profile.
Collapse
Affiliation(s)
- Jolanta Orzelska-Górka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.-G.); (M.H.)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.-G.); (M.H.)
| | - Anna Lesniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
7
|
Kiene M, Zaremba M, Fellensiek H, Januschewski E, Juadjur A, Jerz G, Winterhalter P. In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES). Foods 2023; 12:4184. [PMID: 38002241 PMCID: PMC10670976 DOI: 10.3390/foods12224184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Grapevine canes are an important source of bioactive compounds, such as stilbenoids. This study aimed to evaluate an in silico method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS) to isolate stilbenoids from a grapevine cane extract by offline heart-cut high-performance countercurrent chromatography (HPCCC). For the following extraction of resveratrol and ε-viniferin from grapevine canes, natural deep eutectic solvents (NADES) were used as an environmentally friendly alternative to the traditionally used organic solvents. In order to evaluate a variety of combinations of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) for the targeted extraction of stilbenoids, COSMO-RS was applied. In particular, ultrasonic-assisted extraction using a solvent mixture of choline chloride/1,2-propanediol leads to higher extraction yields of resveratrol and ε-viniferin. COSMO-RS calculations for NADES extraction combined with HPCCC biphasic solvent system calculations are a powerful combination for the sustainable extraction, recovery, and isolation of natural products. This in silico-supported workflow enables the reduction of preliminary experimental tests required for the extraction and isolation of natural compounds.
Collapse
Affiliation(s)
- Mats Kiene
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Malte Zaremba
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Hendrik Fellensiek
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Edwin Januschewski
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
- German Institute of Food Technologies, Chemical Analytics, Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany;
| | - Andreas Juadjur
- German Institute of Food Technologies, Chemical Analytics, Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany;
| | - Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| |
Collapse
|
8
|
Kiene M, Blum S, Jerz G, Winterhalter P. A Comparison between High-Performance Countercurrent Chromatography and Fast-Centrifugal Partition Chromatography for a One-Step Isolation of Flavonoids from Peanut Hulls Supported by a Conductor like Screening Model for Real Solvents. Molecules 2023; 28:5111. [PMID: 37446775 DOI: 10.3390/molecules28135111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Peanut hulls (Arachis hypogaea, Leguminosae), which are a side stream of global peanut processing, are rich in bioactive flavonoids such as luteolin, eriodictyol, and 5,7-dihydroxychromone. This study aimed to isolate these flavonoid derivatives by liquid-liquid chromatography with as few steps as possible. To this end, luteolin, eriodictyol and 5,7-dihydroxychromone were isolated from peanut hulls using two different techniques, high-performance countercurrent chromatography (HPCCC) and fast-centrifugal partition chromatography (FCPC). The suitability of the biphasic solvent system composed of n-hexane/ethyl acetate/methanol/water (1.0/1.0/1.0/1.5; v/v/v/v) was determined by the Conductor like Screening Model for Real Solvents (COSMO-RS), which allowed the partition ratio KD-values of the three main flavonoids to be calculated. After a one-step HPCCC separation of ~1000 mg of an ethanolic peanut hull extract, 15 mg of luteolin and 8 mg of eriodictyol were isolated with purities over 96%. Furthermore, 3 mg of 5,7-dihydroxychromone could be isolated after purification by semi-preparative reversed-phase liquid chromatography (semi-prep. HPLC) in purity of over 99%. The compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectroscopy (NMR).
Collapse
Affiliation(s)
- Mats Kiene
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Brauschweig, Germany
| | - Svenja Blum
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Brauschweig, Germany
| | - Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Brauschweig, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Brauschweig, Germany
| |
Collapse
|
9
|
Contreras J, Alcázar-Valle M, Lugo-Cervantes E, Luna-Vital DA, Mojica L. Mexican Native Black Bean Anthocyanin-Rich Extracts Modulate Biological Markers Associated with Inflammation. Pharmaceuticals (Basel) 2023; 16:874. [PMID: 37375821 DOI: 10.3390/ph16060874] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This work aimed to obtain and characterize anthocyanin-rich extracts (ARE) from native black beans and evaluate their antioxidant and anti-inflammatory potential. The initial extract was obtained by supercritical fluids (RE) and purified using Amberlite® XAD-7 resin (PE). RE and PE were fractionated using countercurrent chromatography, and four fractions were obtained (REF1 and REF2 from RE, PEF1, and PEF2 from PE). ARE and fractions were characterized, and the biological potential was evaluated. ABTS IC50 values ranged from 7.9 to 139.2 (mg C3GE/L), DPPH IC50 ranged from 9.2 to 117.2 (mg C3GE/L), and NO IC50 ranged from 0.6 to143.8 (mg C3GE/L) (p < 0.05). COX-1 IC50 ranged from 0.1 to 0.9 (mg C3GE/L), COX-2 IC50 ranged from 0.01 to 0.7 (mg C3GE/L), and iNOS IC50 ranged from 0.9 to 5.6 (mg C3GE/L) (p < 0.05). The theoretical binding energy for phenolic compounds ranged from -8.45 to -1.4 kcal/mol for COX-1, from -8.5 to -1.8 kcal/mol for COX-2, and from -7.2 to -1.6 kcal/mol for iNOS. RE and REF2 presented the highest antioxidant and anti-inflammatory potential. Countercurrent chromatography effectively isolates and purifies bioactive compounds while maintaining their biological potential. Native black beans present an attractive phytochemical profile and could be used as ingredients in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Jonhatan Contreras
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Zapopan, Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| | - Montserrat Alcázar-Valle
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Zapopan, Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| | - Eugenia Lugo-Cervantes
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Zapopan, Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, The Institute for Obesity Research, Avenida Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
| | - Luis Mojica
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Zapopan, Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| |
Collapse
|
10
|
Fan QF, Zhou L, Gongpan PC, Lu CL, Chang H, Xiang X. Bioactivity-Guided High Performance Counter-Current Chromatography and Following Semi-Preparative Liquid Chromatography Method for Rapid Isolation of Anti-Inflammatory Lignins from Dai Medicinal Plant, Zanthoxylum acanthopodium var. timbor. Molecules 2023; 28:2592. [PMID: 36985565 PMCID: PMC10057586 DOI: 10.3390/molecules28062592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The development of Dai medicine is relatively slow, and Zanthoxylum has great economic and medicinal value. It is still difficult to obtain medicinal components from the low-polarity parts of Zanthoxylum belonging to Dai medicine. In this study, we introduced one simple and quick strategy of separating target compounds from the barks of Z. acanthopodium var. timbor by high-performance countercurrent chromatography (HPCCC) with an off-line anti-inflammatory activity screening mode. The development of this strategy was based on the TLC-based generally useful estimation of solvent systems (GUESS) method and HPCCC in combination. This paper presented a rapid method for obtaining target anti-inflammatory compounds. Three lignins were enriched by HPCCC with an off-line inhibition mode of nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophage cells, using petroleum ether-ethyl acetate-methanol-water (3:2:3:2) as the solvent system. The results showed that this method was simple and practical and could be applied to trace the anti-inflammatory components of the low-polarity part in Dai medicine.
