1
|
Chen Y, Li L, Xu J, Liu Y, Xie Y, Xiong A, Wang Z, Yang L. Mass spectrometric analysis strategies for pyrrolizidine alkaloids. Food Chem 2024; 445:138748. [PMID: 38422865 DOI: 10.1016/j.foodchem.2024.138748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Pyrrolizidine alkaloids (PAs) in food and natural preparations have received widespread attention due to their hepatotoxicity, genotoxicity, and embryotoxicity. Mass spectrometry (MS), as a high resolution, high sensitive, and high throughput detection tool, has been the most commonly used technique for the determination of PAs. The continuous advancement of new technologies, methods, and strategies in the field of MS has contributed to the improvement of the analytical efficiency and methodological enhancement of PAs. This paper provides an overview of the structure, toxicity properties and commonly employed analytical methods, focusing on the concepts, advances, and novel techniques and applications of MS-based methods for the analysis of PAs. Additionally, the remaining challenges, future perspectives, and trends for PA detection are discussed. This review provides a reference for toxicological studies of PAs, content monitoring, and the establishment of quality control and safety standards for herbal and food products.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jie Xu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Takano K, Ikeda H, Takanashi K. Pyrrolizidine alkaloids are synthesized and accumulated in flower of Myosotis scorpioides. JOURNAL OF PLANT RESEARCH 2024; 137:455-462. [PMID: 38368590 DOI: 10.1007/s10265-024-01525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
Pyrrolizidine alkaloids (PAs) are specialized metabolites that are produced by various plant families that act as defense compounds against herbivores. On the other hand, certain lepidopteran insects uptake and utilize these PAs as defense compounds against their predators and as precursors of their sex pheromones. Adult males of Parantica sita, a danaine butterfly, convert PAs into their sex pheromones. In early summer, P. sita swarms over the flowers of Myosotis scorpioides, which belongs to the family Boraginaceae. M. scorpioides produces PAs, but the organs in which PAs are produced and whether P. sita utilizes PAs in M. scorpioides are largely unknown. In the present study, we clarified that M. scorpioides accumulates retronecine-core PAs in N-oxide form in all organs, including flowers. We also identified two M. scorpioides genes encoding homospermidine synthase (HSS), a key enzyme in the PA biosynthetic pathway, and clarified that these genes are expressed in all organs where PAs accumulate. Phylogenetic analysis suggested that these two HSS genes were originated from gene duplication of deoxyhypusine synthase gene like other HSS genes in PA-producing plants. These results suggest that PAs are synthesized and accumulated in the flower of M. scorpioides and provide a possibility for a PA-mediated interaction between P. sita and M. scorpioides.
Collapse
Affiliation(s)
- Kyohei Takano
- Department of Science, Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-Ku, Tokyo, 153-8902, Japan
| | - Kojiro Takanashi
- Department of Science, Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
3
|
Holmes KD, Getman-Pickering ZL, Mudrak EL, Power AG. Plant susceptibility to a shared herbivore is reduced by belowground competition with neighbors. Oecologia 2023; 203:113-124. [PMID: 37831152 DOI: 10.1007/s00442-023-05454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
Spatial variation in plant community composition is an important driver of variation in susceptibility to herbivores. In close proximity, certain neighbors can attract or repel herbivores to a focal plant ("associational effects"). Neighboring plants may also compete for resources, modifying their phenotype in ways that affect susceptibility to herbivores. To test whether and how competition contributes to associational effects, we manipulated the sharing of belowground resources among plant neighbors (spotted Joe Pye weed and common boneset) that serve as alternate hosts for an herbivorous beetle. In the field, the beetle Ophraella notata laid more eggs and inflicted more damage on plants of both species that were released from belowground competition with neighbors. Competition also weakened the effects of neighbor identity during field trials, reducing associational susceptibility. When beetles were forced to choose between the two host species in cage trials, competition again reduced beetle use of Joe Pye weed as a secondary host. To test the role of plant traits related to herbivore defense and nutrition, we quantified leaf protein, specific leaf area, and trichomes, and conducted behavioral assays on leaf disks. Beetles did not distinguish between Joe Pye weed treatments at the leaf disk level, and competition did not impact specific leaf area and protein. Trichome density was higher in both species in the preferred treatment. Overall, our results suggest that belowground interactions between plants may mediate the strength of associational effects, as secondary hosts become more attractive when released from competition with primary host plants.
