1
|
Parenti M, Shoff S, Sotelo-Orozco J, Hertz-Picciotto I, Slupsky CM. Metabolomics of mothers of children with autism, idiopathic developmental delay, and Down syndrome. Sci Rep 2024; 14:31981. [PMID: 39738617 DOI: 10.1038/s41598-024-83587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Developmental delays have been associated with metabolic disturbances in children. Previous research in the childhood autism risk from genetics and the environment (CHARGE) case-control study identified neurodevelopment-related plasma metabolites in children, suggesting disturbances in the energy-related tricarboxylic acid (TCA) cycle and 1-carbon metabolism (1CM). Here, we investigated associations between children's neurodevelopmental outcomes and their mothers' plasma metabolite profiles in a subset of mother-child dyads from CHARGE, including those with autism spectrum disorder (ASD, n = 209), Down syndrome (DS, n = 76), idiopathic developmental delay (iDD, n = 64), and typically developed (TD, n = 185) controls. Multiple linear regression revealed associations between child neurodevelopmental outcomes and maternal plasma metabolites related to the TCA cycle, 1CM, and lipid metabolism. Despite profound metabolic disturbances in children with DS reported previously, few of these differences were observed in the mothers, which might reflect differences in gene dosage between children with DS and their euploid mothers. Notably differences in maternal metabolism related to ASD and iDD followed similar patterns of disturbance in previously reported metabolic signatures in children but were generally smaller in magnitude. Similar patterns of metabolic disturbances observed in mothers and their children with ASD or iDD could reflect shared genetic, mitochondrial, and/or environmental risk factors.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shannon Shoff
- Department of Nutrition, Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Department of Food Science & Nutrition, Cal Poly, 1 Grand Ave San Luis Obispo, San Luis Obispo, CA, 93407, USA
| | | | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Ariad D, Madjunkova S, Madjunkov M, Chen S, Abramov R, Librach C, McCoy RC. Aberrant landscapes of maternal meiotic crossovers contribute to aneuploidies in human embryos. Genome Res 2024; 34:70-84. [PMID: 38071472 PMCID: PMC10903951 DOI: 10.1101/gr.278168.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Meiotic recombination is crucial for human genetic diversity and chromosome segregation accuracy. Understanding its variation across individuals and the processes by which it goes awry are long-standing goals in human genetics. Current approaches for inferring recombination landscapes rely either on population genetic patterns of linkage disequilibrium (LD)-capturing a time-averaged view-or on direct detection of crossovers in gametes or multigeneration pedigrees, which limits data set scale and availability. Here, we introduce an approach for inferring sex-specific recombination landscapes using data from preimplantation genetic testing for aneuploidy (PGT-A). This method relies on low-coverage (<0.05×) whole-genome sequencing of in vitro fertilized (IVF) embryo biopsies. To overcome the data sparsity, our method exploits its inherent relatedness structure, knowledge of haplotypes from external population reference panels, and the frequent occurrence of monosomies in embryos, whereby the remaining chromosome is phased by default. Extensive simulations show our method's high accuracy, even at coverages as low as 0.02×. Applying this method to PGT-A data from 18,967 embryos, we mapped 70,660 recombination events with ∼150 kbp resolution, replicating established sex-specific recombination patterns. We observed a reduced total length of the female genetic map in trisomies compared with disomies, as well as chromosome-specific alterations in crossover distributions. Based on haplotype configurations in pericentromeric regions, our data indicate chromosome-specific propensities for different mechanisms of meiotic error. Our results provide a comprehensive view of the role of aberrant meiotic recombination in the origins of human aneuploidies and offer a versatile tool for mapping crossovers in low-coverage sequencing data from multiple siblings.
Collapse
Affiliation(s)
- Daniel Ariad
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Svetlana Madjunkova
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Siwei Chen
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
| | - Rina Abramov
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario M5G 1N8, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1E2, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
3
|
Ariad D, Madjunkova S, Madjunkov M, Chen S, Abramov R, Librach C, McCoy RC. Aberrant landscapes of maternal meiotic crossovers contribute to aneuploidies in human embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543910. [PMID: 37333422 PMCID: PMC10274764 DOI: 10.1101/2023.06.07.543910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Meiotic recombination is crucial for human genetic diversity and chromosome segregation accuracy. Understanding its variation across individuals and the processes by which it goes awry are long-standing goals in human genetics. Current approaches for inferring recombination landscapes either rely on population genetic patterns of linkage disequilibrium (LD)-capturing a time-averaged view-or direct detection of crossovers in gametes or multi-generation pedigrees, which limits dataset scale and availability. Here, we introduce an approach for inferring sex-specific recombination landscapes using data from preimplantation genetic testing for aneuploidy (PGT-A). This method relies on low-coverage (<0.05×) whole-genome sequencing of in vitro fertilized (IVF) embryo biopsies. To overcome the data sparsity, our method exploits its inherent relatedness structure, knowledge of haplotypes from external population reference panels, as well as the frequent occurrence of monosomies in embryos, whereby the remaining chromosome is phased by default. Extensive simulations demonstrate our method's high accuracy, even at coverages as low as 0.02×. Applying this method to PGT-A data from 18,967 embryos, we mapped 70,660 recombination events with ~150 kbp resolution, replicating established sex-specific recombination patterns. We observed a reduced total length of the female genetic map in trisomies compared to disomies, as well as chromosome-specific alterations in crossover distributions. Based on haplotype configurations in pericentromeric regions, our data indicate chromosome-specific propensities for different mechanisms of meiotic error. Our results provide a comprehensive view of the role of aberrant meiotic recombination in the origins of human aneuploidies and offer a versatile tool for mapping crossovers in low-coverage sequencing data from multiple siblings.
