1
|
Everett SS, Bomback M, Sahni R, Wapner RJ, Tolia VN, Clark RH, Lyford A, Hays T. Prevalence and Clinical Significance of Commonly Diagnosed Genetic Disorders in Preterm Infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.14.23292662. [PMID: 37503109 PMCID: PMC10370234 DOI: 10.1101/2023.07.14.23292662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background and Objectives Preterm infants (<34 weeks' gestation) experience high rates of morbidity and mortality before hospital discharge. Genetic disorders substantially contribute to morbidity and mortality in related populations. The prevalence and clinical impact of genetic disorders is unknown in this population. We sought to determine the prevalence of commonly diagnosed genetic disorders in preterm infants, and to determine the association of disorders with morbidity and mortality. Methods This was a retrospective multicenter cohort study of infants born from 23 to 33 weeks' gestation between 2000 and 2020. Genetic disorders were abstracted from diagnoses present in electronic health records. We excluded infants transferred from or to other health care facilities prior to discharge or death when analyzing clinical outcomes. We determined the adjusted odds of pre-discharge morbidity or mortality after adjusting for known risk factors. Results Of 320,582 infants, 4196 (1.3%) had genetic disorders. Infants with trisomy 13, 18, 21, or cystic fibrosis had greater adjusted odds of severe morbidity or mortality. Of the 17,427 infants who died, 566 (3.2%) had genetic disorders. Of the 65,968 infants with a severe morbidity, 1319 (2.0%) had genetic disorders.ConclusionsGenetic disorders are prevalent in preterm infants, especially those with life-threatening morbidities. Clinicians should consider genetic testing for preterm infants with severe morbidity and maintain a higher index of suspicion for life-threatening morbidities in preterm infants with genetic disorders. Prospective genomic research is needed to clarify the prevalence of genetic disorders in this population, and the contribution of genetic disorders to preterm birth and subsequent morbidity and mortality. Article Summary Genetic disorders were found in 1.3% of preterm infants and at a higher rate (2.0%) in infants who died or developed severe morbidity. What’s Known on This Subject Previous research described the prevalence and associated short-term morbidity and mortality of trisomy 13, 18, and 21 in preterm infants. The prevalence of other commonly diagnosed genetic disorders and associated short-term morbidity and mortality in preterm infants is unknown. What This Study Adds In a multicenter, retrospective cohort of 320,582 preterm (<34 weeks' gestation) infants, we found that 1.3% had genetic disorders diagnosed through standard care. Multiple disorders were associated with increased adjusted odds of morbidities or mortality prior to hospital discharge. Contributors Statement Page Selin S. Everett conceptualized and designed the study, conducted analyses, drafted the initial manuscript, and critically reviewed and revised the manuscript.Dr. Thomas Hays conceptualized and designed the study, drafted the initial manuscript, and critically reviewed and revised the manuscript.Miles Bomback conceptualized and designed the study and critically reviewed and revised the manuscript.Drs. Veeral N. Tolia and Reese H. Clark coordinated and supervised data collection and critically reviewed and revised the manuscript.Dr. Rakesh Sahni conceptualized and designed the study and critically reviewed and revised the manuscript.Dr. Alex Lyford conducted analyses and critically reviewed and revised the manuscript. Dr. Ronald J. Wapner reviewed and critically revised the manuscript.All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.
Collapse
|
2
|
Krivega M, Stiefel CM, Storchova Z. Consequences of chromosome gain: A new view on trisomy syndromes. Am J Hum Genet 2022; 109:2126-2140. [PMID: 36459979 PMCID: PMC9808507 DOI: 10.1016/j.ajhg.2022.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chromosome gains are detrimental for the development of the human embryo. As such, autosomal trisomies almost always result in spontaneous abortion, and the rare embryos surviving until live birth suffer from a plethora of pathological defects. There is no treatment currently available to ameliorate the consequences of trisomies, such as Down syndrome (trisomy of chromosome 21). Identifying the source of the phenotypes observed in cells with extra chromosomes is crucial for understanding the underlying molecular causes of trisomy syndromes. Although increased expression of the genes localized on the extra chromosome triggers several pathological phenotypes, an alternative model suggests that global, aneuploidy-associated changes in cellular physiology also contribute to the pathology. Here, we compare the molecular consequences of trisomy syndromes in vivo against engineered cell lines carrying various chromosome gains in vitro. We point out several phenotypes that are shared by variable trisomies and, therefore, might be caused by the presence of an extra chromosome per se, independent of its identity. This alternative view may provide useful insights for understanding Down syndrome pathology and open additional opportunities for diagnostics and treatments.
