1
|
Kruk A, Popowski D, Roszko MŁ, Granica S, Piwowarski JP. Heterogeneity of transport and metabolism of Tormentillae rhizoma constituents across human intestinal epithelium cellular model. Food Res Int 2024; 188:114326. [PMID: 38823825 DOI: 10.1016/j.foodres.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
Tormentilla erecta (L.) Raeusch is a widespread plant in Europe and Western Asia. Its rhizomes (Tormentilae rhizoma) are the main ingredient of herbal alcoholic beverages and can be used as a natural preservative in beer production. Apart from its unique taste qualities, therapeutic properties in gastrointestinal tract ailments are attributed to the tincture obtained from Tormentillae rhizoma. The presented research aimed to determine the mutual relationship between the components of Tormentillae tincture, present in popular alcoholic beverages, and intestinal epithelium (Caco-2 cell monolayers). A comprehensive qualitative and quantitative analysis of the tincture was performed, including the determination of condensed and hydrolyzable tannins as well as triterpenoids (UHPLC-DAD-MS/MS). Incubation of the tincture with Caco-2 monolayers has shown that only triterpenes pass through the monolayer, while condensed tannins are mainly bound to the monolayer surface. Ellagic acid derivatives were the only components of the Tormentillae tinctura being metabolized by cell monolayers to the compounds not previously described in the literature, which may be crucial in the treatment of intestinal diseases with inflammatory background.
Collapse
Affiliation(s)
- Aleksandra Kruk
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| | - Dominik Popowski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland; Department of Food Analysis, Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland.
| | - Marek Ł Roszko
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland.
| | - Sebastian Granica
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland.
| |
Collapse
|
2
|
Swargiary D, Kashyap B, Sarma P, Ahmed SA, Gurumayum S, Barge SR, Basumatary D, Borah JC. Free radical scavenging polyphenols isolated from Phyllanthus niruri L. ameliorates hyperglycemia via SIRT1 induction and GLUT4 translocation in in vitro and in vivo models. Fitoterapia 2024; 173:105803. [PMID: 38171388 DOI: 10.1016/j.fitote.2023.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Type 2 diabetes milletus (T2DM) is a complex multifaceted disorder characterized by insulin resistance in skeletal muscle. Phyllanthus niruri L. is well reported sub-tropical therapeutically beneficial ayurvedic medicinal plant from Euphorbiaceae family used in various body ailments such as metabolic disorder including diabetes. The present study emphasizes on the therapeutic potential of Phyllanthus niruri L. and its phytochemical(s) against insulin resistance conditions and impaired antioxidant activity thereby aiding as an anti-hyperglycemic agent in targeting T2DM. Three compounds were isolated from the most active ethyl acetate fraction namely compound 1 as 1-O-galloyl-6-O-luteoyl-β-D-glucoside, compound 2 as brevifolincarboxylic acid and compound 3 as ricinoleic acid. Compounds 1 and 2, the two polyphenols enhanced the uptake of glucose and inhibited ROS levels in palmitate induced C2C12 myotubes. PNEAF showed the potent enhancement of glucose uptake in palmitate-induced insulin resistance condition in C2C12 myotubes and significant ROS inhibition was observed in skeletal muscle cell line. PNEAF treated IR C2C12 myotubes and STZ induced Wistar rats elevated SIRT1, PGC1-α signaling cascade through phosphorylation of AMPK and GLUT4 translocation resulting in insulin sensitization. Our study revealed an insight into the efficacy of marker compounds isolated from P. niruri and its enriched ethyl acetate fraction as ROS scavenging agent and helps in attenuating insulin resistance condition in C2C12 myotubes as well as in STZ induced Wistar rat by restoring glucose metabolism. Overall, this study can provide prospects for the marker-assisted development of P. niruri as a phytopharmaceutical drug for the insulin resistance related diabetic complications.
