1
|
Yang H, Huang X, Yang M, Zhang X, Tang F, Gao B, Gong M, Liang Y, Liu Y, Qian X, Li H. Advanced analytical techniques for authenticity identification and quality evaluation in Essential oils: A review. Food Chem 2024; 451:139340. [PMID: 38678649 DOI: 10.1016/j.foodchem.2024.139340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Essential oils (EO), secondary metabolites of plants are fragrant oily liquids with antibacterial, antiviral, anti-inflammatory, anti-allergic, and antioxidant effects. They are widely applied in food, medicine, cosmetics, and other fields. However, the quality of EOs remain uncertain owing to their high volatility and susceptibility to oxidation, influenced by factors such as the harvesting season, extraction, and separation techniques. Additionally, the huge economic value of EOs has led to a market marked by widespread and varied adulteration, making the assessment of their quality challenging. Therefore, developing simple, quick, and effective identification techniques for EOs is essential. This review comprehensively summarizes the techniques for assessing EO quality and identifying adulteration. It covers sensory evaluation, physical and chemical property evaluation, and chemical composition analysis, which are widely used and of great significance for the quality evaluation and adulteration detection of EOs.
Collapse
Affiliation(s)
- Huda Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaofei Zhang
- Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China
| | - Beibei Gao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mengya Gong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yong Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xingyi Qian
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| |
Collapse
|
2
|
Massoud RI, Bouaziz M, Abdallah H, Zeiz A, Flamini G, El-Dakdouki MH. Comparative Study on the Chemical Composition and Biological Activities of the Essential Oils of Lavandula angustifolia and Lavandula x intermedia Cultivated in Lebanon. ACS OMEGA 2024; 9:30244-30255. [PMID: 39035964 PMCID: PMC11256343 DOI: 10.1021/acsomega.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 07/23/2024]
Abstract
The phytochemical profile of essential oils is influenced by genetic and paragenetic factors. In this research, we studied the essential oils of Lavandula angustifolia and Lavandula x intermedia cultivated in Lebanon. The latter is a cross hybrid between Lavandula angustifolia and Lavandula latifolia and is also known as lavandin and Lavandula hybrida. Specifically, the chemical composition and biological activities (antibacterial, antioxidant, anticancer, and hemolytic) of the essential oils were assessed. GC-MS results showed marked differences in the chemical compositions of the oils. For example, linalool was more abundant in L. x intermedia (44.15%) than in L. angustifolia (32%), while an opposite trend was observed for the percentages of 1,8-cineole (8.6% in L. angustifolia and 4.0% in L. x intermedia). FTIR analysis confirmed the richness of both oils in monoterpenes and sesquiterpenes. In terms of antioxidant activity, L. angustifolia essential oil demonstrated significantly better activity (IC50= 5.24 ± 1.20 mg/mL) compared to L. x intermedia oil in the DPPH radical scavenging assay. MTT cell viability assays revealed that L. angustifolia essential oil was a slightly more potent antiproliferative agent than L. x intermedia oil on human colorectal (HCT-116) and human breast (MCF-7) cancer cells. The antibacterial activity of the essential oils was tested against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, and Serratia marcescens. Both oils showed good antibacterial activities with MIC values of 0.174 and 0.169 mg/mL for L. angustifolia and L. x intermedia oils, respectively. MBC determinations revealed that the antibacterial activity was bactericidal against all bacteria, except Staphylococcus aureus. Furthermore, both essential oils did not exhibit notable hemolytic activity on red blood cells. Overall, Lebanese L. angustifolia and L. x intermedia essential oils have promising industrial and medicinal values.
Collapse
Affiliation(s)
- Rana I. Massoud
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, Sfax BP117 33038, Tunisia
| | - Hiba Abdallah
- Department
of Chemistry, Faculty of Sciences I, Lebanese
University, Hadath Campus, Beirut 11-5020, Lebanon
| | - Ali Zeiz
- Department
of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon
| | - Guido Flamini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Faculty of Science, Beirut
Arab University, P.O.