Collapse
Affiliation(s)
- Qing-Fei Fan
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| | - Lan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
- College of Food and Drug Engineering, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Pian-Chou Gongpan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| | - Chuan-Li Lu
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Hua Chang
- College of Vetezrinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xun Xiang
- College of Animal Science and Technology, Yunnan agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
Zostera marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. SEPARATIONS 2022. [DOI: 10.3390/separations9070182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Three types of Zostera marina L. collection were extracted using the supercritical CO2-extraction method. For the purposes of supercritical CO2-extraction, old seagrass ejection on the surf edge, fresh seagrass ejection on the surf edge and seagrass collected in water were used. Several experimental conditions were investigated in the pressure range 50–350 bar, with the used volume of co-solvent ethanol in the amount of 1% in the liquid phase at a temperature in the range of 31–70 °C. The most effective extraction conditions are: pressure 250 Bar and temperature 60 °C for Z. marina collected in sea water. Z. marina contain various phenolic compounds and sulfated polyphenols with valuable biological activity. Tandem mass-spectrometry (HPLC-ESI–ion trap) was applied to detect target analytes. 77 different biologically active components have been identified in Z. marina supercritical CO2-extracts. 38 polyphenols were identified for the first time in Z. marina.
Collapse
|
12
|
Separation of Dihydro-Isocoumarins and Dihydro-Stilbenoids from Hydrangea macrophylla ssp. serrata by Use of Counter-Current Chromatography. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113424. [PMID: 35684362 PMCID: PMC9182509 DOI: 10.3390/molecules27113424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Previously, different Hydrangea macrophylla ssp. serrata cultivars were investigated by untargeted LC-MS analysis. From this, a list of tentatively identified and unknown compounds that differ significantly between these cultivars was obtained. Due to the lack of reference compounds, especially for dihydro-isocoumarins, we aimed to isolate and structurally characterise these compounds from the cultivar 'Yae-no-amacha' using NMR and LC-MS methods. For purification and isolation, counter-current chromatography was used in combination with reversed-phase preparative HPLC as an orthogonal and enhanced purification workflow. Thirteen dihydro-isocoumarins in combination with other metabolites could be isolated and structurally identified. Particularly interesting was the clarification of dihydrostilbenoid glycosides, which were described for the first time in H. macrophylla ssp. serrata. These results will help us in further studies on the biological interpretation of our data.
Collapse
|
13
|
Razgonova M, Zinchenko Y, Pikula K, Tekutyeva L, Son O, Zakharenko A, Kalenik T, Golokhvast K. Spatial Distribution of Polyphenolic Compounds in Corn Grains (Zea mays L. var. Pioneer) Studied by Laser Confocal Microscopy and High-Resolution Mass Spectrometry. PLANTS 2022; 11:plants11050630. [PMID: 35270099 PMCID: PMC8912282 DOI: 10.3390/plants11050630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
Desirable changes in the biochemical composition of food plants is a key outcome of breeding strategies. The subsequent localization of nutritional phytochemicals in plant tissues gives important information regarding the extent of their synthesis across a tissue. We performed a detailed metabolomic analysis of phytochemical substances of grains from Zea mays L. (var. Pioneer) by tandem mass spectrometry and localization by confocal microscopy. We found that anthocyanins are located mainly in the aleurone layer of the grain. High-performance liquid chromatography in combination with ion trap tandem mass spectrometry revealed the presence of 56 compounds, including 30 polyphenols. This method allows for effective and rapid analysis of anthocyanins by plotting their distribution in seeds and grains of different plants. This approach will permit a more efficient screening of phenotypic varieties during food plant breeding.
Collapse
Affiliation(s)
- Mayya Razgonova
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (L.T.); (O.S.); (T.K.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia;
- Correspondence:
| | - Yulia Zinchenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia;
| | - Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (K.P.); (K.G.)
- Federal Research Center the Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 2, Petrovskogo Str., 677000 Yakutsk, Russia
| | - Lyudmila Tekutyeva
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (L.T.); (O.S.); (T.K.)
| | - Oksana Son
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (L.T.); (O.S.); (T.K.)
| | - Alexander Zakharenko
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tatiana Kalenik
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (L.T.); (O.S.); (T.K.)
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (K.P.); (K.G.)
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia;
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
14
|
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. contain a large number of target analytes, which are biologically active compounds. High performance liquid chromatography (HPLC) in combination with an ion trap (tandem mass spectrometry) was used to identify target analytes in extracts of D. palmatum S. and D. ruyschiana L. originating from Yakutia. The results of initial studies revealed the presence of 114 compounds, of which 92 were identified for the first time in the genus Dracocephalum. New identified metabolites belonged to 17 classes, including 16 phenolic acids and their conjugates, 18 flavones, 5 flavonols, 2 flavan-3-ols, 1 flavanone, 2 stilbenes, 10 anthocyanins, 1 condensed tannin, 2 lignans, 6 carotenoids, 3 oxylipins, 2 amino acids, 3 sceletium alkaloids, 3 carboxylic acids, 8 fatty acids, 1 sterol, and 3 terpenes, along with 6 miscellaneous compounds. It was shown that extracts of D. palmatum are richer in the spectrum of polyphenolic compounds compared with extracts of D. ruyschiana, according to a study of the presence of these compounds in extracts, based on the results of mass spectrometric studies.