Collapse
|
4
|
Shapter FM, Granados-Soler JL, Stewart AJ, Bertin FR, Allavena R. Equine Crofton Weed ( Ageratina spp.) Pneumotoxicity: What Do We Know and What Do We Need to Know? Animals (Basel) 2023; 13:2082. [PMID: 37443880 DOI: 10.3390/ani13132082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Crofton weed (Ageratina adenophora) is a global and highly invasive weed, with ingestion causing severe respiratory disease in horses, leading to irreversible and untreatable pulmonary fibrosis and oedema. While reports of equine pneumotoxicity remain common in Australia and New Zealand, equine pneumotoxicity may be underdiagnosed in other countries where Crofton weed is endemic but poorly differentiated. The pathogenesis of Crofton weed toxicity following ingestion has been well described in a number of different animal models, including rodents, rabbits, and goats. However, induced toxicity is organ-selective across different animal species, and these vastly differ from the pathogenesis described in horses, both clinically and after experimental exposure. Sources of variation may include species-specific susceptibility to different toxins present in the plant, different mechanistic processes of toxicity, and species differences in toxin biotransformation and bioactivation across different organs. Considering disease severity and Crofton weed's invasiveness globally, assessing published toxicological and exposure data is necessary to advance research, identify specific toxins for horses, and possible prophylactic and therapeutic strategies. This review presents an overview of the available literature on equine toxicity, parallels between toxicity in horses and other animal species, and important aspects to be included in the future research agenda.
Collapse
Affiliation(s)
- Frances Marie Shapter
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| | - José Luis Granados-Soler
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| | - Allison J Stewart
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| | - Francois Rene Bertin
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| | - Rachel Allavena
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| |
Collapse
|
5
|
Dwyer JT. Have safety and efficacy assessments of bioactives come of age? Mol Aspects Med 2023; 89:101103. [PMID: 35853784 PMCID: PMC9841065 DOI: 10.1016/j.mam.2022.101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
This article describes why the safety and efficacy assessment of non-nutrient bioactives for reducing chronic disease risk is so complicated, especially for dietary supplements and traditional medicines. Scientists, regulators, and the public have different and sometimes opposing perspectives about bioactives. Drug, food, and traditional medicine models used for bioactive safety assessment are based on different assumptions and use different processes. Efficacy assessment is seldom based on clinical trials of boactives' effects in reducing chronic disease risk. It usually consists of application of quality assurance measures and evaluation of label claims and commercial speech about ingredients or products to ensure conformity to regulations. Harmonization of safety and efficacy assessment on a global basis is difficult because of differences within and between regulatory systems. The recommendations provided may open the way for bioactives to play a larger health role in the future, fill gaps in data needed for crafting authoritative dietary guidance on intakes, and speed harmonization of global standards.
Collapse
Affiliation(s)
- Johanna T Dwyer
- Office of Dietary Supplements, National Institutes of Health, 6705 Rockledge Drive, Bethesda, MD, 20892, USA; U.S. Department of Agriculture, Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Stefova E, Cvetanoska M, Bogdanov J, Matevski V, Stanoeva JP. Assessment of Distribution and Diversity of Pyrrolizidine Alkaloids in the Most Prevalent Boraginaceae Species in Macedonia. Chem Biodivers 2022; 19:e202200066. [PMID: 35581149 DOI: 10.1002/cbdv.202200066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
Systematic study of extraction efficiency of pyrrolizidine alkaloids (PAs) and corresponding pyrrolizidine alkaloid N-oxides (PANOs) from plant material for subsequent LC/MS analysis was carried out. The optimal extraction was achieved with methanol and one clean up step using SPE C18 column. With the optimized LC-ESI-MS/MS method using ion trap, the distribution and diversity of PAs and PANOs in plant material (leaves, flowers and stems) obtained from wild-growing E. vulgare, E. italicum, S. officinale L., C. creticum and O. heterophylla species from Macedonia was assessed. These widespread Boraginaceae species contain various PAs and PANOs and 25 of them were identified. Based on these qualitative and quantitative analyses, the profiles of 1,2-unsaturated PAs for each sample were obtained and their toxic potential was estimated. The toxic potential of O. heterophylla and C. creticum were assumed to be highest (containing up to 4753 mg/kg and 3507 mg/kg), followed by E. vulgare (up to 1340 mg/kg), S. officinale L. (up to 479 mg/kg) and E. italicum (up to 16 mg/kg). This method can be used for monitoring the inclusion of these secondary metabolites in the food chain in order to contribute in their risk management.