Box 11-5020, Riad El Solh, Beirut 11072809, Lebanon
| |
Collapse
|
3
|
Syafri S, Gari Lindo GN, Alen Y, Syofyan S, Hamidi D. GC-MS and ATR-FTIR Spectroscopy Coupled with Chemometric Analysis for Detection and Quantification of White Turmeric ( Curcuma zedoaria) Essential Oils Adulteration. Pak J Biol Sci 2024; 27:160-167. [PMID: 38686738 DOI: 10.3923/pjbs.2024.160.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
<b>Background and Objective:</b> White turmeric essential oil (WTEO) is known to have high commercial value since it has been used to improve immunological function, increase blood circulation, ease toxin clearance and stimulate digestion. However, there is no standard to regulate the specific characteristics of white turmeric essential oil. Therefore, the objective of this research was to develop an analytical technique for WTEO authentication from vegetable oils, namely palm oil (PO), coconut oil (VCO) and soybean oil (SO), using FTIR spectroscopy and chemometrics, as well as GC-MS spectroscopy. <b>Materials and Methods:</b> The WTEO was obtained by hydrodistillation method. Pure WTEO and vegetable oils were scanned in the MIR region (4000-650 cm<sup>1</sup>) of FTIR spectroscopy and the spectra were further analyzed using chemometrics. <b>Results:</b> The extraction yielded 0.103% v/w WTEO, a dark purple color with a specific pungent odor. Discriminant analysis separated pure WTEO and adulterated WTEO with 100% accuracy at wave numbers 4000-650 cm<sup>1</sup>. The best PLS regressions to quantify SO, VCO, PO and concentration in WTEO were at wave numbers 4000-1100, 1400-1050 and 2100-650 cm<sup>1</sup>, respectively. <b>Conclusion:</b> The FTIR and chemometrics combination effectively authenticates white turmeric essential oil from any possible adulterants, such as vegetable oil.
Collapse
|
4
|
Molina R, López-Santos C, Balestrasse K, Gómez-Ramírez A, Sauló J. Enhancing Essential Oil Extraction from Lavandin Grosso Flowers via Plasma Treatment. Int J Mol Sci 2024; 25:2383. [PMID: 38397059 PMCID: PMC10889515 DOI: 10.3390/ijms25042383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
This study explores the impact of plasma treatment on Lavandin Grosso flowers and its influence on the extraction of essential oils (EOs) via hydrodistillation. Short plasma treatment times enhance the yield of EO extraction from 3.19% in untreated samples to 3.44%, corresponding to 1 min of plasma treatment, while longer treatment times (10 min) show diminishing returns to 3.07% of yield extraction. Chemical characterization (GC/MS and ATR-FTIR) indicates that plasma treatments do not significantly alter the chemical composition of the extracted EOs, preserving their aromatic qualities. Investigations into plasma-surface interactions reveal changes at the nanometer level, with XPS confirming alterations in the surface chemistry of Lavandin Grosso flowers by reducing surface carbon and increasing oxygen content, ultimately resulting in an increased presence of hydrophilic groups. The presence of hydrophilic groups enhances the interaction between the surface membrane of the glandular trichomes on Lavandin Grosso flowers and water vapor, consequently increasing the extraction of EOs. Furthermore, microscopic SEM examinations demonstrate that plasma treatments do not affect the morphology of glandular trichomes, emphasizing that surface modifications primarily occur at the nanoscale. This study underscores the potential of plasma technology as a tool to enhance EO yields from botanical sources while maintaining their chemical integrity.
Collapse
Affiliation(s)
- Ricardo Molina
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), 08034 Barcelona, Spain
| | - Carmen López-Santos
- Nanotechnology on Surfaces and Plasma Group, Institute of Materials Science of Seville (US-CSIC), 41092 Sevilla, Spain; (C.L.-S.); (A.G.-R.)
- Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Karina Balestrasse
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1417DSE, Argentina;
- Cátedra de Bioquímica, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Ana Gómez-Ramírez
- Nanotechnology on Surfaces and Plasma Group, Institute of Materials Science of Seville (US-CSIC), 41092 Sevilla, Spain; (C.L.-S.); (A.G.-R.)
- Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Jordi Sauló
- Laboratory of Dioxins, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
5
|
Antunes Filho S, dos Santos MS, dos Santos OAL, Backx BP, Soran ML, Opriş O, Lung I, Stegarescu A, Bououdina M. Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils. Molecules 2023; 28:molecules28073060. [PMID: 37049821 PMCID: PMC10095647 DOI: 10.3390/molecules28073060] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Plant extracts and essential oils have a wide variety of molecules with potential application in different fields such as medicine, the food industry, and cosmetics. Furthermore, these plant derivatives are widely interested in human and animal health, including potent antitumor, antifungal, anti-inflammatory, and bactericidal activity. Given this diversity, different methodologies were needed to optimize the extraction, purification, and characterization of each class of biomolecules. In addition, these plant products can still be used in the synthesis of nanomaterials to reduce the undesirable effects of conventional synthesis routes based on hazardous/toxic chemical reagents and associate the properties of nanomaterials with those present in extracts and essential oils. Vegetable oils and extracts are chemically complex, and although they are already used in the synthesis of nanomaterials, limited studies have examined which molecules are effectively acting in the synthesis and stabilization of these nanostructures. Similarly, few studies have investigated whether the molecules coating the nanomaterials derived from these extracts and essential oils would bring benefits or somehow reduce their potential activity. This synergistic effect presents a promising field to be further explored. Thus, in this review article, we conducted a comprehensive review addressing the main groups of molecules present in plant extracts and essential oils, their extraction capacity, and available methodologies for their characterization. Moreover, we highlighted the potential of these plant products in the synthesis of different metallic nanomaterials and their antimicrobial capacity. Furthermore, we correlated the extract’s role in antimicrobial activity, considering the potential synergy between molecules from the plant product and the different metallic forms associated with nanomaterials.
Collapse
|
6
|
Gafner S, Blumenthal M, Foster S, Cardellina JH, Khan IA, Upton R. Botanical Ingredient Forensics: Detection of Attempts to Deceive Commonly Used Analytical Methods for Authenticating Herbal Dietary and Food Ingredients and Supplements. JOURNAL OF NATURAL PRODUCTS 2023; 86:460-472. [PMID: 36716213 PMCID: PMC9972475 DOI: 10.1021/acs.jnatprod.2c00929] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 05/30/2023]
Abstract
Botanical ingredients are used widely in phytomedicines, dietary/food supplements, functional foods, and cosmetics. Products containing botanical ingredients are popular among many consumers and, in the case of herbal medicines, health professionals worldwide. Government regulatory agencies have set standards (collectively referred to as current Good Manufacturing Practices, cGMPs) with which suppliers and manufacturers must comply. One of the basic requirements is the need to establish the proper identity of crude botanicals in whole, cut, or powdered form, as well as botanical extracts and essential oils. Despite the legal obligation to ensure their authenticity, published reports show that a portion of these botanical ingredients and products are adulterated. Most often, such adulteration is carried out for financial gain, where ingredients are intentionally substituted, diluted, or "fortified" with undisclosed lower-cost ingredients. While some of the adulteration is easily detected with simple laboratory assays, the adulterators frequently use sophisticated schemes to mimic the visual aspects and chemical composition of the labeled botanical ingredient in order to deceive the analytical methods that are used for authentication. This review surveys the commonly used approaches for botanical ingredient adulteration and discusses appropriate test methods for the detection of fraud based on publications by the ABC-AHP-NCNPR Botanical Adulterants Prevention Program, a large-scale international program to inform various stakeholders about ingredient and product adulteration. Botanical ingredients at risk of adulteration include, but are not limited to, the essential oils of lavender (Lavandula angustifolia, Lamiaceae), rose (Rosa damascena, Rosaceae), sandalwood (Santalum album, Santalaceae), and tea tree (Melaleuca alternifolia, Myrtaceae), plus the extracts of bilberry (Vaccinium myrtillus, Ericaceae) fruit, cranberry (Vaccinium macrocarpon, Ericaceae) fruit, elder (Sambucus nigra, Viburnaceae) berry, eleuthero (Eleutherococcus senticosus, Araliaceae) root, ginkgo (Ginkgo biloba, Ginkgoaceae) leaf, grape (Vitis vinifera, Vitaceae) seed, saw palmetto (Serenoa repens, Arecaceae) fruit, St. John's wort (Hypericum perforatum, Hypericaceae) herb, and turmeric (Curcuma longa, Zingiberaceae) root/rhizome, among numerous others.