Collapse
|
15
|
Li L, Zhao J, Yang T, Sun B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: a review. Food Res Int 2022; 153:110956. [DOI: 10.1016/j.foodres.2022.110956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
16
|
Zhang H, Chen G, Zhang Y, Yang M, Chen J, Guo M. Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets. Food Chem 2021; 375:131856. [PMID: 34942503 DOI: 10.1016/j.foodchem.2021.131856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
Leaf of Nelumbo nucifera Gaertn. (N. nucifera) has been widely used as the main ingredient in lipid-lowering herbal teas and some prescriptions in China due to their excellent hypoglycemic and hypolipidemic effects. However, the active components responsible for these beneficial properties and their mechanisms remain unexplored. In this work, the N. nucifera leaf extracts significantly promoted the glucose consumption of HepG2 cells, and also exhibited remarkable inhibitory activities against α-glucosidase, pancreatic lipase, and COX-2. Furthermore, the top four potential active compounds (N-nornuciferine, Nuciferine, 2-Hydroxy-1-methoxyaporphine, and Isorhamnetin 3-O-glucoside) targeting the above three enzymes were screened out by bioaffinity ultrafiltration with multiple targets coupled with HPLC-MS/MS. The enzyme inhibitory activities of candidate compounds were verified by enzyme inhibition assay and molecular docking. In addition, molecular docking revealed the binding information between the candidate molecules and enzymes. The current study provided valuable information in discovering functional active ingredients from complex medicinal plant extracts.
Collapse
Affiliation(s)
- Hui Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Yongli Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mei Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinming Chen
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China; Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
17
|
Pires EO, Caleja C, Garcia CC, Ferreira IC, Barros L. Current status of genus Impatiens: Bioactive compounds and natural pigments with health benefits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Razgonova MP, Zakharenko AM, Gordeeva EI, Shoeva OY, Antonova EV, Pikula KS, Koval LA, Khlestkina EK, Golokhvast KS. Phytochemical Analysis of Phenolics, Sterols, and Terpenes in Colored Wheat Grains by Liquid Chromatography with Tandem Mass Spectrometry. Molecules 2021; 26:5580. [PMID: 34577050 PMCID: PMC8469967 DOI: 10.3390/molecules26185580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/05/2022] Open
Abstract
The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; (A.M.Z.); (E.I.G.); (E.V.A.); (K.S.P.)
| | - Alexander M. Zakharenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; (A.M.Z.); (E.I.G.); (E.V.A.); (K.S.P.)
| | - Elena I. Gordeeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; (A.M.Z.); (E.I.G.); (E.V.A.); (K.S.P.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva 10, 630090 Novosibirsk, Russia
| | - Olesya Yu. Shoeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; (A.M.Z.); (E.I.G.); (E.V.A.); (K.S.P.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva 10, 630090 Novosibirsk, Russia
| | - Elena V. Antonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; (A.M.Z.); (E.I.G.); (E.V.A.); (K.S.P.)
- Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, 8 Marta 202, 620144 Ekaterinburg, Russia
| | - Konstantin S. Pikula
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; (A.M.Z.); (E.I.G.); (E.V.A.); (K.S.P.)
| | - Liudmila A. Koval
- School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia;
| | - Elena K. Khlestkina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; (A.M.Z.); (E.I.G.); (E.V.A.); (K.S.P.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentjeva 10, 630090 Novosibirsk, Russia
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint Petersburg, Russia; (A.M.Z.); (E.I.G.); (E.V.A.); (K.S.P.)
- School of Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia;
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia
| |
Collapse
|
19
|
Simultaneous Determination of 78 Compounds of Rhodiola rosea Extract by Supercritical CO 2-Extraction and HPLC-ESI-MS/MS Spectrometry. Biochem Res Int 2021; 2021:9957490. [PMID: 34306755 PMCID: PMC8279876 DOI: 10.1155/2021/9957490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
The plant Rhodiola rosea L. of family Crassulaceae was extracted using the supercritical CO2-extraction method. Several experimental conditions were investigated in the pressure range of 200–500 bar, with the used volume of cosolvent ethanol in the amount of 1% in the liquid phase at a temperature in the range of 31–70°C. The most effective extraction conditions are pressure 350 bar and temperature 60°C. The extracts were analyzed by HPLC with MS/MS identification. 78 target analytes were isolated from Rhodiola rosea (Russia) using a series of column chromatography and mass spectrometry experiments. The results of the analysis showed a spectrum of the main active ingredients Rh. rosea: salidroside, rhodiolosides (B and C), rhodiosin, luteolin, catechin, quercetin, quercitrin, herbacetin, sacranoside A, vimalin, and others. In addition to the reported metabolites, 29 metabolites were newly annotated in Rh. rosea. There were flavonols: dihydroquercetin, acacetin, mearnsetin, and taxifolin-O-pentoside; flavones: apigenin-O-hexoside derivative, tricetin trimethyl ether 7-O-hexosyl-hexoside, tricin 7-O-glucoronyl-O-hexoside, tricin O-pentoside, and tricin-O-dihexoside; flavanones: eriodictyol-7-O-glucoside; flavan-3-ols: gallocatechin, hydroxycinnamic acid caffeoylmalic acid, and di-O-caffeoylquinic acid; coumarins: esculetin; esculin: fraxin; and lignans: hinokinin, pinoresinol, L-ascorbic acid, glucaric acid, palmitic acid, and linolenic acid. The results of supercritical CO2-extraction from roots and rhizomes of Rh. rosea, in particular, indicate that the extract contained all biologically active components of the plant, as well as inert mixtures of extracted compositions.