Collapse
Affiliation(s)
- Deepsikha Swargiary
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Bhaswati Kashyap
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Pranamika Sarma
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Semim Akhtar Ahmed
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Shalini Gurumayum
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Sagar Ramrao Barge
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Devi Basumatary
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Jagat C Borah
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India.
| |
Collapse
|
3
|
Cai J, Wang S, Wang Q. Antibacterial Activity of Dihydroquercetin Separated from Fructus Polygoni orientalis against Clavibacter michiganensis subsp. sepedonicus via Damaging Cell Membrane. Foods 2023; 13:23. [PMID: 38201051 PMCID: PMC10778462 DOI: 10.3390/foods13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The yield and quality of potato can be severely affected by bacterial ring rot, which is caused by Clavibacter michiganensis subsp. sepedonicus (Cms). Recently, using natural compounds to control bacteria has received more attention. In this study, five antibacterial compounds from ethyl acetate (EtOAc) extract of Fructus Polygoni orientalis (FPO) against Cms were isolated and the most active compound was screened. Five active compounds were identified as 3,3'-di-O-methylellagic acid (1), 3,3'-di-O-methylellagic acid-4-O-β-D-glucopyranoside (2), dihydroquercetin (3), protocatechuic acid (4) and quercetin (5). Compound 3 (dihydroquercetin, DHQ) was confirmed as the most active compound. The diameter of inhibition zone (DIZ), minimum inhibitory concentration (MIC), protective efficiency and curative efficiency of DHQ were 22.50 mm, 0.313 mg/mL, 84.49% and 79.63%, respectively, which exceeded these of thiophanate-methyl (TM) in antibacterial activity assays; this indicated that DHQ had satisfactory antibacterial activities against Cms in vitro and in vivo. Results of cell membrane damage assessments indicated that DHQ could reduce membrane potential (MP), disrupt the cell membrane integrity, and promote the leakage of nucleic acids and proteins. Overall, these findings suggested that DHQ could serve as a promising lead molecular against Cms, which could provide a basis for its further derivatization.
Collapse
Affiliation(s)
- Jin Cai
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Shiqin Wang
- Morden Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China;
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Qi Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
4
|
Qin J, Yu L, Peng F, Ye X, Li G, Sun C, Cheng F, Peng C, Xie X. Tannin extracted from Penthorum chinense Pursh, a potential drug with antimicrobial and antibiofilm effects against methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Front Microbiol 2023; 14:1134207. [PMID: 37465024 PMCID: PMC10351983 DOI: 10.3389/fmicb.2023.1134207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen. Due to the widespread use and abuse of antibiotics, various drug-resistant strains of S. aureus have emerged, with methicillin-resistant Staphylococcus aureus (MRSA) being the most prevalent. Bacterial biofilm is a significant contributor to bacterial infection and drug resistance. Consequently, bacterial biofilm formation has emerged as a therapeutic strategy. In this study, the chemical constituents, antimicrobial and antibiofilm properties of tannins isolated from Penthorum chinense Pursh (TPCP) were investigated. In vitro, TPCP exhibited antimicrobial properties. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA were 156.25 and 312.5 μg/mL, and 312.5 and 625 μg/mL, respectively. According to the growth curves, TPCP significantly inhibited the growth of MSSA and MRSA. The results of the crystal violet biofilm assay in conjunction with confocal laser scanning and scanning electron microscopy demonstrated that TPCP destroyed preformed MSSA and MRSA biofilms. TPCP significantly decreased the secretion of exopolysaccharides and extracellular DNA. Subsequently, the mechanism was investigated using RT-PCR. Examining the expression of icaA, cidA, sigB, agrA, and sarA genes in MRSA, we discovered that TPCP inhibited biofilm formation by affecting the quorum-sensing system in bacteria. Our study demonstrates that TPCP exerts antibacterial effects by disrupting the formation of bacterial biofilms, suggesting that TPCP has clinical potential as a novel antibacterial agent for the prevention and treatment of MSSA and MRSA infections.
