1
|
Wang S, Zhou R, Du K, Shang Y, He J, Li J, Yao Y, Chang YX. Simultaneous Separation and Determination of Nine Active Ingredients in Sanyetangzhiqing by Cyclodextrin-Modified Micellar Electrokinetic Capillary Electrophoresis-Diode Array Detector. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:4840457. [PMID: 37476694 PMCID: PMC10356514 DOI: 10.1155/2023/4840457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
A simple and sensitive strategy using cyclodextrin-modified micellar electrokinetic chromatography with diode array detector was developed and applied for the simultaneous separation and determination of nine components in Sanyetangzhiqing (SYTZQ), a hypoglycemic and hypolipidemic agent. Several important parameters affecting separation performance were evaluated and optimized using single variable methods. Under the optimal conditions, baseline separation of the nine components, including four flavonoids (hyperoside, isoquercitrin, quercetin-3-O-glucuronoside, and astragalin), four phenolic acids (chlorogenic acid, rosmarinic acid, salvianolic acid B, and lithospermic acid), and a monoterpenoids (paeoniflorin), were achieved in less than 16 min. The correlation coefficients of the calibration curves were over 0.9996 for all the analytes. Intraday and interday precisions ranged from 0.4% to 4.8% and 1.7% to 5.0%, respectively. Recoveries of analytes varied from 95.3% to 105%. Validation results as well as the application to analyse SYTZQ samples demonstrated the applicability of the proposed method and thus provided an effective tool for the quality control of SYTZQ. Moreover, with the advantages of short time consuming, low energy consumption, high efficiency, and low cost, this method has laid a foundation for the determination and quality evaluation of multicomponents in Chinese herbal compounds.
Collapse
Affiliation(s)
- Shanshan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaqi Yao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan-xu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
2
|
Recent Advances on Chiral Mobile Phase Additives: A Critical Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Wang H, Yang Y, Guo J, Wang M, Zhang H, Zhang G, Chang R, Chen A. Simultaneous separation and determination of four active ingredients in Picria fel-terrae Lour. and its preparations by micellar electrokinetic chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:1110-1117. [PMID: 33884687 DOI: 10.1002/pca.3052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Picfeltarraenins IA, IB and IV and acteoside are the four bioactive ingredients of Picria fel-terrae Lour. Their pharmacological effects include central inhibitory, cardiovascular, anti-inflammatory, anti-pyretic, analgesic, anti-bacterial, antioxidative and anti-tumor effects. OBJECTIVE We aimed to develop an efficient micellar electrokinetic chromatography (MEKC) method modified with mixed organic solvents for the simultaneous separation and determination of the four components in Picriae Herba and its formulations. METHODS Method optimization was carried out by investigating influences of significant factors on the separation, and this method was successfully applied for the determination of the four components in Picriae Herba and its formulations. RESULTS The optimal running buffer was composed of 20 mM sodium tetraborate, 40 mM sodium cholate, 10% (v/v) methanol and 10% (v/v) isopropanol (pH 9.76). The separation voltage was 18 kV, the temperature was 25°C and the detection wavelength was 266 nm. Under the optimal separation conditions, the baseline separation of four components was achieved in less than 14 min. The correlation coefficients of the calibration curves were 0.9984-0.9995 for the analytes. The intraday and interday precision ranged from 1.5% to 2.5% and from 1.4% to 5.0%, respectively. Recoveries of analytes varied from 96.6% to 104.1%. CONCLUSION The method was proved suitable for the determination of four components in Picriae Herba and its formulations. Good performance was obtained under optimal conditions, and the method provides an effective tool for the quality control of Picriae Herba and its formulations.