Collapse
|
20
|
Razgonova M, Zakharenko A, Pikula K, Manakov Y, Ercisli S, Derbush I, Kislin E, Seryodkin I, Sabitov A, Kalenik T, Golokhvast K. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021; 26:molecules26123650. [PMID: 34203808 PMCID: PMC8232594 DOI: 10.3390/molecules26123650] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023] Open
Abstract
This work represents a comparative metabolomic study of extracts of wild grapes obtained from six different places in the Primorsky and Khabarovsk territories (Far East Russia) and extracts of grapes obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). The metabolome analysis was performed by liquid chromatography in combination with ion trap mass spectrometry. The results showed the presence of 118 compounds in ethanolic extracts of V. amurensis grapes. In addition, several metabolites were newly annotated in V. amurensis. The highest diversity of phenolic compounds was identified in the samples of the V. amurensis grape collected in the vicinity of Vyazemsky (Khabarovsk Territory) and the floodplain of the Arsenyevka River (Primorsky Territory), compared to the other wild samples and cultural grapes obtained in the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources.
Collapse
Affiliation(s)
- Mayya Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.Z.); (K.P.); (I.D.); (E.K.); (A.S.); (K.G.)
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
- Correspondence:
| | - Alexander Zakharenko
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.Z.); (K.P.); (I.D.); (E.K.); (A.S.); (K.G.)
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia;
| | - Konstantin Pikula
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.Z.); (K.P.); (I.D.); (E.K.); (A.S.); (K.G.)
| | - Yury Manakov
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia;
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, 25240 Erzurum, Turkey;
| | - Irina Derbush
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.Z.); (K.P.); (I.D.); (E.K.); (A.S.); (K.G.)
| | - Evgeniy Kislin
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.Z.); (K.P.); (I.D.); (E.K.); (A.S.); (K.G.)
| | - Ivan Seryodkin
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia;
| | - Andrey Sabitov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.Z.); (K.P.); (I.D.); (E.K.); (A.S.); (K.G.)
| | - Tatiana Kalenik
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
| | - Kirill Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia; (A.Z.); (K.P.); (I.D.); (E.K.); (A.S.); (K.G.)
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia;
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia;
| |
Collapse
|
21
|
Singla RK, Agarwal T, He X, Shen B. Herbal Resources to Combat a Progressive & Degenerative Nervous System Disorder- Parkinson's Disease. Curr Drug Targets 2021; 22:609-630. [PMID: 33050857 DOI: 10.2174/1389450121999201013155202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
Parkinson's disease is one of the most common adult-onset, a chronic disorder involving neurodegeneration, which progressively leads to deprivation of dopaminergic neurons in substantia nigra, causing a subsequent reduction of dopamine levels in the striatum resulting in tremor, myotonia, and dyskinesia. Genetics and environmental factors are believed to be responsible for the onset of Parkinson's disease. The exact pathogenesis of Parkinson's disease is quite complicated and the present anti-Parkinson's disease treatments appear to be clinically insufficient. Comprehensive researches have demonstrated the use of natural products such as ginseng, curcumin, ashwagandha, baicalein, etc. for the symptomatic treatment of this disease. The neuroprotective effects exhibited by these natural products are mainly due to their ability to increase dopamine levels in the striatum, manage oxidative stress, mitochondrial dysfunction, glutathione levels, clear the aggregation of α- synuclein, induce autophagy and decrease the pro-inflammatory cytokines and lipid peroxidation. This paper reviews various natural product studies conducted by scientists to establish the role of natural products (both metabolite extracts as well as pure metabolites) as adjunctive neuroprotective agents.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Tanya Agarwal
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram-122103, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Wu HC, Cheng MJ, Yen CH, Chen YMA, Chen YS, Chen IS, Chang HS. Chemical Constituents with GNMT-Promoter-Enhancing and NRF2-Reduction Activities from Taiwan Agarwood Excoecaria formosana. Molecules 2020; 25:E1746. [PMID: 32290267 PMCID: PMC7181199 DOI: 10.3390/molecules25071746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered to be a silent killer, and was the fourth leading global cause of cancer deaths in 2018. For now, sorafenib is the only approved drug for advanced HCC treatment. The introduction of additional chemopreventive agents and/or adjuvant therapies may be helpful for the treatment of HCC. After screening 3000 methanolic extracts from the Formosan plant extract bank, Excoecaria formosana showed glycine N-methyltransferase (GNMT)-promoter-enhancing and nuclear factor erythroid 2-related factor 2 (NRF2)-suppressing activities. Further, the investigation of the whole plant of E. formosana led to the isolation of a new steroid, 7α-hydroperoxysitosterol-3-O-β-d-(6-O-palmitoyl)glucopyranoside (1); two new coumarinolignans, excoecoumarin A (2) and excoecoumarin B (3); a new diterpene, excoeterpenol A (4); and 40 known compounds (5-44). Among them, Compounds 38 and 40-44 at a 100 μM concentration showed a 2.97 ± 0.27-, 3.17 ± 1.03-, 2.73 ± 0.23-, 2.63 ± 0.14-, 6.57 ± 0.13-, and 2.62 ± 0.05-fold increase in GNMT promoter activity, respectively. In addition, Compounds 40 and 43 could reduce NRF2 activity, a transcription factor associated with drug resistance, in Huh7 cells with relative activity of 33.1 ± 0.2% and 45.2 ± 2.5%. These results provided the basis for the utilization of Taiwan agarwood for the development of anti-HCC agents.