Collapse
Affiliation(s)
- Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xin Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Tang Y, Yu P, Chen L. Identification of Antibacterial Components and Modes in the Methanol-Phase Extract from a Herbal Plant Potentilla kleiniana Wight et Arn. Foods 2023; 12:foods12081640. [PMID: 37107435 PMCID: PMC10137656 DOI: 10.3390/foods12081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The increase in bacterial resistance and the decline in the effectiveness of antimicrobial agents are challenging issues for the control of infectious diseases. Traditional Chinese herbal plants are potential sources of new or alternative medicine. Here, we identified antimicrobial components and action modes of the methanol-phase extract from an edible herb Potentilla kleiniana Wight et Arn, which had a 68.18% inhibition rate against 22 species of common pathogenic bacteria. The extract was purified using preparative high-performance liquid chromatography (Prep-HPLC), and three separated fragments (Fragments 1-3) were obtained. Fragment 1 significantly elevated cell surface hydrophobicity and membrane permeability but reduced membrane fluidity, disrupting the cell integrity of the Gram-negative and Gram-positive pathogens tested (p < 0.05). Sixty-six compounds in Fragment 1 were identified using Ultra-HPLC and mass spectrometry (UHPLC-MS). The identified oxymorphone (6.29%) and rutin (6.29%) were predominant in Fragment 1. Multiple cellular metabolic pathways were altered by Fragment 1, such as the repressed ABC transporters, protein translation, and energy supply in two representative Gram-negative and Gram-positive strains (p < 0.05). Overall, this study demonstrates that Fragment 1 from P. kleiniana Wight et Arn is a promising candidate for antibacterial medicine and food preservatives.
Collapse
Affiliation(s)
- Yingping Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai 201306, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Li S, Liu C, Zhang Y, Tsao R. On-line coupling pressurised liquid extraction with two-dimensional counter current chromatography for isolation of natural acetylcholinesterase inhibitors from Astragalus membranaceus. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:640-653. [PMID: 33238329 DOI: 10.1002/pca.3012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Radix Astragali, the dried root of Astragalus membranaceus (Fish.) Bge. (family Fabaceae), which is known as Huangqi in China, has been proven to be an immunostimulant, diuretic, antidiabetic, analgesic, and it has also been used as a health food supplement in some Asian populations and also serves as a lead herb in many traditional Chinese medicine formulations as well as in Chinese ethnic tonifying soups. OBJECTIVE Screening and purification of bioactive compounds from natural products is challenging work due to their complexity. We present the first report on the use of pressurised liquid extraction and on-line two-dimensional counter current chromatography as an efficient medium for scaled-up extraction and separation of six bioactive compounds from Astragalus membranaceus. METHOD We applied the established method with ultrafiltration-liquid chromatography to screen acetylcholinesterase inhibitors, which were then evaluated and confirmed for anti-Alzheimer activity using PC12 cell model. RESULTS Six major compounds, namely, calycosin-7-O-β-d-glucoside, pratensein-7-O-β-d-glucoside, formononetin-7-O-β-d-glucoside, calycosin, genistein, and formononetin, with acetylcholinesterase binding affinities were identified and isolated from the raw plant materials via two sets of n-hexane/ethyl acetate/0.2% acetic acid (first-stage counter current chromatography) and n-hexane/ethyl acetate/methanol/water (second-stage counter current chromatography) solvent systems: 1.87:1.0:1.33 and 5.62:1.0:2.42:5.25, v/v/v/v, which were optimised by a mathematical model. CONCLUSION Therefore, a useful platform for the large-scale production of bioactive and nutraceutical ingredients was developed herein. With the on-line system developed here, we present a feasible, selective, and effective strategy for rapid screening and identification of enzyme inhibitors from complex mixtures.