Collapse
Affiliation(s)
- Elena Stefova
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Marinela Cvetanoska
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| | - Vlado Matevski
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia.,Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000, Skopje, R. N. Macedonia
| | - Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R. N. Macedonia
| |
Collapse
|
7
|
Hepatotoxicity of Pyrrolizidine Alkaloid Compound Intermedine: Comparison with Other Pyrrolizidine Alkaloids and Its Toxicological Mechanism. Toxins (Basel) 2021; 13:toxins13120849. [PMID: 34941687 PMCID: PMC8709407 DOI: 10.3390/toxins13120849] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are common secondary plant compounds with hepatotoxicity. The consumption of herbal medicines and herbal teas containing PAs is one of the main causes of hepatic sinusoidal obstruction syndrome (HSOS), a potentially life-threatening condition. The present study aimed to reveal the mechanism underlying the cytotoxicity of intermedine (Im), the main PA in Comfrey. We evaluated the toxicity of the retronecine-type PAs with different structures to cell lines derived from mammalian tissues, including primary mouse hepatocytes, human hepatocytes (HepD), mouse hepatoma-22 (H22) and human hepatocellular carcinoma (HepG2) cells. The cytotoxicity of Im to hepatocyte was evaluated by using cell counting kit-8 assay, colony formation experiment, wound healing assay and dead/live fluorescence imaging. In vitro characterization showed that these PAs were cytotoxic and induced cell apoptosis in a dose-dependent manner. We also demonstrated that Im induced cell apoptosis by generating excessive reactive oxygen species (ROS), changing the mitochondrial membrane potential and releasing cytochrome c (Cyt c) before activating the caspase-3 pathway. Importantly, we directly observed the destruction of the cell mitochondrial structure after Im treatment through transmission electron microscopy (TEM). This study provided the first direct evidence of Im inducing hepatotoxicity through mitochondria-mediated apoptosis. These results supplemented the basic toxicity data of PAs and facilitated the comprehensive and systematic evaluation of the toxicity caused by PA compounds.
Collapse
|
8
|
Van Pamel E, Henrottin J, Van Poucke C, Gillard N, Daeseleire E. Multi-Class UHPLC-MS/MS Method for Plant Toxins and Cyanotoxins in Food Supplements and Application for Belgian Market Samples. PLANTA MEDICA 2021; 87:1069-1079. [PMID: 34243208 DOI: 10.1055/a-1517-5828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of plant toxins and/or cyanotoxins in food supplements implies consumer health risks. Therefore, a targeted ultra-high performance liquid chromatographic-tandem mass spectrometric method to detect/quantify 25 toxins simultaneously in food supplement formulations was developed and validated. Full validation for tablets/powders and secondary validation for a liquid and soft gel capsule indicated that most compounds were efficiently extracted (≥ 75%), while others were only partly extracted (18 - 61%). Trueness was fulfilled (70 - 120%), with some exceptions (mostly at the lowest validation level). Intralaboratory repeatability, intra- and interlaboratory reproducibility values of ≤ 20%, ≤ 25%, and ≤ 25% were obtained for most, respectively. Matrix effects were found to be significant for most compounds. Good sensitivity (µg/kg level) was observed for galegin(e), lycopsamine, lycorine, rubiadin, skimmiamine, and vascin(e), in contrast to helveticoside, lucidin, lucidin-3-primveroside, plumbagin(e), and thujone, which were detected at the mg/kg level. The other compounds were characterized by a sensitivity between 10 to 1000 µg/kg. The validated methodology was applied for 52 food supplements (tablets, capsules, liquids/syrup, etc.) purchased from the Belgian market. In more than 25% of the samples, one or more toxins were detected (concentrations determined using standard addition). Lycopsamine, microcystin LR, solamargine, thujone, and vasicin(e) were the most frequently detected toxins. A clear link between the toxins detected and the plant species on the food supplement ingredient list could not always be established. This generic "dilute-and-shoot" procedure can be used for further research on toxins in food supplements and by extension other plant/algae-based food/feed commodities (herbs, edible flowers, etc.).