Collapse
Affiliation(s)
- Ho-Cheng Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan;
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Ming Arthur Chen
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (C.-H.Y.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
23
|
Han X, Wang S, Yang X, Li T, Zhao H, Zhou L, Zhao L, Bao Y, Meng X. Analysis of plasma migration components inPatrinia villosa(Thunb.) Juss. effective parts by UPLC–Q‐TOF–MS. Biomed Chromatogr 2019; 34:e4701. [DOI: 10.1002/bmc.4701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao Han
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
| | - Shuai Wang
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
- Component Medicine Engineering Research Center of Liaoning Province Dalian China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory Dalian China
| | - Xin‐xin Yang
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
| | - Tian‐jiao Li
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
- Component Medicine Engineering Research Center of Liaoning Province Dalian China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory Dalian China
| | - Huan‐jun Zhao
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
| | - Li‐ping Zhou
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
| | - Lin Zhao
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
| | - Yong‐rui Bao
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
- Component Medicine Engineering Research Center of Liaoning Province Dalian China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory Dalian China
| | - Xian‐sheng Meng
- School of PharmacyLiaoning University of Traditional Chinese Medicine Dalian China
- Component Medicine Engineering Research Center of Liaoning Province Dalian China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory Dalian China
| |
Collapse
|
24
|
Liu D, Mao Y, Ding L, Zeng XA. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci Technol 2019; 91:586-597. [PMID: 32288229 PMCID: PMC7127391 DOI: 10.1016/j.tifs.2019.07.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/21/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dihydromyricetin (DMY) is an important plant flavonoid, which has received great attention due to its health-benefiting activities, including antioxidant, antimicrobial, anti-inflammatory, anticancer, antidiabetic and neuroprotective activities. DMY capsules have been sold in US as a nutraceutical supplement to prevent alcoholic hangovers. The major disadvantage associated with DMY is its chemical instability and poor bioavailability caused by the combined effects of its low solubility and poor membrane permeability. This limits its practical use in the food and pharmaceutical fields. SCOPE AND APPROACH The present paper gives an overview of the current methods for the identification and quantification of DMY. Furthermore, recent findings regarding the main biological properties and chemical stability of DMY, the metabolism of DMY as well as different approaches to increase DMY bioavailability in both aqueous and lipid phases are discussed. KEY FINDINGS AND CONCLUSIONS Current trends on identification and quantification of DMY have been focused on spectral and chromatographic techniques. Many factors such as heat, pH, metal ions, could affect the chemical stability of DMY. Despite the diverse biological effects of DMY, DMY faces with the problem of poor bioavailability. Utilization of different delivery systems including solid dispersion, nanocapsule, microemuslion, cyclodextrin inclusion complexes, co-crystallization, phospholipid complexes, and chemical or enzymatic acylation has the potential to improve both the solubility and bioavailability. DMY digested in laboratory animals undergoes reduction, dehydroxylation, methylation, glucuronidation, and sulfation. Novel DMY delivery systems and basic pharmacokinetic studies of encapsulated DMY on higher animals and humans might be required in the future.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yiqin Mao
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Lijun Ding
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xin-An Zeng
- South China University of Technology, School of Food Science & Engineering, Guangzhou, 510640, Guangdong, PR China
| |
Collapse
|
25
|
Vanderplanck M, Roger N, Moerman R, Ghisbain G, Gérard M, Popowski D, Granica S, Fournier D, Meeus I, Piot N, Smagghe G, Terrana L, Michez D. Bumble bee parasite prevalence but not genetic diversity impacted by the invasive plant
Impatiens glandulifera. Ecosphere 2019. [DOI: 10.1002/ecs2.2804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Maryse Vanderplanck
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
- Evo‐Eco‐Paleo ‐ UMR 8198 CNRS Université de Lille Lille F‐59000 France
| | - Nathalie Roger
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Romain Moerman
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
- Evolutionary Biology and Ecology Université libre de Bruxelles Av. F.D. Roosevelt 50 Brussels B‐1000 Belgium
| | - Guillaume Ghisbain
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Maxence Gérard
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Dominik Popowski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy Medical University of Warsaw Banacha 1 Warsaw 02‐097 Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy Medical University of Warsaw Banacha 1 Warsaw 02‐097 Poland
| | - Denis Fournier
- Evolutionary Biology and Ecology Université libre de Bruxelles Av. F.D. Roosevelt 50 Brussels B‐1000 Belgium
| | - Ivan Meeus
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Niels Piot
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Guy Smagghe
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Lucas Terrana
- Research Institute for Biosciences Biology of Marine Organisms and Biomimetics University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Denis Michez
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| |
Collapse
|
26
|
Orzelska-Górka J, Szewczyk K, Gawrońska-Grzywacz M, Kędzierska E, Głowacka E, Herbet M, Dudka J, Biała G. Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice. Neurochem Int 2019; 128:206-214. [PMID: 31077758 DOI: 10.1016/j.neuint.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
We have recently demonstrated that the hydroethanolic extracts of Impatiens glandulifera Royle (Balsaminaceae) have antianxiety effect in mice. The present study was aimed to investigate an antidepressant activity of hyperoside (HYP) and protocatechuic acid (PCA), two polyphenols isolated from the aerial parts of this plant, using the forced swimming test (FST) and tail suspension test (TST) in mice. The implication of the monoaminergic system in this effect was assessed and brain-derived neurotrophic factor (BDNF) expression was measured. At doses 1.875, 3.75 and 7.5 mg/kg, HYP and PCA significantly reduced immobility in the FST and TST, without affecting locomotor activity of mice. Pretreatment with p-chlorophenylalanine (PCPA 100 mg/kg, a serotonin synthesis inhibitor) or α-methyl-DL-tyrosine (AMPT 100 mg/kg, a catecholamine synthesis inhibitor) was able to prevent antidepressant-like effect of HYP and PCA (3.75 mg/kg). Sub-effective doses of fluoxetine (5 mg/kg) or reboxetine (2 mg/kg) were capable of potentiating the effect of a sub-effective dose of HYP (0.94 mg/kg) in the FST. Co-administration of sub-effective dose of PCA (0.94 mg/kg) and reboxetine (2 mg/kg) resulted in reducing immobility in the FST. The antidepressant-like effect of HYP and PCA was also prevented by the administration of sulpiride (50 mg/kg), a D2 antagonist. In addition, HYP (3.75 and 7.5 mg/kg) and PCA (7.5 mg/kg) improved the expression of hippocampal BDNF of mice subjected to TST. Altogether, our findings suggest that HYP and PCA exert antidepressant-like effects in mice, which was possibly mediated by monoaminergic system and the upregulation of BDNF level.