Collapse
Affiliation(s)
- Maria Krivega
- Reproduction Genetics, Department of Endocrinology and Infertility Disorders, Women Hospital, Heidelberg University, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| | - Clara M Stiefel
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zuzana Storchova
- Department of Molecular Genetics, Faculty of Biology, TU Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Meharena HS, Marco A, Dileep V, Lockshin ER, Akatsu GY, Mullahoo J, Watson LA, Ko T, Guerin LN, Abdurob F, Rengarajan S, Papanastasiou M, Jaffe JD, Tsai LH. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 2022; 29:116-130.e7. [PMID: 34995493 PMCID: PMC8805993 DOI: 10.1016/j.stem.2021.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023]
Abstract
Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.
Collapse
Affiliation(s)
- Hiruy S. Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elana R. Lockshin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace Y. Akatsu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - L. Ashley Watson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsey N. Guerin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shruthi Rengarajan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Jacob D. Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| |
Collapse
|
4
|
Bianco K, Sherwin EB, Konigshofer Y, Girsen AI, Sylvester KG, Garlick RK. Novel Approaches to Develop Critical Reference Materials for Noninvasive Prenatal Testing: A Pilot Study. J Appl Lab Med 2021; 6:1492-1504. [PMID: 34080621 DOI: 10.1093/jalm/jfab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Highly characterized reference materials are required to expand noninvasive prenatal testing (NIPT) for low incidence aneuploidies and microdeletions. The goal of this study was to develop reference materials for the development of next generation circulating cell-free DNA (ccfDNA) assays. METHODS This was a prospective study of pregnancies complicated by positive prenatal genetic screening. ccfDNA was isolated from maternal plasma and amplified. Lymphoblastoid cell lines were prepared from maternal peripheral blood mononuclear cells and fetal cord blood cells. Cells were Epstein-Barr virus immortalized and expanded. Amplified DNA and to a limited extent formulated lymphoblastoid-derived ccfDNA was tested in SNP-based and chromosome counting (CC) based massively parallel sequencing assays. RESULTS Enrolled cases included fetuses with: T21 (2), T18 (1), T18-XXX (1), XYY (1), microdeletions (1), and euploid (2). Three lymphoblastoid cells lines were prepared. Genomic DNA was extracted from cell lines and fragmented to simulate ccfDNA. ccfDNA isolation yielded about 2000 usable genome equivalents of DNA for each case for amplification. Although the sonicated genomic DNA derived from lymphoblastoid cell lines did not yield results compatible with NIPT assays, when blinded, NIPT platforms correctly identified the amplified ccfDNA isolated from blood in the majority of cases. CONCLUSIONS This study showed that maternal blood samples from pregnancies complicated by common chromosomal abnormalities can be used to generate materials for the development and evaluation of NIPT assays.
Collapse
Affiliation(s)
- Katherine Bianco
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth B Sherwin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Anna I Girsen
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl G Sylvester
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
5
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Current knowledge on genetic variants shaping placental transcriptome and their link to gestational and postnatal health. Placenta 2021; 116:2-11. [PMID: 33663810 DOI: 10.1016/j.placenta.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
Despite the indispensable role of the placenta in the successful course of pregnancy, regulation of its dynamic transcriptome is still underexplored. The purpose of this literature review was to give an overview and draw attention to the contribution of genetic variation in shaping the human placental gene expression. Studies of placental transcriptome shaped by chromosomal variants are limited and may be confounded by cellular mosaicism and somatic genomic rearrangements. Even in relatively simple cases, such as aneuploidies, the placental transcriptome appears to differ from the assumed systematically increased transcript levels of the involved chromosomes. Single nucleotide variants modulating placental gene expression referred to as expression quantitative trait loci (eQTLs) have been analyzed only in ten candidate gene and three genome-wide association studies (GWAS). The latter identified 417 confident placental eGenes, supported by at least two independent studies. Functional profiling of eGenes highlighted biological pathways important in pregnancy, such as immune response or transmembrane transport activity. A fraction of placental eQTLs (1-3%) co-localize with GWAS loci for adult disorders (metabolic, immunological, neurological), suggesting a co-contributory role of the placenta in the developmental programming of health. Some placental eQTLs have been identified as risk factors for adverse pregnancy outcomes, such as rs4769613 (C > T), located near the FLT1 gene and confidently associated with preeclampsia. More studies are needed to map genetic variants shaping gene expression in different placental cell types across three trimesters in normal and complicated gestations and to clarify to what extent these heritable factors contribute to maternal and offspring disease risks.