Collapse
Affiliation(s)
- Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Yu J, Zhao L, Sun X, Sun C, Wang X. Application of choline chloride deep eutectic solvents and high-speed counter-current chromatography to the extraction and purification of flavonoids from the thorns of Gleditsia sinensis Lam. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:457-465. [PMID: 32945032 DOI: 10.1002/pca.2993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Flavonoids are the most important and effective constituents in the thorns of Gleditsia sinensis Lam., which have been known to show antimicrobial, antiviral, anticancer, and anticoagulant activities. However, efficient extraction and separation methods for these flavonoids are not currently established. OBJECTIVE To develop an efficient method for efficient extraction and rapid separation of flavonoids from the thorns of G. sinensis using choline chloride deep eutectic solvents (DESs) and high-speed counter-current chromatography (HSCCC). METHODOLOGY As for extraction, DES composed of choline chloride and 1,4-butanediol at 1:4 mole ratio, at an extraction temperature of 55°C, 20% of water content, 1:30 mg/mL for solid-liquid ratio, and 45 min for extraction time were selected as the optimised extraction method for flavonoids from the thorns of G. sinensis. As for separation, dichloromethane-methanol-n-butanol-water (4:3:0.5:2, v/v) was applied to develop a successful strategy for purification of the flavonoids by HSCCC. RESULTS Totally, five flavonoids, including padmatin (1, 3.7 mg), isovitexin (2, 2.5 mg), 3',5,5',7-tetrahydroxyflavanonol (3, 11.2 mg), 7,4'-dihydroxy-5,3'-dimethoxyflavanonol (4, 4.1 mg), and quercetin (5, 3.8 mg), were successfully obtained from 250 mg of the extracted flavonoids by HSCCC. CONCLUSION Results demonstrated that the combination of DES and HSCCC is a powerful technique for the extraction, and isolation of flavonoids from the thorns of G. sinensis compared with conventional organic solvent extraction and column chromatography, which have been proven to provide higher extraction efficiency for flavonoids and rapidly obtain the quality control markers of flavonoids from the investigated plant.
Collapse
Affiliation(s)
- Jinqian Yu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Lei Zhao
- Reyoung Pharmaceutical Co., Ltd, Jinan, P. R. China
| | - Xiaowei Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
8
|
Hou W, Liu C, Xia J, Niu H, Li S. Rapid screening and purification of potential inhibitors from Medicago sativa by ultrafiltration-liquid chromatography combined with stepwise flow rate counter-current chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:382-394. [PMID: 32893385 DOI: 10.1002/pca.2985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Medicago sativa contains flavonoids, saponins, coumarins, sterols, monoterpenes, and organic acids, with flavonoids being the main active constituents. Flavonoids naturally contain a 2-phenylchromone structure with antioxidant, free radical scavenging, cardiovascular, and trace estrogen-like effects. OBJECTIVE Screening and isolation of neuraminidase, lipoxidase, and lactate dehydrogenase inhibitors from M. sativa via ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with stepwise flow rate counter-current chromatography (CCC). METHOD Utilising the medicinal plants M. sativa as the research objects and UF-LC-MS was used for activity screening followed by isolation and purification of the inhibitors by stepwise flow rate CCC. Finally, identification of the three active compounds was achieved by MS and nuclear magnetic resonance. RESULTS Three major compounds, viz. quercetin, genistein, and formononetin, were identified as potent neuraminidase, lipoxidase, and lactate dehydrogenase inhibitors, respectively. A two-phase solvent system of ethyl acetate/methanol/n-butanol/water (5.0:1.5:5.0:10; v/v/v/v) was subsequently selected for separation by stepwise flow rate CCC. CONCLUSION This novel approach based on UF-LC-MS and stepwise flow rate CCC represents a powerful tool for the screening and isolation of neuraminidase, lipoxidase, and lactate dehydrogenase inhibitors from complex matrices. Therefore, a useful platform for the large-scale production of bioactive and nutraceutical ingredients was developed herein.