Collapse
Affiliation(s)
- Els Van Pamel
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | | | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | | | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| |
Collapse
|
9
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
10
|
Zan K, Hu X, Li Y, Wang Y, Jin H, Zuo T, Ma S. Simultaneous determination of eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum by ultra high performance liquid chromatography tandem mass spectrometry and risk assessments based on a real-life exposure scenario. J Sep Sci 2021; 44:3237-3247. [PMID: 34240803 DOI: 10.1002/jssc.202100286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/02/2023]
Abstract
Pyrrolizidine alkaloids are toxins having hepatotoxic and carcinogenic effects on human health. A ultra high performance liquid chromatography tandem mass spectrometry technique was developed for the first time for the simultaneous determination of eight pyrrolizidine alkaloids, including four diastereoisomers (intermedine, lycopsamine, rinderine, and echinatine) and their respective N-oxide forms, in different parts of Eupatorium lindleyanum. The risk assessment method for pyrrolizidine alkaloids in Eupatorium lindleyanum was explored using the margin of exposure strategy for the first time based on a real-life exposure scenario. Differences were found in all eight pyrrolizidine alkaloids in various parts of Eupatorium lindleyanum. Besides, the total levels of pyrrolizidine alkaloids in Eupatorium lindleyanum followed the order of root > flower > stem > leaf. Moreover, the risk assessment data revealed that the deleterious effects on human health were unlikely at exposure times of less than 200, 37, and 12 days during the lifetimes of Eupatorium lindleyanum leaves, stems, and flowers, respectively. This study reported both the contents of and risk associated with Eupatorium lindleyanum pyrrolizidine alkaloids. The comprehensive application of the novel ultra high performance liquid chromatography tandem mass spectrometry technique alongside the risk assessment approach provided a scientific basis for quality evaluation and rational utilization of toxic pyrrolizidine alkaloids in Eupatorium lindleyanum to improve public health safety.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Xiaowen Hu
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Yaolei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Tiantian Zuo
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, 102629, P. R. China
| |
Collapse
|
11
|
Valese AC, Daguer H, Muller CMO, Molognoni L, da Luz CFP, de Barcellos Falkenberg D, Gonzaga LV, Brugnerotto P, Gorniak SL, Barreto F, Fett R, Costa ACO. Quantification of pyrrolizidine alkaloids in Senecio brasiliensis, beehive pollen, and honey by LC-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:685-694. [PMID: 34264805 DOI: 10.1080/03601234.2021.1943257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article presents the determination of eight pyrrolizidine alkaloids (PAs) by LC-MS/MS in honeys, pollen, and Senecio brasiliensis (Asteraceae) samples, all from Santa Catarina state, Brazil. In addition, the Box-Behnken design was used to perform an optimized sample preparation on pollens and S. brasiliensis parts. Senecionine and its N-oxide, besides retrorsine N-oxide, were determined in six of the seven honeys samples. Pollen from species of the Asteraceae, Fabaceae, and Boraginaceae families were found with greater predominance in three of the seven honeys samples. In these three honeys samples were also found the highest PAs levels. In beehive pollen, flower, and leaf of S. brasiliensis, the total levels of PAs and their N-oxides reached 221, 14.1 × 104, and 14.8 × 104 mg kg-1, respectively. In honeys, these compounds are chemical contaminants and therefore undesirable when the sum exceeds 71 µg kg-1, according to EFSA. On the other hand, although PAs are naturally present in plant and pollen of some species (Senecio, Crotalaria, Bacharis, Ecchium, Mimosa scabrella, Vernonia), it is important to monitor their levels in plants but also in honeys, and other beehive products since these compounds are transferred to the final product.