Collapse
Affiliation(s)
- Daniel Ariad
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Svetlana Madjunkova
- CReATe Fertility Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | - Siwei Chen
- CReATe Fertility Centre, Toronto, Canada
| | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Aprigio J, de Castro CML, Lima MAC, Ribeiro MG, Orioli IM, Amorim MR. Mothers of children with Down syndrome: a clinical and epidemiological study. J Community Genet 2023; 14:189-195. [PMID: 36562914 PMCID: PMC10104982 DOI: 10.1007/s12687-022-00627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Down syndrome is the main genetic cause of intellectual disability. Many studies describe the clinical characteristics of DS patients; however, few have investigated the clinical profile of mothers who have children with DS. Advanced maternal age (≥ 35 years old) is a risk factor for DS. Although there is an overall increase in pregnancies among women with advanced maternal age, there is still a lack of awareness of the increased risk of aneuploidy. Here, we reported the clinical and epidemiological profile of DS children and their mothers in a public reference hospital in the State of Rio de Janeiro, Brazil. For data collection, we performed a face-to-face interview guided by a structured questionnaire with closed-ended questions. A total of 344 individuals, 172 mothers and their DS children, were included in this study. Our results show that 56% of the mothers sampled were ≥ 35 years of age at childbirth. Although 98% of them received prenatal care, only 4% obtained a prenatal diagnosis of DS. Most mothers reported not drinking alcohol or smoking cigarettes during pregnancy. Furthermore, 91% of women took prenatal vitamins and supplements; however, 47% were not aware of their benefits for a healthy pregnancy. Given the strict correlation between advanced maternal age and DS, prenatal care should include genetic counseling for women over 35 years of age. This study highlights the importance of prenatal care and the urgent need for better DS screening allowing for immediate postnatal care, positively impacting the life expectancy of these patients.
Collapse
Affiliation(s)
- Joissy Aprigio
- INAGEMP, Departamento de Genética, Instituto de Biologia, UFRJ, Rio de Janeiro, RJ, Brazil
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Carolina M L de Castro
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Marcelo A Costa Lima
- Departamento de Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Márcia G Ribeiro
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Iêda M Orioli
- INAGEMP, Departamento de Genética, Instituto de Biologia, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Márcia R Amorim
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
5
|
de Castro CML, Pereira COB, Aprigio J, Costa Lima MA, Ribeiro MG, Amorim MR. Aurora kinase genetic polymorphisms: an association study in Down syndrome and spontaneous abortion. Hum Cell 2022; 35:849-855. [PMID: 35218477 DOI: 10.1007/s13577-022-00686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
Abstract
Aneuploidies, such as Down syndrome (DS), are the leading cause of pregnancy loss. Abnormalities in aurora kinase proteins result in genomic instability and aneuploidy, mainly in tumors. Thus, polymorphisms in Aurora kinase genes could influence the occurrence of DS and spontaneous abortion. A case-control study was conducted including 124 mothers of DS children (DSM) and 219 control mothers (CM) to investigate DS risk according to AURKA and AURKC polymorphisms. Genotyping was performed using TaqMan real-time PCR. The minor allele frequency (MAF) observed in AURKA rs2273535 was, respectively, 0.23 in DSM and 0.20 in CM, whereas the frequency of the AURKC rs758099 T allele was 0.32 in case and 0.33 in control mothers. Statistical analysis showed no significant difference in the distribution of genotypes and allele frequencies between DSM and CM. According to previous history of spontaneous abortion, the AURKA rs2273535 genotypes (TT + AT vs. AA: OR 2.54, 95% CI 1.13-5.71, p = 0.02; AT vs. AA: OR 2.39, 95% CI 1.03-5.51, p = 0.04; T vs. A: OR 2.08, 95% CI 1.12-3.90, p = 0.02) and AURKC rs758099 (TT vs. CC: OR 4.34, 95% CI 1.03-18.02, p = 0.04; TT + CT vs. CC: OR 2.52, 95% CI 1.02-6.23, p = 0.04; T vs. C: OR 2.03, 95% CI 1.09-3.80, p = 0.02) were observed as risk factors for spontaneous abortion in case mothers. Our study suggests a possible relationship between AURKA/AURKC variants and increased risk of spontaneous abortion within Down syndrome mothers.
Collapse
Affiliation(s)
- Carolina Monteiro Leite de Castro
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis-São Domingos, Niterói, RJ, 24210-201, Brazil.,Programa de Pós-Graduação em Medicina, Neurologia/Neurociências, HUAP, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil
| | - Carolina Oliveto Bastos Pereira
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis-São Domingos, Niterói, RJ, 24210-201, Brazil
| | - Joissy Aprigio
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis-São Domingos, Niterói, RJ, 24210-201, Brazil
| | - Marcelo A Costa Lima
- Departamento de Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, PHLC, Maracanã, Rio de Janeiro, RJ, 20550-900, Brazil
| | - Márcia G Ribeiro
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rua Bruno Lobo 50, Cidade Universitária-Ilha Do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil
| | - Márcia Rodrigues Amorim
- Laboratório de Genética Humana, Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Rua Prof. Marcos Waldemar de Freitas Reis-São Domingos, Niterói, RJ, 24210-201, Brazil. .,Programa de Pós-Graduação em Medicina, Neurologia/Neurociências, HUAP, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|