Collapse
Affiliation(s)
- Wanchao Hou
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Jianli Xia
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Huazhou Niu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
9
|
Total Triterpenoid Extraction from Inonotus Obliquus Using Ionic Liquids and Separation of Potential Lactate Dehydrogenase Inhibitors via Ultrafiltration High-Speed Countercurrent Chromatography. Molecules 2021; 26:molecules26092467. [PMID: 33922678 PMCID: PMC8122963 DOI: 10.3390/molecules26092467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
Extracts of the fungus Inonotus obliquus exhibit cytotoxic properties against different cancers; hence, this fungal species has been extensively studied. This study aimed to extract total triterpenoids from Inonotus obliquus using ionic liquids (ILs) and separate potential lactate dehydrogenase (LDH) inhibitors via ultrafiltration (UF)-high-speed countercurrent chromatography (HSCCC). Total triterpenoids from Inonotus obliquus were extracted by performing a single-factor experiment and employing a central composite design via ultrasonic-assisted extraction (UAE) and heat-assisted extraction (HAE). The extract was composed of 1-butyl-3-methylimidazolium bromide as the IL and methanol as the dispersant. Ultrafiltration-liquid chromatography (UF-LC) was used to rapidly scan the LDH inhibitors and betulin and lanosterol were identified as potential inhibitors. To obtain these target compounds, betulin and lanosterol with the purities of 95.9% and 97.8% were isolated from HSCCC within 120 min. Their structures were identified using several techniques, among which IL-HAE was fast and effective. This study reports the extraction of triterpenoids from Inonotus obliquus by IL for the first time. Collectively, the findings demonstrate that UF-LC is an effective tool for screening potential LDH inhibitors from crude extracts of I. obliquus and may help to identify bioactive substances against myocardial infarction, whereas high-purity compounds can be separated via UF-HSCCC.
Collapse
|
10
|
Wang Y, Guo L, Liu C, Zhang Y, Li S. Isolation of potential α-glucosidase inhibitor from Inonotus obliquus by combining ultrafiltration-liquid chromatography and consecutive high-speed countercurrent chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:918-924. [PMID: 33511974 DOI: 10.1039/d0ay01689f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inonotus obliquus is a rare medicinal fungus that contains several potential therapeutic ingredients. In this study, the α-glucosidase inhibitory activity of I. obliquus was examined, and a potential α-glucosidase inhibitor, (E)-4-(3,4-dihydroxyphenyl)but-3-en-2-one, was isolated from the I. obliquus extract through ultrafiltration-liquid chromatography (UF-LC). Consecutive high-speed countercurrent chromatography (HSCCC) was used for separation to obtain large quantities of the target compound. The universal quasi-chemical functional group activity coefficient (UNIFAC) model was utilized to prepare a two-phase solvent system, n-hexane/ethyl acetate/ethanol/water (4 : 4.5 : 3.5 : 5, v/v/v/v), wherein the proportions of n-hexane/ethyl acetate/ethanol/water in the stationary and mobile phases were 19.8 : 19.7 : 7.9 : 2.2 (v/v/v/v) and 1 : 16.4 : 57.5 : 136.6 (v/v/v/v), respectively. A flow rate of 2.5 mL min-1 and a column speed of 860 rpm were maintained. Consequently, 10.3 mg of the target compound (95.9% purity) was obtained from 900 mg (6 × 150 mg) of the I. obliquus extract. The use of the UNIFAC model, in combination with consecutive HSCCC separations, allows the purification of large quantities of samples over a short time. Furthermore, the volume of the organic solvent required is reduced. Thus, UF-LC is an effective technique for screening potential α-glucosidase inhibitors isolated from I. obliquus. This can ultimately aid in the discovery of bioactive compounds for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Yueqi Wang
- Faculty of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Nanguan District, Changchun 130024, China.