Collapse
Affiliation(s)
- Andressa Camargo Valese
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Heitor Daguer
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | | | - Luciano Molognoni
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Cynthia Fernandes Pinto da Luz
- Center for Research in Palynology, Department of the Environment of São Paulo, Institute of Botany, Sao Paulo, SP, Brazil
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Silvana Lima Gorniak
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabiano Barreto
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
12
|
Zhang Y, Yang FF, Chen H, Qi YD, Si JY, Wu Q, Liao YH. Analysis of pyrrolizidine alkaloids in Eupatorium fortunei Turcz. and their in vitro neurotoxicity. Food Chem Toxicol 2021; 151:112151. [PMID: 33774095 DOI: 10.1016/j.fct.2021.112151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
This study was to analyze the pyrrolizidine alkaloids (PAs) in Eupatorium fortunei herbs and its derived finished products with a view to evaluating their effects on the proliferation and oligodendrogenesis of neural progenitor cells (NPCs). Using a LC-MS/MS method with 32 PAs reference standards, 8 PAs including intermedine, intermedine N-oxide, lycopsamine, lycopsamine N-oxide, retronecine, seneciphylline and senkirkine and 7-acetylintermedine N-oxide were identified with intermedine N-oxide and lycopsamine N-oxide being most abundant. The total PA amounts were found to vary from 0.18 to 61.81 μg/g in 30 batches of herbs and from 0.86 to 36.96 μg/g in 4 commercial finished products, respectively. Risk assessments indicated that the short-term intake seemed unlikely lead to acute toxic effects but the chronic use warranted cautions. Using NPCs derived from mouse induced pluripotent stem cells as an in vitro testing model, intermedine, intermedine N-oxide and lycopsamine N-oxide appeared to decrease cell viability at 30 μM whereas intermedine N-oxide inhibited oligodendrogenesis of NPCs at 10 μM. The present results suggested that the PAs in the majority of E. fortunei herbs and the derived products not only resulted in their exposure far exceeding the acceptable intake limit (i. e. 1.0 μg PA per day for adults) in herbal medicinal products recommended by the European Medicines Agency but also induced neurotoxicity to NPCs in vitro.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102488, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Fei-Fei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Huan Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Jian-Yong Si
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China
| | - Qing Wu
- Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102488, PR China.
| | - Yong-Hong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Brugnerotto P, Seraglio SKT, Schulz M, Gonzaga LV, Fett R, Costa ACO. Pyrrolizidine alkaloids and beehive products: A review. Food Chem 2020; 342:128384. [PMID: 33214040 DOI: 10.1016/j.foodchem.2020.128384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022]
Abstract
Pyrrolizidine alkaloids (PA) are secondary metabolites of plants, which are mostly found in the genus Senecio, Echium, Crotalaria, and Eupatorium. The presence of 1,2-unsaturated PA in foods is a concern to food regulators around the world because these compounds have been associated to acute and chronic toxicity, mainly in the liver. The intake foods with PA/PANO usually occur through accidental ingestion of plants and their derivatives, besides to products of vegetal-animal origin, such as honey. PA/PANO are transferred to honey by their presence in nectar, honeydew, and pollen, which are collected from the flora by bees. In addition to honey, other beekeeping products, such as pollen, royal jelly, propolis, and beeswax, are also vulnerable to PA contamination. In this context, this review provides information about chemical characteristics, regulation, and toxicity, as well as summarizes and critically discusses scientific publications that evaluated PA in honeys, pollens, royal jelly, and propolis.
