1
|
Hassan A, Zaib S, Anjum T. Evaluation of antifungal potentials of Albizia kalkora extract as a natural fungicide: In vitro and computational studies. Bioorg Chem 2024; 150:107561. [PMID: 38936050 DOI: 10.1016/j.bioorg.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
The antifungal bioactivity potential of the organic extract of silk tree (Albizia kalkora) was investigated in the current study. The crude extracts of A. kalkora and methanol, n-hexane, chloroform, and ethyl acetate fractions were prepared. The antifungal activity of obtained fractions of A. kalkora was studied at different concentrations ranging from 0.39-50 µg/mL. Dimethyl sulfoxide (DMSO) was taken as a toxicity control, whereas thiophanate methyl (TM) as a positive control. All the fractions significantly reduced the FOL growth (methanolic: 9.49-94.93 %, n-hexane: 11.12-100 %, chloroform: 20.96-91.41 %, and ethyl acetate: 18.75-96.70 %). The n-hexane fraction showed 6.25 µg/mL MIC as compared to TM with 64 µg/mL MIC. The non-polar (n-hexane) fraction showed maximum antifungal bioactivity against FOL in comparison with chloroform, methanol, and ethyl acetate fractions. GC/MS analysis exhibited that the n-hexane fraction contained hexadecanoic acid, 9,12,15-octadecatrienoic acid, 9,12-octadecadienoic acid, bis(2-ethylhexyl) phthalate, methyl stearate, and [1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid. The results of in vitro antifungal inhibition were further reinforced by molecular docking analysis. Five virulence proteins of FOL i.e., pH-responsive PacC transcription factor (PACC), MeaB, TOR; target of rapamycin (FMK1), Signal transducing MAP kinase kinase (STE-STE7), and High Osmolarity Glycerol 1(HOG1) were docked with identified phytocompounds in the n-hexane fraction by GC/MS analysis. MEAB showed maximum binding affinities with zinnimide (-12.03 kcal/mol), HOG1 and FMK1with α-Tocospiro-B (-11.51 kcal/mol) and (-10.55 kcal/mol) respectively, STE-STE7 with docosanoic acid (-11.31 kcal/mol), and PACC with heptadecanoic acid (-9.88 kcal/mol) respectively with strong hydrophobic or hydrophilic interactions with active pocket residues. In conclusion, the n-hexane fraction of the A. kalkora can be used to manage FOL.
Collapse
Affiliation(s)
- Ahmad Hassan
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
2
|
Xiao D, Wang J, Zhong Y, Sun H, Wang M, Wang X, Ding Y, Li Y, Wang Y. Study on HPLC Fingerprint, Network Pharmacology, and Antifungal Activity of Rumex japonicus Houtt. J AOAC Int 2022; 105:1741-1754. [DOI: 10.1093/jaoacint/qsac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Rumex japonicus Houtt (R. japonicus) is used mainly to treat various skin diseases in Southeast Asia. However, there are few studies on its quality evaluation methods and antifungal activity.
Objective
To establish the quality control criteria for the effective parts from R. japonicus against psoriasis.
Methods
High-performance liquid chromatography (HPLC) was established for its fingerprint, and the similarity evaluation, cluster analysis (CA) and principal component analysis (PCA) were used to reveal the differences of those fingerprints among the tested R. japonicus. Network pharmacology analyzed the relationship between the components and psoriasis, revealing the potential targets of R. japonicus. Oxford cup anti-C. albicans experiment was used to verify the antifungal activity of R. japonicus.
Results
HPLC was developed for the R. japonicus fingerprint by optimizing for 10 batches of quinquennial R. japonicus from different habitats; the 18 common peaks were identified with 10 characteristic peaks such as rutin, quercetin, aloe-emodin, nepodin, emodin, musizin-8-O-β-D-glucoside, chrysophanol, emodin-8-O-β-D-glucopyranoside, chrysophanol-8-O-β-D-glucopyranoside, and aloin, respectively. The network pharmacology-based analysis showed a high correlation between R. japonicus and psoriasis, revealing the potential targets of R. japonicus. The oxford cup anti-Candida albicans experiment displayed a significant activity response to emodin-8-O-β-D-glucopyranoside and the ethyl acetate fraction of R. japonicus acidic aqueous extract.
Conclusions
A new and optimized HPLC method was created, and the research provides an experimental basis for the development of effective drugs related to C. albicans.
Highlights
The fingerprint of R. japonicus was organically combined with network pharmacology to further clarify its criteria for quality control.