Collapse
|
7
|
De Toma I, Dierssen M. Network analysis of Down syndrome and SARS-CoV-2 identifies risk and protective factors for COVID-19. Sci Rep 2021; 11:1930. [PMID: 33479353 PMCID: PMC7820501 DOI: 10.1038/s41598-021-81451-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 infection has spread uncontrollably worldwide while it remains unknown how vulnerable populations, such as Down syndrome (DS) individuals are affected by the COVID-19 pandemic. Individuals with DS have more risk of infections with respiratory complications and present signs of auto-inflammation. They also present with multiple comorbidities that are associated with poorer COVID-19 prognosis in the general population. All this might place DS individuals at higher risk of SARS-CoV-2 infection or poorer clinical outcomes. In order to get insight into the interplay between DS genes and SARS-cov2 infection and pathogenesis we identified the genes associated with the molecular pathways involved in COVID-19 and the host proteins interacting with viral proteins from SARS-CoV-2. We then analyzed the overlaps of these genes with HSA21 genes, HSA21 interactors and other genes consistently differentially expressed in DS (using public transcriptomic datasets) and created a DS-SARS-CoV-2 network. We detected COVID-19 protective and risk factors among HSA21 genes and interactors and/or DS deregulated genes that might affect the susceptibility of individuals with DS both at the infection stage and in the progression to acute respiratory distress syndrome. Our analysis suggests that at the infection stage DS individuals might be more susceptible to infection due to triplication of TMPRSS2, that primes the viral S protein for entry in the host cells. However, as the anti-viral interferon I signaling is also upregulated in DS, this might increase the initial anti-viral response, inhibiting viral genome release, viral replication and viral assembly. In the second pro-inflammatory immunopathogenic phase of the infection, the prognosis for DS patients might worsen due to upregulation of inflammatory genes that might favor the typical cytokine storm of COVID-19. We also detected strong downregulation of the NLRP3 gene, critical for maintenance of homeostasis against pathogenic infections, possibly leading to bacterial infection complications.
Collapse
Affiliation(s)
- Ilario De Toma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Biomedical Research Networking Center On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Adams AD, Guedj F, Bianchi DW. Placental development and function in trisomy 21 and mouse models of Down syndrome: Clues for studying mechanisms underlying atypical development. Placenta 2020; 89:58-66. [PMID: 31683073 PMCID: PMC10040210 DOI: 10.1016/j.placenta.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is the most common genetic disorder leading to developmental disability. The phenotypes associated with DS are complex and vary between affected individuals. Placental abnormalities in DS include differences in cytotrophoblast fusion that affect subsequent conversion to syncytiotrophoblast, atypical oxidative stress/antioxidant balance, and increased expression of genes that are also upregulated in the brains of individuals with Alzheimer's disease. Placentas in DS are prematurely senescent, showing atypical evidence of mineralization. Fetuses with DS are especially susceptible to adverse obstetric outcomes, including early in utero demise, stillbirth and growth restriction, all of which are related to placental function. The placenta, therefore, may provide key insights towards understanding the phenotypic variability observed in individuals with DS and aid in identifying biomarkers that can be used to evaluate phenotypic severity and prenatal treatments in real time. To address these issues, many different mouse models of DS have been generated to identify the mechanisms underlying developmental changes in many organ systems. Little is known, however, regarding placental development in the currently available mouse models of DS. Based upon the relative paucity of data on placental development in preclinical mouse models of DS, we recommend that future evaluation of new and existing models routinely include histologic and functional assessments of the placenta. In this paper we summarize studies performed in the placentas of both humans and mouse models with DS, highlighting gaps in knowledge and suggesting directions for future research.
