1
|
Allen VM, Schollenberg E, Aberg E, Brock JAK. Use of Clinically Informed Strategies and Diagnostic Yields of Genetic Testing for Fetal Structural Anomalies Following a Non-Diagnostic Microarray Result: A Population-Based Cohort Study. Prenat Diagn 2025. [PMID: 39953983 DOI: 10.1002/pd.6759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE To investigate the performance of targeted gene sequencing, expanded gene panels, and selected exomes for prenatally identified fetal anomalies, after non-diagnostic microarray results. METHOD All fetal samples received for genetic testing for fetal structural anomalies in the Canadian Maritime Provinces (2014-2022) were identified. Utilization and results of NGS sequencing strategies after a non-diagnostic microarray were correlated with ultrasound findings and autopsy results. RESULTS Five hundred and ninety-three cases of fetal anomalies with non-diagnostic RAD results were identified, including 319 (54%) with isolated anomalies. Diagnostic yield from the microarray was 7.5%. Sequence-based testing for 131 cases gave an overall diagnostic yield of 38% (8.4% of initial cohort). For isolated anomalies, diagnostic yield was highest in the intracranial, renal, and musculoskeletal systems (44%, 60%, 64% respectively). Appropriate targeted gene sequencing provided a diagnostic yield of 40%. With clinically indicated criteria for exome analysis, diagnostic yields were higher than when clinical information prompted use of a selected gene panel (73% vs. 27%). Expanding to an exome after a non-diagnostic gene panel had an additional diagnostic yield of 13%. CONCLUSION Multidisciplinary review and comprehensive clinical information can inform the selection of strategies for expanded genetic testing after non-diagnostic microarray for fetal anomalies within a publicly funded health care system.
Collapse
Affiliation(s)
- Victoria M Allen
- Department of Obstetrics & Gynaecology, Dalhousie University and IWK Health, Halifax, Canada
| | - Erica Schollenberg
- Department of Pathology & Laboratory Medicine, Dalhousie University and IWK Health, Halifax, Canada
| | - Erika Aberg
- Maritime Medical Genetics Service, IWK Health, Halifax, Canada
| | - Jo-Ann K Brock
- Department of Obstetrics & Gynaecology, Dalhousie University and IWK Health, Halifax, Canada
- Department of Pathology & Laboratory Medicine, Dalhousie University and IWK Health, Halifax, Canada
| |
Collapse
|
2
|
Zhang H, He X, Wang Y, Li C, Jiang H, Hou S, Huang D, Zhang W, Tan J, Du X, Cao Y, Chen D, Yan H, Peng L, Lei D. Simultaneous CNV-seq and WES: An effective strategy for molecular diagnosis of unexplained fetal structural anomalies. Heliyon 2024; 10:e39392. [PMID: 39502218 PMCID: PMC11535759 DOI: 10.1016/j.heliyon.2024.e39392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background Fetal structural anomalies are detected by ultrasound in approximately 3 % of pregnancies. Numerous genetic diagnostic strategies have been widely applied to identify the genetic causes of prenatal abnormalities. We aimed to assess the value of simultaneous copy number variation sequencing (CNV-seq) and whole exome sequencing (WES) in diagnosing fetuses with structural anomalies. Methods Fetuses with structural anomalies detected by ultrasound were included for eligibility. After genetic counseling, WES and CNV-seq were performed on DNA samples of fetuses and their parents. All detected variants were evaluated for pathogenicity according to ACMG criteria, with the final diagnosis was determined based on ultrasound results and relevant family history. Results The diagnostic rate of 174 fetuses with prenatal ultrasound abnormalities was 26.44 %, higher than that achieved through either CNV or WES analysis alone. Furthermore, the highest diagnostic rate was observed in fetuses with multiple system anomalies, accounting for 50 % of the total diagnostic yield, followed by skeletal system anomalies at 45.45 %. Three cases with multiple system abnormalities were found to have a dual diagnosis of pathogenic CNVs and SNV variants, representing 1.72 % of the total cohort. 38 pregnant women in their third trimester of pregnancy (27 weeks+) participated in this study, and 23.68 % received a confirmed genetic diagnosis. Finally, 31 women (67.39 %) voluntarily terminated their pregnancy following the testing and extensive genetic counseling. Conclusions Our study demonstrated that the simultaneous CNV-seq and WES analyses are beneficial for the molecular diagnosis of underlying unexplained structural anomalies in fetuses. This strategy is more efficient in elucidating prenatal abnormalities with compound problems, such as dual diagnoses. Furthermore, the simultaneous strategy has a shorter turnaround time and is particularly suitable for families with structural anomalies found in the third trimester of pregnancy.