Collapse
Affiliation(s)
- Stefan Gafner
- American
Botanical Council, Austin, Texas 78714, United States
| | - Mark Blumenthal
- American
Botanical Council, Austin, Texas 78714, United States
| | - Steven Foster
- Steven Foster
Group, Eureka Springs, Arkansas 72632, United States
| | | | - Ikhlas A. Khan
- National
Center for Natural Products Research, University
of Mississippi, University, Mississippi 38677, United States
| | - Roy Upton
- American
Herbal Pharmacopoeia, Scotts
Valley, California 95067, United States
| |
Collapse
|
7
|
Truzzi E, Durante C, Bertelli D, Catellani B, Pellacani S, Benvenuti S. Rapid Classification and Recognition Method of the Species and Chemotypes of Essential Oils by ATR-FTIR Spectroscopy Coupled with Chemometrics. Molecules 2022; 27:5618. [PMID: 36080384 PMCID: PMC9458032 DOI: 10.3390/molecules27175618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In the present work, the applicability of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, coupled with chemometric tools in recognizing essential oils (EOs) for routine control, was evaluated. EOs belonging to Mentha, Cymbopogon, and Lavandula families and to S. rosmarinus and T. vulgaris species were analyzed, and the performance of several untargeted approaches, based on the synergistic combination of ATR-FTIR and Partial Least Squares Discriminant Analysis (PLS-DA), was tested to classify the species and chemotypes. Different spectra pre-processing methods were employed, and the robustness of the built models was tested by means of a Receiver Operating Characteristic (ROC) curve and random permutations test. The application of these approaches revealed fruitful results in terms of sensitivity and specificity, highlighting the potentiality of ATR-FTIR and chemometrics techniques to be used as a sensitive, cost-effective, and rapid tool to differentiate EO samples according to their species and chemotype.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Caterina Durante
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Benedetta Catellani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Samuele Pellacani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
8
|
A Review and Classification Framework of Traceability Approaches for Identifying Product Supply Chain Counterfeiting. SUSTAINABILITY 2022. [DOI: 10.3390/su14116666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Counterfeiting is found today in many industries and in various forms with severe consequences for supply chain operations. Products counterfeiting can be detected in consumer goods such as clothing, food and beverages, accessories, pharmaceuticals, electronics, and luxury goods. The continuous violations in the supply chain have led to the need for mobilization of all involved stakeholders to overcome counterfeiting challenges. Effective traceability seems to be the only way to combat this phenomenon, ensuring safe and sustainable supply chain operations. This paper presents a structured literature review on traceability approaches for combatting the product supply chain counterfeiting phenomenon that led to forming a structured classification framework. The performed analysis aims to identify trends and good practices and can be used as a guideline for real-life projects against supply chain counterfeiting. The results show that traditional traceability methods are not effective as they can be easily falsified using today’s technological advancements. However, these same advancements also present valuable technologies such as blockchain and the internet of things to ensure safe and sustainable supply chain operations.