Collapse
Affiliation(s)
- April D Adams
- Medical Genetics Branch (Prenatal Genomics and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Faycal Guedj
- Medical Genetics Branch (Prenatal Genomics and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diana W Bianchi
- Medical Genetics Branch (Prenatal Genomics and Therapy Section), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Leon-Martinez D, Robinson JF, Zdravkovic T, Genbacev O, Gormley M, Mcmaster M, Fisher SJ, Bianco K. Trisomy 21 is Associated with Caspase-2 Upregulation in Cytotrophoblasts at the Maternal-Fetal Interface. Reprod Sci 2020; 27:100-109. [PMID: 32046398 DOI: 10.1007/s43032-019-00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/28/2019] [Indexed: 11/26/2022]
Abstract
Impaired placentation is implicated in poor perinatal outcomes associated with Trisomy 21. Earlier studies revealed abnormal cytotrophoblast differentiation along the invasive pathway as a contributing mechanism. To further elucidate the causes, we evaluated Caspase-2 expression at the protein level (immunolocalization and immunoblot) in samples from Trisomy 21 (n = 9) and euploid (n = 4) age-matched placentas. Apoptosis was investigated via the TUNEL assay. An immunolocalization approach was used to characterize Caspase-3, Fas (CD95), and Fas ligand in the same samples. Caspase-2 was significantly overexpressed in Trisomy 21 placentas, with the highest expression in villous cores and invasive cytotrophoblasts. Immunolocalization showed that Caspase-3 had a similar expression pattern as Caspase-2. Using the TUNEL approach, we observed high variability in the number of apoptotic cells in biopsies from different regions of the same placenta and among different placentas. However, Trisomy 21 placentas had more apoptotic cells, specifically in cell columns and basal plates. Furthermore, Caspase-2 co-immunolocalized with Fas (CD95) and FasL in TUNEL-positive extravillous cytotrophoblasts, but not in villous cores. These results help explain the higher levels of apoptosis among placental cells of Trisomy 21 pregnancies in molecular terms. Specifically, the co-expression of Caspase-2 and Caspase-3 with other regulators of the apoptotic process in TUNEL-positive cells suggests these molecules may cooperate in launching the observed apoptosis. Among trophoblasts, only the invasive subpopulation showed this pattern, which could help explain the higher rates of adverse outcomes in these pregnancies. In future experiments, this relationship will be further examined at a functional level in cultured human trophoblasts.
Collapse
Affiliation(s)
- Daisy Leon-Martinez
- Department of Obstetrics and Gynecology, Yale University, New Haven, CT, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Tamara Zdravkovic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Olga Genbacev
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Michael Mcmaster
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Katherine Bianco
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University, 300 Pasteur Dr. HH333 MC 5317, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Marin D, Wang Y, Tao X, Scott RT, Treff NR. Comprehensive chromosome screening and gene expression analysis from the same biopsy in human preimplantation embryos. Mol Hum Reprod 2017; 23:330-338. [PMID: 28369516 PMCID: PMC5420574 DOI: 10.1093/molehr/gax014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Can simultaneous comprehensive chromosome screening (CCS) and gene expression analysis be performed on the same biopsy of preimplantation human embryos? SUMMARY ANSWER For the first time, CCS and reliable gene expression analysis have been performed on the same human preimplantation embryo biopsy. WHAT IS KNOWN ALREADY A single trophectoderm (TE) biopsy is routinely used for many IVF programs offering CCS for selection of only chromosomally normal embryos for transfer. Although the gene expression profiling of human preimplantation embryos has been described, to date no protocol allows for simultaneous CCS and gene expression profiling from a single TE biopsy. STUDY DESIGN, SIZE AND DURATION This is a proof of concept and validation study structured in two phases. In Phase 1, cell lines were subjected to a novel protocol for combined CCS and gene expression analysis so as to validate the accuracy and reliability of the proposed protocol. In Phase 2, 20 donated human blastocysts were biopsied and processed with the proposed protocol in order to