Collapse
Affiliation(s)
- Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | | | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
14
|
Mädge I, Gehling M, Schöne C, Winterhalter P, These A. Pyrrolizidine alkaloid profiling of four Boraginaceae species from Northern Germany and implications for the analytical scope proposed for monitoring of maximum levels. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1339-1358. [DOI: 10.1080/19440049.2020.1757166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Inga Mädge
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthias Gehling
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Cindy Schöne
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anja These
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
15
|
Kopp T, Abdel-Tawab M, Mizaikoff B. Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins (Basel) 2020; 12:E320. [PMID: 32413969 PMCID: PMC7290370 DOI: 10.3390/toxins12050320] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are distributed in plant families of Asteraceae, Boraginaceae, and Fabaceae and serve in the chemical defense mechanism against herbivores. However, they became a matter of concern due to their toxicity associated with the high risk of intake within herbal preparations, e.g., phytopharmaceutical formulations, medicinal teas, or other plant-derived drug products. In 1992, the German Federal Ministry of Health established the first limits of PA content for fourteen medicinal plants. Because of the toxic effects of PAs, the Federal Institute of Risk Assessment (BfR) established more stringent limits in 2011, whereby a daily intake <0.007 µg/kg body weight was recommended and valid until 2018. A threefold higher limit was then advised by BfR. To address consumer safety, there is the need for more efficient extraction procedures along with robust, selective, and sensitive analytical methods to address these concerns. With the increased prevalence of, e.g., phytopharmaceutical formulations, this timely review comprehensively focuses on the most relevant extraction and analysis strategies for each of those fourteen plant genera. While a variety of extraction procedures has been reported, differences in PA content of up to 1110 ppm (0.11% (w/w)) were obtained dependent on the nature of the solvent and the applied extraction technique. It is evident that the efficient extraction of PAs requires further improvements or at least standardization of the extraction conditions. Comparing the various analytical techniques applied regarding selectivity and sensitivity, LC-MS methods appear most suited. This review shows that both standardized extraction and sensitive determination of PAs is required for achieving appropriate safety levels concerning public health in future.
Collapse
Affiliation(s)
- Thomas Kopp
- Department of Chemistry, Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
- Central Laboratory of German Pharmacists, 65760 Eschborn, Germany;
| | - Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, 65760 Eschborn, Germany;
| | - Boris Mizaikoff
- Department of Chemistry, Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
16
|
Chmit MS, Wahrig B, Beuerle T. Quantitative and qualitative analysis of pyrrolizidine alkaloids in liqueurs, elixirs and herbal juices. Fitoterapia 2019; 136:104172. [PMID: 31100438 DOI: 10.1016/j.fitote.2019.104172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022]
Abstract
Pyrrolizidine alkaloids (PAs and corresponding N-oxides (PANOs)) are known to have adverse health effects. Their toxic effects on liver cells are especially well-documented. In addition, potential carcinogenic and mutagenic effects in chronic exposure via food and/or herbal medicines have been a subject of vivid discussion in the last decade. Liqueurs and elixirs are traditionally used alcoholic extracts made from parts of plants and herbs. PA cross-contamination of the final products seems likely. Hence, this study aims to detect and quantify the PAs in such products in the light of a possible PA-contamination. The PA content was determined in the form of a single sum parameter using HPLC-ESI-MS/MS and a stable isotope-labeled internal standard. Overall, 56 products available at German pharmacies, drugstores, or internet shops were analyzed, comprising in total 38 samples of liqueurs (mainly bitters), 12 samples of plant elixirs and six different herbal juices. The results showed that 9 out of 38 liqueurs were PA-positive (24%). The total amount of PAs ranged from non-detectable to 9.5 μg/kg. Seven out of ten elixirs were PA-positive (70%) with a maximum PA-content of 3121 μg/kg. Four out of six plant juices were PA-positive (67%) with an average of 4.4 μg/kg (PA-positive samples only).The results and potential risks are discussed in the light of recommended portions for daily consumption or daily doses, in association with the detected PA amounts for individual products and product classes.
Collapse
Affiliation(s)
- Mohammad Said Chmit
- Technische Universität Braunschweig, Institut für Pharmazeutische Biologie, Mendelssohnstr. 1, Braunschweig 38106, Germany.
| | - Bettina Wahrig
- Technische Universität Braunschweig, Abteilung für Pharmazie- und Wissenschaftsgeschichte, Beethovenstraße 55, Braunschweig 38106, Germany.
| | - Till Beuerle
- Technische Universität Braunschweig, Institut für Pharmazeutische Biologie, Mendelssohnstr. 1, Braunschweig 38106, Germany.
| |
Collapse
|