Collapse
|
9
|
Mariotti M, Lombardini G, Rizzo S, Scarafile D, Modesto M, Truzzi E, Benvenuti S, Elmi A, Bertocchi M, Fiorentini L, Gambi L, Scozzoli M, Mattarelli P. Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms 2022; 10:822. [PMID: 35456873 PMCID: PMC9029798 DOI: 10.3390/microorganisms10040822] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The extensive use of antibiotics has contributed to the current antibiotic resistance crisis. Livestock infections of Salmonella spp, Clostridium spp. and E. coli antimicrobial-resistant bacteria represent a public threat to human and animal health. To reduce the incidence of these zoonoses, essential oils (EOs) could be effective antibiotic alternatives. This study aims at identifying EOs safe for use, effective both in complementary therapy and in the environmental sanitization of intensive farming. Natural products were chemo-characterized by gas chromatography. Three S. Typhimurium, three C. perfringens and four E. coli strains isolated from poultry and swine farms were used to assess the antimicrobial properties of nine EOs and a modified GR-OLI (mGR-OLI). The toxicity of the most effective ones (Cinnamomum zeylanicum, Cz; Origanum vulgare, Ov) was also evaluated on porcine spermatozoa and Galleria mellonella larvae. Cz, Ov and mGR-OLI showed the strongest antimicrobial activity; their volatile components were also able to significantly inhibit the growth of tested strains. In vitro, Ov toxicity was slightly lower than Cz, while it showed no toxicity on G. mellonella larvae. In conclusion, the study confirms the importance of evaluating natural products to consolidate the idea of safe EO applications in reducing and preventing intensive livestock infections.
Collapse
Affiliation(s)
- Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Giulia Lombardini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Silvia Rizzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Donatella Scarafile
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| | - Monica Modesto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| | - Eleonora Truzzi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (S.B.)
| | - Stefania Benvenuti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (S.B.)
| | - Alberto Elmi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.E.); (M.B.)
| | - Martina Bertocchi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.E.); (M.B.)
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER)—Sede Territoriale di Forlì, Via Don Eugenio Servadei 3E/3F, 47122 Forlì, Italy; (L.F.); (L.G.)
| | - Lorenzo Gambi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER)—Sede Territoriale di Forlì, Via Don Eugenio Servadei 3E/3F, 47122 Forlì, Italy; (L.F.); (L.G.)
| | - Maurizio Scozzoli
- Società Italiana per la Ricerca sugli Oli Essenziali (SIROE), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Mattarelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| |
Collapse
|
10
|
Characterization and Valorization of the Agricultural Waste Obtained from Lavandula Steam Distillation for Its Reuse in the Food and Pharmaceutical Fields. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051613. [PMID: 35268713 PMCID: PMC8911589 DOI: 10.3390/molecules27051613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The main focus of the current research was the characterization of the by-products from the steam distillation of Lavandula angustifolia Mill. (LA) and Lavandula x intermedia Emeric ex Loisel (LI) aerial parts, as they are important sources of bioactive compounds suitable for several applications in the food, cosmetic, and pharmaceutical industries. The oil-exhausted biomasses were extracted and the total polyphenol and flavonoid contents were, respectively, 19.22 ± 4.16 and 1.56 ± 0.21 mg/g for LA extract and 17.06 ± 3.31 and 1.41 ± 0.10 mg/g for LI extract. The qualitative analysis by liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS) revealed that both the extracts were rich in phenolic acids and glycosylated flavonoids. The extracts exhibited radical scavenging, chelating, reducing activities, and inhibitory capacities on acetylcholinesterase and tyrosinase. The IC50 values against acetylcholinesterase and tyrosinase were, respectively, 5.35 ± 0.47 and 5.26 ± 0.02 mg/mL for LA, and 6.67 ± 0.12 and 6.56 ± 0.16 mg/mL for LI extracts. In conclusion, the oil-exhausted biomasses demonstrated to represent important sources of bioactive compounds, suitable for several applications in the food, cosmetic, and pharmaceutical industries.