Collapse
Affiliation(s)
- Dandan Xiao
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| | - Juntong Wang
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| | - Yuan Zhong
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| | - He Sun
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| | - Mengtong Wang
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| | - Xueyu Wang
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| | - Yuling Ding
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| | - Yong Li
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| | - Ye Wang
- Changchun University of Chinese Medicine, School of Pharmaceutical Sciences , Changchun 130117, China
| |
Collapse
|
3
|
Omar HS, Al Mutery A, Osman NH, Reyad NEHA, Abou-Zeid MA. Genetic diversity, antifungal evaluation and molecular docking studies of Cu-chitosan nanoparticles as prospective stem rust inhibitor candidates among some Egyptian wheat genotypes. PLoS One 2021; 16:e0257959. [PMID: 34767570 PMCID: PMC8589204 DOI: 10.1371/journal.pone.0257959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Wheat has a remarkable importance among cereals worldwide. Wheat stem and leaf rust constitute the main threats that destructively influence grain quality and yield production. Pursuing resistant cultivars and developing new genotypes including resistance genes is believed to be the most effective tool to overcome these challenges. This study is the first to use molecular markers to evaluate the genetic diversity of eighteen Egyptian wheat genotypes. Moreover, the molecular docking analysis was also used to assess the Cu-chitosan nanoparticle (CuChNp) treatment and its mode of action in disease control management. The tested genotypes were categorized into two main cluster groups depending on the similarity matrix, i.e the most resistant and susceptible genotypes to stem and leaf rust races. The results of SCoT primers revealed 140 polymorphic and 5 monomorphic bands with 97% polymorphism. While 121 polymorphic and 74 monomorphic bands were scored for SRAP primers (99% polymorphism). The genotypes Sakha 94, Sakha 95, Beni Sweif 4, Beni Sweif 7, Sohag 4 and Sohag 5 were resistant, while Giza 160 was highly susceptible to all stem rust races at the seedling stage. However, in the adult stage, the 18 genotypes were evaluated for stem and leaf rust-resistant in two different locations, i.e. Giza and Sids. In this investigation, for the first time, the activity of CuChNp was studied and shown to have the potential to inhibit stem and leaf rust in studied Egyptian wheat genotypes. The Spraying Cu-chitosan nanoparticles showed that the incubation and latent periods were increased in treated plants of the tested genotypes. Molecular modeling revealed their activity against the stem and leaf rust development. The SRAP and SCoT markers were highly useful tools for the classification of the tested wheat genotypes, although they displayed high similarities at the morphological stage. However, Cu-chitosan nanoparticles have a critical and effective role in stem and leaf rust disease control.
Collapse
Affiliation(s)
- Hanaa S Omar
- Faculty of Agriculture, Genetics Department, Cairo University, Giza, Egypt
- GMO lab Faculty of Agriculture, Cairo University, Research Park, CURP, Giza, Egypt
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Molecular Genetics and Stem Cell Research Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| | - Neama H Osman
- Faculty of Agriculture, Genetics Department, Cairo University, Giza, Egypt
| | | | - Mohamed A Abou-Zeid
- Wheat Disease Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| |
Collapse
|
4
|
Omar HS, Abd El-Rahman SN, AlGhannam SM, Reyad NEHA, Sedeek MS. Antifungal Evaluation and Molecular Docking Studies of Olea europaea Leaf Extract, Thymus vulgaris and Boswellia carteri Essential Oil as Prospective Fungal Inhibitor Candidates. Molecules 2021; 26:molecules26206118. [PMID: 34684700 PMCID: PMC8539494 DOI: 10.3390/molecules26206118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/05/2022] Open
Abstract
Background: The present study investigated the antifungal activity and mode of action of four Olea europaea leaf extracts, Thymus vulgaris essential oil (EO), and Boswellia carteri EO against Fusarium oxysporum. Methods:Fusarium oxysporum lactucae was detected with the internal transcribed spacer (ITS) region. The chemical compositions of chloroform and dichloromethane extracts of O. europaea leaves and T. vulgaris EO were analyzed using GC-MS analysis. In addition, a molecular docking analysis was used to identify the expected ligands of these extracts against eleven F. oxysporum proteins. Results: The nucleotide sequence of the F. oxysporum lactucae isolate was deposited in GenBank with Accession No. MT249304.1. The T. vulgaris EO, chloroform, dichloromethane and ethanol efficiently inhibited the growth at concentrations of 75.5 and 37.75 mg/mL, whereas ethyl acetate, and B. carteri EO did not exhibit antifungal activity. The GC-MS analysis revealed that the major and most vital compounds of the T. vulgaris EO, chloroform, and dichloromethane were thymol, carvacrol, tetratriacontane, and palmitic acid. Moreover, molecular modeling revealed the activity of these compounds against F. oxysporum. Conclusions: Chloroform, dichloromethane and ethanol, olive leaf extract, and T. vulgaris EO showed a strong effect against F. oxysporum. Consequently, this represents an appropriate natural source of biological compounds for use in healthcare. In addition, homology modeling and docking analysis are the best analyses for clarifying the mechanisms of antifungal activity.
Collapse
Affiliation(s)
- Hanaa S. Omar
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- GMO Laboratory, Faculty of Agriculture, Cairo University, Research Park, CURP, Giza 12613, Egypt
- Correspondence: (H.S.O.); (S.N.A.E.-R.)
| | - Soheir N. Abd El-Rahman
- Crops Technology Research Department, Food Technology Research Institute, Agricultural Research Center, Giza 12619, Egypt
- Correspondence: (H.S.O.); (S.N.A.E.-R.)
| | - Sheikha M. AlGhannam
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Nour El-Houda A. Reyad
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Mohamed S. Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| |
Collapse
|