Collapse
Affiliation(s)
- Jolanta Orzelska-Górka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland.
| | - Katarzyna Szewczyk
- Chair and Department of Pharmaceutical Botany, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Ewa Kędzierska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland
| | - Ewelina Głowacka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland
| |
Collapse
|
27
|
Simultaneous separation of six pure polymethoxyflavones from sweet orange peel extract by high performance counter current chromatography. Food Chem 2019; 292:160-165. [PMID: 31054661 DOI: 10.1016/j.foodchem.2019.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
Successful isolation of polymethoxyflavones (PMFs) from citrus peels has led to numerous evaluations of PMFs in a broad spectrum of biological activities, such as inhibition of chronic inflammation, cancer prevention and anti-atherogenic properties. Recent reports associated with the health promoting properties of PMFs in citrus fruits have dramatically increased. However, the limiting factor in animal and human study of PMFs is still the supply of pure PMFs, such as tangeretin, nobiletin, sinensetin and 3,5,6,7,3',4'-hexamethoxyflavone. Herein, we introduce the newly developed efficient separation method using high-performance counter-current chromatography (HPCCC) in isolating multiple pure single PMFs simultaneously in one cycle process. With the smallest preparation loop on the semi-preparative HPCCC instrument, the optimized solvent system of hexanes/ethyl acetate/methanol/water resulted in the isolation of pure sinensetin, tangeretin, nobiletin, 3,5,6,7,3',4'-hexamethoxyflavone, 5,6,7,4'-tetramethoxyflavone and 3,5,6,7,8,3',4'-heptamethoxyflavone directly from crude sweet orange peel extract in one cycle of separation process by HPCCC in the mode of reverse phase. The purity of each of the six isolated PMFs is greater than 96.6% analyzed by high-performance liquid chromatography and proton nuclear magnetic resonance. Scale-up and high purity of individual PMFs can be separated by using a large separation loop in preparative HPCCC model. The renovated HPCCC methodology can be practically used in natural product isolation and consequent biological property evaluation.
Collapse
|
28
|
Tsushiro K, Kurizaki A, Watanabe T, Devkota HP. Chemical constituents from the aerial parts of Impatiens hypophylla Makino var. hypophylla. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2018.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Cao H, Ou J, Chen L, Zhang Y, Szkudelski T, Delmas D, Daglia M, Xiao J. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit Rev Food Sci Nutr 2018; 59:3371-3379. [PMID: 29993262 DOI: 10.1080/10408398.2018.1492900] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Juanying Ou
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanbo Zhang
- School Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Dominique Delmas
- INSERM U866 Research Center, Université de Bourgogne, Dijon, France
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| |
Collapse
|
30
|
Species- and developmental stage-specific effects of allelopathy and competition of invasive Impatiens glandulifera on co-occurring plants. PLoS One 2018. [PMID: 30403696 DOI: 10.1371/journal.pone.0205843.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Impacts of invasive species on native communities are often difficult to assess, because they depend on a range of factors, such as species identity and traits. Such context-dependencies are poorly understood yet, but knowledge is required to predict the impact of invasions. MATERIALS AND METHODS We assessed species- and developmental stage-specificity of competitive and allelopathic effects of the invasive plant Impatiens glandulifera on different developmental stages of four native plant species. While some studies have shown a reduction in plant growth caused by I. glandulifera, the magnitude of its impact is ambiguous. For our study we used seedlings and juveniles of I. glandulifera and the native target species Geum urbanum, Filipendula ulmaria, Urtica dioica, and Salix fragilis (seedlings only of the latter), which often co-occur with I. glandulifera in different habitats. Plants were grown in competition with I. glandulifera or treated with I. glandulifera leaf material, or 2-metoxy-1,4-naphtoquinone (2-MNQ), its supposedly main allelochemical. RESULTS AND CONCLUSIONS Overall I. glandulifera had a negative effect on the growth of all target species depending on the species and on the plant's developmental stage. F. ulmaria was the least affected and U. dioica the most, and seedlings were less affected than juveniles. The species-specific response to I. glandulifera may lead to an altered community composition in the field, while growth reduction of seedlings and juveniles should give I. glandulifera an advantage in cases where plant recruitment is crucial. 2-MNQ led to minor reductions in plant growth, suggesting that it may not be the only allelopathic substance of I. glandulifera. Surprisingly, I. glandulifera was not fully tolerant to 2-MNQ. This autotoxicity could contribute to I. glandulifera population dynamics. We conclude that I. glandulifera reduces the growth of native vegetation and alters early successional stages without fully hindering it.
Collapse
|
31
|
Bieberich J, Lauerer M, Drachsler M, Heinrichs J, Müller S, Feldhaar H. Species- and developmental stage-specific effects of allelopathy and competition of invasive Impatiens glandulifera on co-occurring plants. PLoS One 2018; 13:e0205843. [PMID: 30403696 PMCID: PMC6221290 DOI: 10.1371/journal.pone.0205843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
Background Impacts of invasive species on native communities are often difficult to assess, because they depend on a range of factors, such as species identity and traits. Such context-dependencies are poorly understood yet, but knowledge is required to predict the impact of invasions. Materials and methods We assessed species- and developmental stage-specificity of competitive and allelopathic effects of the invasive plant Impatiens glandulifera on different developmental stages of four native plant species. While some studies have shown a reduction in plant growth caused by I. glandulifera, the magnitude of its impact is ambiguous. For our study we used seedlings and juveniles of I. glandulifera and the native target species Geum urbanum, Filipendula ulmaria, Urtica dioica, and Salix fragilis (seedlings only of the latter), which often co-occur with I. glandulifera in different habitats. Plants were grown in competition with I. glandulifera or treated with I. glandulifera leaf material, or 2-metoxy-1,4-naphtoquinone (2-MNQ), its supposedly main allelochemical. Results and conclusions Overall I. glandulifera had a negative effect on the growth of all target species depending on the species and on the plant’s developmental stage. F. ulmaria was the least affected and U. dioica the most, and seedlings were less affected than juveniles. The species-specific response to I. glandulifera may lead to an altered community composition in the field, while growth reduction of seedlings and juveniles should give I. glandulifera an advantage in cases where plant recruitment is crucial. 2-MNQ led to minor reductions in plant growth, suggesting that it may not be the only allelopathic substance of I. glandulifera. Surprisingly, I. glandulifera was not fully tolerant to 2-MNQ. This autotoxicity could contribute to I. glandulifera population dynamics. We conclude that I. glandulifera reduces the growth of native vegetation and alters early successional stages without fully hindering it.