Collapse
|
11
|
Abstract
Cardamom essential oil (EO) is a rare oil of high scientific and economic interest due to its biofunctionality. This work aims to stabilize the EO by Pickering emulsions with nanocellulose, in the form of nanocrystals (CNC) or nanofibers (CNF), and to investigate the stability and chemical and physical interactions involved in the process. The emulsions were characterized by droplet size, morphology, stability, surface charges, Fourier transform infrared spectroscopy, FT-Raman, nuclear magnetic resonance, and scanning electron microscopy. Stable emulsions were prepared with cellulose morphologies and CNCs resulted in a 34% creaming index, while CNFs do not show instability. Emulsions indicate a possible interaction between nanocellulose, α-terpinyl acetate, and 1,8-cineole active essential oil compounds, where α-terpinyl acetate would be inside the drop and 1,8-cineole is more available to interact with cellulose. The interaction intensity depended on the morphology, which might be due to the nanocellulose’s self-assembly around oil droplets and influence on oil availability and future application. This work provides a systematic picture of cardamomum derived essential oil Pickering emulsion containing nanocellulose stabilizers’ formation and stability, which can further be extended to other value-added oils and can be an alternative for the delivery of cardamom essential oil for biomedical, food, cosmetics, and other industries.
Collapse
|
12
|
Syafri S, Jaswir I, Yusof F, Rohman A, Ahda M, Hamidi D. The use of instrumental technique and chemometrics for essential oil authentication: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Truzzi E, Benvenuti S, Bertelli D, Francia E, Ronga D. Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin ( Lavandula x intermedia Emeric ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules 2021; 26:6157. [PMID: 34684738 PMCID: PMC8537348 DOI: 10.3390/molecules26206157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, it has been shown that biostimulants can efficiently enhance plant metabolic processes, leading to an increased production of essential oil (EO) in aromatic plants. The present study aimed to evaluate the effects of two different commercial biostimulants composed of amino acids and seaweed extract, normally used for food organic crops, on the production and composition of EO and hydrosol of Lavandula x intermedia, cultivar "Grosso". The products were applied during 2020 growing season on lavender crops in three different locations of the Northern Italian (Emilia-Romagna Region) Apennines. Plants were harvested and EOs extracted by steam distillation and analyzed by gas chromatography. Both biostimulants affected the yield of EO per plant (+11% to +49% depending on the treatment/farm combination) without significantly changing the chemical composition of EOs and hydrosols. Conversely, the composition of EOs and hydrosols are related to the location, and the main compounds of "Grosso" cultivar, limonene, 1,8-cineole, cis-ocimene, linalool, camphor, borneol, terpinen-4-ol, and linalyl acetate, show different ratios at the experimental test sites. The differences might be due to the sunlight exposure and various maintenance of the crops over the years. In conclusion, these results suggest that the employment of biostimulants on lavandin crops do not endanger the quality of the EO while increasing biomass production and promoting the sustainability of the crop.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (D.B.); (E.F.)
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (D.B.); (E.F.)
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (D.B.); (E.F.)
| | - Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (D.B.); (E.F.)
- Centre BIOGEST–SITEIA, Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Domenico Ronga
- Pharmacy Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| |
Collapse
|
14
|
Capetti F, Marengo A, Cagliero C, Liberto E, Bicchi C, Rubiolo P, Sgorbini B. Adulteration of Essential Oils: A Multitask Issue for Quality Control. Three Case Studies: Lavandula angustifolia Mill., Citrus limon (L.) Osbeck and Melaleuca alternifolia (Maiden & Betche) Cheel. Molecules 2021; 26:5610. [PMID: 34577081 PMCID: PMC8471154 DOI: 10.3390/molecules26185610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/24/2022] Open
Abstract
The quality control of essential oils (EO) principally aims at revealing the presence of adulterations and at quantifying compounds that are limited by law by evaluating EO chemical compositions, usually in terms of the normalised relative abundance of selected markers, for comparison to reference values reported in pharmacopoeias and/or international norms. Common adulterations of EO consist of the addition of cheaper EO or synthetic materials. This adulteration can be detected by calculating the percent normalised areas of selected markers or the enantiomeric composition of chiral components. The dilution of the EO with vegetable oils is another type of adulteration. This adulteration is quite devious, as it modifies neither the qualitative composition of the resulting EO nor the marker's normalised percentage abundance, which is no longer diagnostic, and an absolute quantitative analysis is required. This study aims at verifying the application of the two above approaches (i.e., normalised relative abundance and absolute quantitation) to detect EO adulterations, with examples involving selected commercial EO (lavender, bergamot and tea tree) adulterated with synthetic components, EO of different origin and lower economical values and heavy vegetable oils. The results show that absolute quantitation is necessary to highlight adulteration with heavy vegetable oils, providing that a reference quantitative profile is available.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, I-10125 Turin, Italy; (F.C.); (A.M.); (C.C.); (E.L.); (C.B.); (P.R.)