Collapse
Affiliation(s)
- Hua Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Yuhang Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Jing Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Mengli Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Hongfen Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Guangbin Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Ruimiao Chang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Anjia Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, P. R. China
| |
Collapse
|
4
|
Yang Y, Wang H, Yu H, Zhang H, Zhang G, Chang R, Chen A. Simultaneous separation and determination of three huperzine alkaloids in Huperzia serrata and its preparations by cyclodextrin-modified mixed micellar electrokinetic capillary chromatography. Anal Biochem 2021; 623:114207. [PMID: 33891962 DOI: 10.1016/j.ab.2021.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
In this study, a simple and sensitive cyclodextrin-modified mixed micellar electrokinetic capillary chromatography (CD-MEKC) method has been developed for the simultaneous separation and determination of Huperzine A (HupA), Huperzine B (HupB) and Huperzine C (HupC) in Huperzia serrata (H. serrata). The optimal conditions (pH 9.3) were composed of 10 mM sodium tetraborate solution, 40 mM sodium dodecyl sulfate (SDS), 50 mM sodium cholate (SC) and 3.0 mM mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin (ED-β-CD). The separation and determination process were performed on a P/ACE MDQ capillary electrophoresis system, the separation voltage was 15 kV, the temperature was 25 °C and the detection wavelength was 308 nm. Under the optimum conditions, the migration time was less than 9 min. The LOD and LOQ were between 0.38 and 0.80 μg/mL and 1.2-2.3 μg/mL, respectively. The developed method, with excellent precision and accuracy, was applied for the determination of three alkaloids in H. serrata and its formulations.
Collapse
Affiliation(s)
- Yuhang Yang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Hua Wang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Haixia Yu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, PR China
| | - Hongfen Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Guangbin Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Ruimiao Chang
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China.
| | - Anjia Chen
- College of Pharmacy, Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
5
|
Lee JU, Lee SS, Lee S, Oh HB. Noncovalent Complexes of Cyclodextrin with Small Organic Molecules: Applications and Insights into Host-Guest Interactions in the Gas Phase and Condensed Phase. Molecules 2020; 25:molecules25184048. [PMID: 32899713 PMCID: PMC7571109 DOI: 10.3390/molecules25184048] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) have drawn a lot of attention from the scientific communities as a model system for host–guest chemistry and also due to its variety of applications in the pharmaceutical, cosmetic, food, textile, separation science, and essential oil industries. The formation of the inclusion complexes enables these applications in the condensed phases, which have been confirmed by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and other methodologies. The advent of soft ionization techniques that can transfer the solution-phase noncovalent complexes to the gas phase has allowed for extensive examination of these complexes and provides valuable insight into the principles governing the formation of gaseous noncovalent complexes. As for the CDs’ host–guest chemistry in the gas phase, there has been a controversial issue as to whether noncovalent complexes are inclusion conformers reflecting the solution-phase structure of the complex or not. In this review, the basic principles governing CD’s host–guest complex formation will be described. Applications and structures of CDs in the condensed phases will also be presented. More importantly, the experimental and theoretical evidence supporting the two opposing views for the CD–guest structures in the gas phase will be intensively reviewed. These include data obtained via mass spectrometry, ion mobility measurements, infrared multiphoton dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Jae-ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
| | - Sung-Sik Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Korea;
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Gyeonggi 17104, Korea;
- Correspondence: (S.L.); (H.B.O.); Tel.: +82-31-201-2423 (S.L.); +82-2-705-8444 (H.B.O.)
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Korea;
- Correspondence: (S.L.); (H.B.O.); Tel.: +82-31-201-2423 (S.L.); +82-2-705-8444 (H.B.O.)
| |
Collapse
|
6
|
Single isomer cyclodextrins as chiral selectors in capillary electrophoresis. J Chromatogr A 2020; 1627:461375. [PMID: 32823120 DOI: 10.1016/j.chroma.2020.461375] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022]
Abstract
Since decades, cyclodextrins are one of the most powerful selectors in chiral capillary electrophoresis for the enantioseparation of diverse organic compounds. This review concerns papers published over the last decade (from 2009 until nowadays), dealing with the capillary electrophoretic application of single isomer cyclodextrin derivatives in chiral separations. Following a brief overview of their synthetic approaches, the inventory of the neutral, negatively and positively charged (including both permanently ionic and pH-tunable ionizable substituents) and zwitterionic CD derivatives is presented, with insights to underlying structural aspects by NMR spectroscopy and molecular modeling. CE represents an ideal tool to study the weak, non-covalent supramolecular interactions. The published methods are reviewed in the light of enantioselectivity, enantiomer migration order and the fine-tuning of enantiodiscrimination by the substitution pattern of the single entity selector molecules, which is hardly possible for their randomly substituted counterparts. All the reviewed publications herein support that cyclodextrin-based chiral capillary electrophoresis seems to remain a popular choice in pharmaceutical and biomedical analysis.
Collapse
|