Collapse
Affiliation(s)
- Judith Bieberich
- Ecological Botanical Gardens, BayCEER (Bayreuth Center for Ecology and Environmental Research), University of Bayreuth, Bayreuth, Germany
- Department of Animal Ecology 1, BayCEER (Bayreuth Center for Ecology and Environmental Research), University of Bayreuth, Bayreuth, Germany
- * E-mail:
| | - Marianne Lauerer
- Ecological Botanical Gardens, BayCEER (Bayreuth Center for Ecology and Environmental Research), University of Bayreuth, Bayreuth, Germany
| | - Maria Drachsler
- Ecological Botanical Gardens, BayCEER (Bayreuth Center for Ecology and Environmental Research), University of Bayreuth, Bayreuth, Germany
| | - Julian Heinrichs
- Ecological Botanical Gardens, BayCEER (Bayreuth Center for Ecology and Environmental Research), University of Bayreuth, Bayreuth, Germany
| | - Stefanie Müller
- Ecological Botanical Gardens, BayCEER (Bayreuth Center for Ecology and Environmental Research), University of Bayreuth, Bayreuth, Germany
| | - Heike Feldhaar
- Department of Animal Ecology 1, BayCEER (Bayreuth Center for Ecology and Environmental Research), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
32
|
|
33
|
Szewczyk K, Sezai Cicek S, Zidorn C, Granica S. Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities. Nat Prod Res 2018; 33:2851-2855. [DOI: 10.1080/14786419.2018.1499644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Katarzyna Szewczyk
- Chair and Department of Pharmaceutical Botany, Medical University of Lublin, Lublin, Poland
| | - Serhat Sezai Cicek
- Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Zidorn
- Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
34
|
Brazilian insulin plant as a bifunctional food: Dual high-resolution PTP1B and α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antidiabetic compounds in Myrcia rubella Cambess. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Abstract
Preliminary characterization and bioactivity of water-soluble polysaccharides from four Impatiens species—I. glandulifera Royle, I. parviflora DC., I. balsamina L., and I. noli-tangere L.—were investigated. The yields of polysaccharides range widely from 1.97% for I. parviflora roots to 18.63% for I. balsamina aerial parts. SEC (Size exclusion chromatography) chromatograms show that all samples contained a low molecular weight part that consisted of components of similar molecular weight. The aerial parts and roots of I. balsamina, and I. glandulifera aerial parts had considerable amounts of high molecular weight components up to 2.3 MDa. The sugar composition analysis revealed that Impatiens polysaccharides consisted primarily of galactose, arabinose, rhamnose, mannose, xylose, and glucose. All polysaccharide fractions, except for I. parviflora roots, also contain galacturonic acid. Moreover, in vitro bioactivity of obtained polysaccharides were evaluated. The antioxidant activity was evaluated on the basis of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethyl-benzthia-6-sulfonic acid) (ABTS) radical scavenging assays. The highest antioxidant activity was obtained for I. balsamina aerial parts and I. parviflora roots. Among the tested fractions, only the polysaccharides from I. glandulifera aerial parts were able to significantly decrease the production of IL-8 by 32.7 ± 10.5%. The results suggest that Impatiens species can be considered as a new source of antioxidants.
Collapse
|
36
|
Cen Y, Xiao A, Chen X, Liu L. Screening and separation of α-amylase inhibitors from Solanum nigrum
with amylase-functionalized magnetic graphene oxide combined with high-speed counter-current chromatography. J Sep Sci 2017; 40:4780-4787. [DOI: 10.1002/jssc.201700333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yin Cen
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Aiping Xiao
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Liangliang Liu
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha China
| |
Collapse
|
37
|
Leitão SG, Leitão GG, Vicco DK, Pereira JPB, de Morais Simão G, Oliveira DR, Celano R, Campone L, Piccinelli AL, Rastrelli L. Counter-current chromatography with off-line detection by ultra high performance liquid chromatography/high resolution mass spectrometry in the study of the phenolic profile of Lippia origanoides. J Chromatogr A 2017; 1520:83-90. [DOI: 10.1016/j.chroma.2017.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/15/2017] [Accepted: 09/02/2017] [Indexed: 01/17/2023]
|
38
|
Maietti A, Brighenti V, Bonetti G, Tedeschi P, Prencipe FP, Benvenuti S, Brandolini V, Pellati F. Metabolite profiling of flavonols and in vitro antioxidant activity of young shoots of wild Humulus lupulus L. (hop). J Pharm Biomed Anal 2017; 142:28-34. [DOI: 10.1016/j.jpba.2017.04.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
39
|
Chen H, Ouyang K, Jiang Y, Yang Z, Hu W, Xiong L, Wang N, Liu X, Wang W. Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity. Int J Biol Macromol 2017; 98:829-836. [PMID: 28223131 DOI: 10.1016/j.ijbiomac.2017.02.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
The ethanol extracts of Chimonanthus nitens Oliv. leaves were prepared sequentially by ethanol gradient elution and tested for their α-glucosidase inhibitory. The fraction of 50% ethanol eluate (EE) exhibited the notable inhibition with IC50 of 0.376mg/mL. Also, 50% EE was chemically characterized by liquid chromatography-mass spectrometry (LC-MS) analysis. Eight compounds including rutin (1), hyperin (2), isoquercitrin (3), luteoloside (4), astragalin (6), quercetin (13), naringenin (14), kaempferol (15) were identified by compared with standard substances as well as proper luteolin-5-O-glucoside (5), kaempferol-7-O-rhamnoside (9), 5,7,8-trihydroxy-2-methoxyl-flavone-7-O-glucoside (10), kaempferol-7-O-acetyl-galactoside (11). The experiments of ultra-filtration combined with liquid chromatography-mass spectrometry (UF-LC-MS) guided quercetin and kaempferol as the key factors for 50% EE showing highly inhibitory activity on α-glucosidase. Quercetin and kaempferol inhibited yeast α-glucosidase in a mixed-type manner with IC50 of 66.8 and 109μg/mL, respectively. These results would provide theoretical underpinning for the C. nitens Oliv. leaves ethanol extracts used as nutraceutical health supplement in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Hui Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhanwei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbing Hu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Xiong
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ning Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Liu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
40
|
Chen H, Ouyang K, Jiang Y, Yang Z, Hu W, Xiong L, Wang N, Liu X, Wang W. Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity. Int J Biol Macromol 2017. [DOI: doi.org/10.1016/j.ijbiomac.2017.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Biler M, Biedermann D, Valentová K, Křen V, Kubala M. Quercetin and its analogues: optical and acido–basic properties. Phys Chem Chem Phys 2017; 19:26870-26879. [DOI: 10.1039/c7cp03845c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study is focused on eight structurally analogous natural flavonoids that exhibit a wide range of biological activities, which are of interest in pharmacy, cosmetics and the food industry.