| | | | | | | | | |
Collapse
|
11
|
Long W, Liu S, Li XX, Shen X, Zeng J, Luo JS, Li KR, Wu AG, Yu L, Qin DL, Hu GQ, Yang J, Wu JM. Whole transcriptome sequencing and integrated network analysis elucidates the effects of 3,8-Di-O-methylellagic acid 2-O-glucoside derived from Sanguisorba offcinalis L., a novel differentiation inducer on erythroleukemia cells. Pharmacol Res 2021; 166:105491. [PMID: 33582247 DOI: 10.1016/j.phrs.2021.105491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022]
Abstract
Acute erythroid leukemia (AEL) is a rare and aggressive hematologic malignancy with no specific treatment. Sanguisorba officinalis L. (S. officinalis), a well-known traditional Chinese medicine, possesses potent anticancer activity. However, the active components of S. officinalis against AEL and the associated molecular mechanisms remain unknown. In this study, we predicted the anti-AML effect of S. officinalis based on network pharmacology. Through the identification of active components of S. officinalis, we found that 3,8-Di-O-methylellagic acid 2-O-glucoside (DMAG) not only significantly inhibited the proliferation of erythroleukemic cell line HEL, but also induced their differentiation to megakaryocytes. Furthermore, we demonstrated that DMAG could prolong the survival of AEL mice model. Whole-transcriptome sequencing was performed to elucidate the underlying molecular mechanisms associated with anti-AEL effect of DMAG. The results showed that the total of 68 miRNAs, 595 lncRNAs, 4030 mRNAs and 35 circRNAs were significantly differentially expressed during DMAG induced proliferation inhibition and differentiation of HEL cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the differentially expressed miRNAs, lncRNAs, mRNAs and circRNAs were mainly involved in metabolic, HIF-1, MAPK, Notch pathway and apoptosis. The co-expression networks showed that miR-23a-5p, miR-92a-1-5p, miR-146b and miR-760 regulatory networks were crucial for megakaryocyte differentiation induced by DMAG. In conclusion, our results suggest that DMAG, derived from S. officinalis might be a potent differentiation inducer of AEL cells and provide important information on the underlying mechanisms associated with its anti-AEL activity.
Collapse
Affiliation(s)
- Wang Long
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Sha Liu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Xuan Li
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Department of Pharmacy, The Second People's Hospital of Yibin, Yibin 644000, China
| | - Xin Shen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jie-Si Luo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ke-Ru Li
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Guang-Qiang Hu
- School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
12
|
Augustynowicz D, Latté KP, Tomczyk M. Recent phytochemical and pharmacological advances in the genus Potentilla L. sensu lato - An update covering the period from 2009 to 2020. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113412. [PMID: 32987127 DOI: 10.1016/j.jep.2020.113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla plants are still common herbal medicines used in folk medicine. This review provides an update of research undertaken on Potentilla from 2009 until 2020. AIM OF THE STUDY This comprehensive review considers biological updates, recent advances in phytochemical and pharmacological research, and toxicological reports on Potentilla sensu lato based on available data since 2009. METHODS A literature search was conducted using available databases including ScienceDirect, PubMed, Scopus, Web of Science, China National Knowledge Infrastructure and Google Scholar. RESULTS Until now, more than 210 new and known compounds, including flavonoids, tannins, triterpenes and phenolic compounds, have been confirmed and elucidated for numerous Potentilla species, i.e., in the underground and aerial parts of this genus. Modern pharmacology studies have revealed that those structures are responsible for a broad spectrum of pharmacological activities, such as anti-neoplastic, antihyperglycemic, anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, antibacterial and anti-yeast effects. CONCLUSIONS However, in vitro studies must be re-considered due to the discovery of urolithins and their origins, including microbiota, which can lead to different results when applying Potentilla species and their extracts to in vivo conditions. Thus, future research should focus more on in vivo and particularly clinical studies to confirm the validity and safety of traditional uses. Particularly, the use of Potentilla alba extracts in the treatment of thyroid gland disorders should be further explored to confirm the underlying mechanism of their action, efficacy and safety. In addition, more clinical studies should focus on Potentilla erecta rhizome extracts for application as herbal remedies against dysentery, diarrhoea and inflammation of the skin.