Collapse
Affiliation(s)
- Haoqing Zhang
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuankun Wang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Caiyun Li
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Hongguo Jiang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
| | - Shuai Hou
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Dongqun Huang
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Wenqian Zhang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Jufang Tan
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Xiaoyun Du
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Yinli Cao
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Danjing Chen
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Haiying Yan
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Lingling Peng
- The Chenzhou Affiliated Hospital, Department of Gynecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Dongzhu Lei
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| |
Collapse
|
3
|
Kalisch-Smith JI, Ehtisham-Uddin N, Rodriguez-Caro H. Feto-placental and coronary endothelial genes implicated in miscarriage, congenital heart disease and stillbirth, a systematic review and meta-analysis. Placenta 2024; 156:55-66. [PMID: 39276426 DOI: 10.1016/j.placenta.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The first trimester placenta is very rarely investigated for placental vascular formation in developmental or diseased contexts. Defects in placental formation can cause heart defects in the fetus, and vice versa. Determining the causality is therefore difficult as both organs develop concurrently and express many of the same genes. Here, we performed a systematic review to determine feto-placental and coronary endothelial genes implicated in miscarriages, stillbirth and congenital heart defects (CHD) from human genome wide screening studies. 4 single cell RNAseq datasets from human first/early second trimester cardiac and placental samples were queried to generate a list of 1187 endothelial genes. This broad list was cross-referenced with genes implicated in the pregnancy disorders above. 39 papers reported feto-placental and cardiac coronary endothelial genes, totalling 612 variants. Vascular gene variants were attributed to the incidence of miscarriage (8 %), CHD (4 %) and stillbirth (3 %). The most common genes for CHD (NOTCH, DST, FBN1, JAG1, CHD4), miscarriage (COL1A1, HERC1), and stillbirth (AKAP9, MYLK), were involved in blood vessel and cardiac valve formation, with roles in endothelial differentiation, angiogenesis, extracellular matrix signaling, growth factor binding and cell adhesion. NOTCH1, AKAP12, CHD4, LAMC1 and SOS1 showed greater relative risk ratios with CHD. Many of the vascular genes identified were expressed highly in both placental and heart EC populations. Both feto-placental and cardiac vascular genes are likely to result in poor endothelial cell development and function during human pregnancy that leads to higher risk of miscarriage, congenital heart disease and stillbirth.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK.
| | - Nusaybah Ehtisham-Uddin
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK
| | - Helena Rodriguez-Caro
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK; Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
4
|
Sun S, Ji Y, Shao D, Xu Y, Yang X, Sun L, Li N, Huang H, Wu Q. Genomic insights into prenatal diagnosis of congenital heart defects: value of CNV-seq and WES in clinical practice. Front Genet 2024; 15:1448383. [PMID: 39205944 PMCID: PMC11349688 DOI: 10.3389/fgene.2024.1448383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to assess the efficiency of CNV-seq and WES in detecting genetic cause of congenital heart disease (CHDs) in prenatal diagnoses and to compare CNV detection rate between isolated and non-isolated CHD cases. We conducted a retrospective study of 118 Chinese fetuses diagnosed with CHD by prenatal ultrasound. Participants underwent CNV-seq and, if necessary, WES to detect chromosomal and single nucleotide variations. The overall detection rate for pathogenic or likely pathogenic chromosomal abnormalities was 16.9%, including 7.6% aneuploidies and 9.3% pathogenic/likely pathogenic copy number variations (CNVs), predominantly 22q11.2 deletion syndrome (54.4%). The sensitivity and specificity of CNV-Seq for detecting P/Lp CNVs were 95% and 100%, respectively. CNV-Seq offered a 6.7% improvement in detecting chromosomal abnormalities over karyotyping. WES further identified significant single nucleotide and small indel variations contributing to CHD in genes such as TMEM67, PLD1, ANKRD11, and PNKP, enhancing diagnostic yield by 14.8% in cases negative for CNVs. Non-isolated CHD cases exhibited higher rates of detectable chromosomal abnormalities compared to isolated cases (32.4% vs. 9.9%, p = 0.005), underlining the genetic complexity of these conditions. The combined use of CNV-seq and WES provides a comprehensive approach to prenatal genetic testing for CHDs, unveiling significant genetic cause that could impact clinical management and parental decision-making. This study supports the integration of these advanced genomic technologies in routine prenatal diagnostics to increase detection diagnostic yields of causal genetic variants associated with CHDs.