obtain an accurate CCS result and characterize their gene expression profiles using the same starting material. PARTICIPANTS/MATERIALS, SETTING AND METHOD A novel protocol coupling quantitative real-time PCR-based CCS and gene expression analysis using RT-PCR was designed for this study. Phase 1: six-cell aliquots of well-characterized fibroblast cell lines (GM00323, 46,XY and GM04435, 48,XY,+16,+21) were subjected to the proposed protocol. CCS results were compared with the known karyotypes for consistency, and gene expression levels were compared with levels of purified RNA from same cell lines for validation of reliable gene expression profiling. Phase 2: four biopsies were performed on 20 frozen human blastocysts previously diagnosed as trisomy 21 (10 embryos) and monosomy 21 (10 embryos) by CCS. All samples were processed with the proposed protocol and re-evaluated for concordance with the original CCS result. Their gene expression profiles were characterized and differential gene expression among embryos and early embryonic cell lineages was also evaluated. MAIN RESULTS AND THE ROLE OF CHANCE CCS results from cell lines showed 100% consistency with their known karyotypes. ΔΔCt values of differential gene expression of four selected target genes from the cell lines GM4435 and GM0323 were comparable between six-cell aliquots and purified RNA (Collagen type I alpha-1 (COL1A1), P = 0.54; Fibroblast growth factor-5 (FGF5), P = 0.11; Laminin subunit beta-1 (LAMB1), P = 1.00 and Atlastin-1 (ATL1), P = 0.23). With respect to human blastocysts, 92% consistency was reported after comparing embryonic CCS results with previous diagnosis. A total of 30 genes from a human stem cell pluripotency panel were selected to evaluate gene expression in human embryos. Correlation coefficients of expression profiles from biopsies of the same embryo (r = 0.96 ± 0.03 (standard deviation), n = 45) were significantly higher than when biopsies from unrelated embryos were evaluated (r = 0.93 ± 0.03, n = 945) (P < 0.0001). Growth differentiation factor 3 (GDF3) was found to be significantly up-regulated in the inner cell mass (ICM), whereas Caudal type homebox protein-2 (CDX2), Laminin subunit alpha-1 (LAMA1) and DNA methyltransferase 3-beta (DNMT3B) showed down-regulation in ICM compared with TE. Trisomy 21 embryos showed significant up-regulation of markers of cell differentiation (Cadherin-5 (CDH5) and Laminin subunit gamma-1 (LAMC1)), whereas monosomy 21 blastocysts showed higher expression of genes reported to be expressed in undifferentiated cells (Gamma-Aminobutyric Acid Type-A Receptor Beta3 Subunit (GABRB3) and GDF3). LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Gene expression profiles of chromosomally normal embryos were not assessed due to restrictive access to euploid embryos for research. Nonetheless, the profile of blastocysts with single aneuploidies was characterized and compared. Only 30 target genes were analyzed for gene expression in this study. Increasing the number of target genes will provide a more comprehensive transcriptomic signature and reveal potential pathways paramount for embryonic competence and correct development. WIDER IMPLICATIONS OF THE FINDINGS This is the first time that CCS and gene expression analysis have been performed on the same human preimplantation embryo biopsy. Further optimization of this protocol with other CCS platforms and inclusion of more target genes will provide innumerable research and clinical applications, such as discovery of biomarkers for embryonic reproductive potential and characterization of the transcriptomic signatures of embryos, potentially allowing for further embryo selection prior to embryo transfer and therefore improving outcomes. STUDY FUNDING AND COMPETING INTERESTS This study was funded by the Foundation for Embryonic Competence, Basking Ridge, NJ, USA. No conflicts of interests declared.
Collapse
Affiliation(s)
- Diego Marin
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ 07920, USA.,Thomas Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yujue Wang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xin Tao
- The Foundation for Embryonic Competence, Basking Ridge, NJ 07920, USA
| | - Richard T Scott
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ 07920, USA
| | - Nathan R Treff
- Reproductive Medicine Associates of New Jersey, 140 Allen Road, Basking Ridge, NJ 07920, USA.,Thomas Jefferson College of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|