Collapse
Affiliation(s)
- Daniel Augustynowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland
| | | | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230, Białystok, Poland.
| |
Collapse
|
13
|
Yan J, Li XM, Zhang YX, Xu SM, Liu WL, Guo J, Hu XL, Zou T, Xu YY, Xu PS. Bioequivalence and Evaluation Parameters Based on the Pharmacodynamics of Miglitol in Healthy Volunteers. Clin Pharmacol Drug Dev 2020; 10:582-587. [PMID: 33058553 DOI: 10.1002/cpdd.873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to explore the bioequivalence of miglitol based on pharmacodynamic properties. The study was performed as a single-dose, randomized, open-label, 3-period, 3-way crossover trial over a 7-day washout period. Forty-eight subjects were randomly assigned into 3 groups: (1) miglitol test formulation/sucrose coadministration, (2) miglitol reference formulation/sucrose coadministration, and (3) sucrose administration alone. Serum glucose concentrations were measured by the hexokinase detection method. The peak serum glucose concentration (Cmax ) and the area under the serum glucose concentration-time curve through 4 hours (AUC0-4h ) were used as the main pharmacodynamic parameters to evaluate bioequivalence. The 90% confidence intervals for the geometric mean ratios of Cmax and AUC0-4h were 94.81%-101.07% and 98.82%-100.72%, respectively, which were all within the bioequivalence range of 80.00%-125.00%. The test and reference formulations of miglitol were pharmacodynamically bioequivalent during the trial.
Collapse
Affiliation(s)
- Juan Yan
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Min Li
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan-Xin Zhang
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Su-Mei Xu
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wan-Li Liu
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Guo
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lei Hu
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Zou
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Ying Xu
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping-Sheng Xu
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Jing C, Yu F, Zhang N, Liu Y, Wang H. Quantitative assessments of adenosine triphosphatase hydrolytic activity by ultrafiltration-coupled ion-pair reversed-phase high-performance liquid chromatography. J Sep Sci 2020; 43:3840-3846. [PMID: 32776712 DOI: 10.1002/jssc.202000561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
Adenosine triphosphate is a universal energy currency that can directly provide energy required for a multitude of biochemical reactions and biophysical actions through adenosine triphosphatase catalyzed hydrolysis. Adenosine triphosphatase activity is thus one important feature for the characterization of protein function and cell activity. Herein, we optimized ion-pair reversed-phase high-performance liquid chromatography technique for highly efficient separation of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate, and the method demonstrated good linearity. Moreover, by coupling a protein-removable ultrafiltration, we developed a sensitive and robust approach for quantification of adenosine triphosphatase hydrolytic activity. By this assay, we demonstrated that RecA filaments-catalyzed adenosine triphosphate hydrolysis approached a second-order reaction, and its rate constant was estimated as 0.057 mM-1 min-1 . In addition, we explored the effects of DNA length on this reaction and revealed that the increase of the length of single-stranded DNA can promote the adenosine triphosphatase hydrolytic activity of RecA filaments. All these results confirm the feasibility of this new method in quantification of adenosine triphosphatase hydrolytic activity assays. Compared with previous complicated enzyme-coupled or homogeneous colorimetric measurements, the developed approach with high resolution separation allows a simple reaction system for adenosine triphosphatase assay and a sensitive detection free of interference from background noise.
Collapse
Affiliation(s)
- Changheng Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
15
|
Liu L, Zhang L, Ren L, Xie Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
| | - Li Zhang
- College of Chemistry and Materials Engineering Huaihua University Huaihua 418000 China
| | - Licheng Ren
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
- Department of Plastic and Cosmetic Surgery Shenzhen University General Hospital Shenzhen 518055 China
| | - Yixi Xie
- Institute of Bast Fiber Crops Chinese Academy of Agricultural Sciences Changsha 410205 China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan 411105 China
| |
Collapse
|
16
|
Song X, Li K, Cui L, Yu J, Ali I, Zhu H, Wang Q, Wang X, Wang D. A simple and efficient linear gradient coupled with inner-recycling high-speed counter-current chromatography mode for the preparative separation of flavonoid glycosides from leaves of custard apple. J Chromatogr A 2020; 1615:460719. [DOI: 10.1016/j.chroma.2019.460719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
|
17
|
Liu M, Li X, Liu Q, Xie S, Chen M, Wang L, Feng Y, Chen X. Comprehensive profiling of α-glucosidase inhibitors from the leaves of Rubus suavissimus using an off-line hyphenation of HSCCC, ultrafiltration HPLC-UV-MS and prep-HPLC. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2019.103336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|