| |
Collapse
|
15
|
Truzzi E, Marchetti L, Benvenuti S, Righi V, Rossi MC, Gallo V, Bertelli D. A Novel qNMR Application for the Quantification of Vegetable Oils Used as Adulterants in Essential Oils. Molecules 2021; 26:5439. [PMID: 34576909 PMCID: PMC8470556 DOI: 10.3390/molecules26185439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Essential oils (EOs) are more and more frequently adulterated due to their wide usage and large profit, for this reason accurate and precise authentication techniques are essential. This work aims at the application of qNMR as a versatile tool for the quantification of vegetable oils potentially usable as adulterants or diluents in EOs. This approach is based on the quantification of both 1H and 13C glycerol backbone signals, which are actually present in each vegetable oil containing triglycerides. For the validation, binary mixtures of rosemary EO and corn oil (0.8-50%) were prepared. To verify the general feasibility of this technique, other different mixtures including lavender, citronella, orange and peanut, almond, sunflower, and soy seed oils were analyzed. The results showed that the efficacy of this approach does not depend on the specific combination of EO and vegetable oil, ensuring its versatility. The method was able to determine the adulterant, with a mean accuracy of 91.81 and 89.77% for calculations made on 1H and 13C spectra, respectively. The high precision and accuracy here observed, make 1H-qNMR competitive with other well-established techniques. Considering the current importance of quality control of EOs to avoid fraudulent practices, this work can be considered pioneering and promising.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (L.M.); (S.B.)
| | - Lucia Marchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (L.M.); (S.B.)
- Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (L.M.); (S.B.)
| | - Valeria Righi
- Department of Life Quality Studies, Campus of Rimini, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| | - Maria Cecilia Rossi
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Via G. Campi 213/A, 41125 Modena, Italy;
| | - Vito Gallo
- Department DICATECh, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (L.M.); (S.B.)
| |
Collapse
|
16
|
Truzzi E, Marchetti L, Benvenuti S, Ferroni A, Rossi MC, Bertelli D. Novel Strategy for the Recognition of Adulterant Vegetable Oils in Essential Oils Commonly Used in Food Industries by Applying 13C NMR Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8276-8286. [PMID: 34264675 PMCID: PMC8389833 DOI: 10.1021/acs.jafc.1c02279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 05/27/2023]
Abstract
Essential oils (EOs) are valuable products commonly employed in the food industry and intensively studied as biopreservatives for the extension of food shelf-life. Unfortunately, EOs might be counterfeit to increase industrial profits. Among the possible adulterants, vegetable oils (VOs) must be considered for their characteristics and low costs. We aimed to apply nuclear magnetic resonance (NMR) spectroscopy for the detection and identification of VOs in mixtures with EOs. This innovative strategy is based on comparing the peak area ratio matrices of characteristic VO 13C NMR fatty acid signals with those of adulterated EOs. The identification of the VOs was achieved by calculating the matrix similarity at different confidence levels. The strategy demonstrated the capacity to efficiently recognize the presence of adulteration and the type of VO adulterant in mixtures. Thus, the method was applied to 20 commercial EOs, and VOs were detected and then identified in four samples.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Lucia Marchetti
- Department
of Life Sciences, University of Modena and
Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
- Doctorate
School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Stefania Benvenuti
- Department
of Life Sciences, University of Modena and
Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Annalisa Ferroni
- Department
of Life Sciences, University of Modena and
Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Maria Cecilia Rossi
- Centro
Interdipartimentale Grandi Strumenti, University
of Modena and Reggio Emilia, Via G. Campi 213/A, 41125 Modena, Italy
| | - Davide Bertelli
- Department
of Life Sciences, University of Modena and
Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|