Collapse
Affiliation(s)
- Michal Biler
- Department of Biophysics
- Centre of the Region Haná for Biotechnological and Agricultural Research
- Palacký University
- Olomouc
- Czech Republic
| | - David Biedermann
- Institute of Microbiology
- Laboratory of Biotransformation
- Czech Academy of Sciences
- Prague
- Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology
- Laboratory of Biotransformation
- Czech Academy of Sciences
- Prague
- Czech Republic
| | - Vladimír Křen
- Institute of Microbiology
- Laboratory of Biotransformation
- Czech Academy of Sciences
- Prague
- Czech Republic
| | - Martin Kubala
- Department of Biophysics
- Centre of the Region Haná for Biotechnological and Agricultural Research
- Palacký University
- Olomouc
- Czech Republic
| |
Collapse
|
42
|
Puljula E, Vepsäläinen J, Turhanen PA. Synthesis of medronic acid monoesters and their purification by high-performance countercurrent chromatography or by hydroxyapatite. Beilstein J Org Chem 2016; 12:2145-2149. [PMID: 27829921 PMCID: PMC5082484 DOI: 10.3762/bjoc.12.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
We achieved the synthesis of important medronic acid monoalkyl esters via the dealkylation of mixed trimethyl monoalkyl esters of medronic acid. Two methods were developed for the purification of medronic acid monoesters: 1) small scale (10–20 mg) purification by using hydroxyapatite and 2) large scale (tested up to 140 mg) purification by high-performance countercurrent chromatography (HPCCC).
Collapse
Affiliation(s)
- Elina Puljula
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, P.O.Box 1627, FI-70211 Kuopio, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, P.O.Box 1627, FI-70211 Kuopio, Finland
| | - Petri A Turhanen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, P.O.Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
43
|
Comparison of the Essential Oil Composition of Selected Impatiens Species and Its Antioxidant Activities. Molecules 2016; 21:molecules21091162. [PMID: 27598111 PMCID: PMC6274178 DOI: 10.3390/molecules21091162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 11/17/2022] Open
Abstract
The present paper describes the chemical composition of the essential oils obtained by hydrodistillation from four Impatiens species, Impatiens glandulifera Royle, I. parviflora DC., I. balsamina L. and I. noli-tangere L. The GC and GC-MS methods resulted in identification of 226 volatile compounds comprising from 61.7%-88.2% of the total amount. The essential oils differed significantly in their composition. Fifteen compounds were shared among the essential oils of all investigated Impatiens species. The majority of these constituents was linalool (0.7%-15.1%), hexanal (0.2%-5.3%) and benzaldehyde (0.1%-10.2%). Moreover, the antioxidant activity of the essential oils was investigated using different methods. The chemical composition of the essential oils and its antioxidant evaluation are reported for the first time from the investigated taxon.
Collapse
|
44
|
Ahmad M, Khan MPZ, Mukhtar A, Zafar M, Sultana S, Jahan S. Ethnopharmacological survey on medicinal plants used in herbal drinks among the traditional communities of Pakistan. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:154-186. [PMID: 26947900 DOI: 10.1016/j.jep.2016.02.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There is very limited information regarding medicinal plants used by traditional healers in Pakistan, for treating wide-ranging diseases. Current study provides significant ethnopharmacological information, both qualitative and quantitative on medical plants in Pakistan and the pharmacological importance of herbal drinks, especially in the discovery of new drugs. MATERIALS AND METHODS The current ethnomedicinal field study was conducted from various traditional communities of Pakistan to document usage of medicinal plants as herbal drinks. Data was collected through field interviews from local people and using semi-structured questionnaires. Data was analyzed using quantitative indices such as UV (use value), RFC (Relative frequency of citation), and FL (Fidelity level). RESULTS The present study recorded 217 plant species belonging to 174 genera and 69 families used in herbal drinks preparations. Major herbal preparations include decoctions, infusions and juice. According to use reports, significant species were Aloe vera, Artemisia fragrans, Allium cepa, Senegalia catechu, Alternanthera sessilis, Malva ludwigii, Arnebia benthamii, Cichorium intybus, Coccinia grandis, Dalbergia sissoo. Major ailment treated with herbal drinks include heartburn, fever, diarrhea, hypertension, and others. Use value (UV) varies from 0.23 to 0.02, with Mentha arvensis (0.23) having the highest value of UV followed by Mentha longifolia (0.22), Plantago lanceolate (0.19), Achillea millefolium (0.18), Coriandrum sativum (0.18), Justicia adhatoda and Malva sylvestris (0.17). Values of RFC varies from 0.28 to 0.09 while Fidelity level (FL) among plants varies from 37.5 to 100. Alternanthera sessilis, Oxytropis lapponica, Millettia pinnata and Salvia bucharica had the highest FL value (100). CONCLUSION The use of medicinal plants is prevalent in traditional communities of Pakistan. Different herbal preparations are in common practice including various herbal drinks a common tradition and much favoured herbal preparation in terms of its results and regarded as reciprocal to modern drugs. Therefore, suggesting further pharmacological, phytochemical evaluation for essential metabolites and chemical constituents.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Plant Systematics and Biodiversity Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Pukhtoon Zada Khan
- Plant Systematics and Biodiversity Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anam Mukhtar
- Plant Systematics and Biodiversity Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Zafar
- Plant Systematics and Biodiversity Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shazia Sultana
- Plant Systematics and Biodiversity Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sarwat Jahan
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|