Collapse
Affiliation(s)
- Shiyu Sun
- Prenatal Diagnosis Center, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Ji
- Prenatal Diagnosis Center, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Di Shao
- BGI Genomics, Shenzhen, China
| | - Yasong Xu
- Prenatal Diagnosis Center, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaomei Yang
- Prenatal Diagnosis Center, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li Sun
- Prenatal Diagnosis Center, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Nan Li
- BGI Genomics, Shenzhen, China
| | | | - Qichang Wu
- Prenatal Diagnosis Center, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Reilly K, Sonner S, McCay N, Rolnik DL, Casey F, Seale AN, Watson CJ, Kan A, Lai THT, Chung BHY, Diderich KEM, Srebniak MI, Dempsey E, Drury S, Giordano J, Wapner R, Kilby MD, Chitty LS, Mone F. The incremental yield of prenatal exome sequencing over chromosome microarray for congenital heart abnormalities: A systematic review and meta-analysis. Prenat Diagn 2024; 44:821-831. [PMID: 38708840 DOI: 10.1002/pd.6581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES To determine the incremental yield of prenatal exome sequencing (PES) over standard testing in fetuses with an isolated congenital heart abnormality (CHA), CHA associated with extra-cardiac malformations (ECMs) and CHA dependent upon anatomical subclassification. METHODS A systematic review of the literature was performed using MEDLINE, EMBASE, Web of Science and grey literature January 2010-February 2023. Studies were selected if they included greater than 20 cases of prenatally diagnosed CHA when standard testing (QF-PCR/chromosome microarray/karyotype) was negative. Pooled incremental yield was determined. PROSPERO CRD 42022364747. RESULTS Overall, 21 studies, incorporating 1957 cases were included. The incremental yield of PES (causative pathogenic and likely pathogenic variants) over standard testing was 17.4% (95% CI, 13.5%-21.6%), 9.3% (95% CI, 6.6%-12.3%) and 35.9% (95% CI, 21.0%-52.3%) for all CHAs, isolated CHAs and CHAs associated with ECMs. The subgroup with the greatest yield was complex lesions/heterotaxy; 35.2% (95% CI 9.7%-65.3%). The most common syndrome was Kabuki syndrome (31/256, 12.1%) and most pathogenic variants occurred de novo and in autosomal dominant (monoallelic) disease causing genes (114/224, 50.9%). CONCLUSION The likelihood of a monogenic aetiology in fetuses with multi-system CHAs is high. Clinicians must consider the clinical utility of offering PES in selected isolated cardiac lesions.
Collapse
Affiliation(s)
- K Reilly
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - S Sonner
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - N McCay
- Department of Paediatric Cardiology, Royal Belfast Hospital for Sick Children, Belfast, UK
| | - D L Rolnik
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - F Casey
- Department of Paediatric Cardiology, Royal Belfast Hospital for Sick Children, Belfast, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - A N Seale
- Department of Paediatric Cardiology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - C J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - A Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, China
| | - T H T Lai
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, China
| | - B H Y Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - K E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M I Srebniak
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - E Dempsey
- South West Thames Regional Genetics Service, London, UK
- School of Biological and Molecular Sciences, St George's University of London, London, UK
| | - S Drury
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| | - J Giordano
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York, USA
| | - R Wapner
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York, USA
| | - M D Kilby
- Fetal Medicine Center, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - L S Chitty
- Great Ormond Street NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - F Mone
- Centre for Public Health, Queens University Belfast, Belfast, UK
| |
Collapse
|
6
|
Lin S, Shi S, Lu J, He Z, Li D, Huang L, Huang X, Zhou Y, Luo Y. Contribution of genetic variants to congenital heart defects in both singleton and twin fetuses: a Chinese cohort study. Mol Cytogenet 2024; 17:2. [PMID: 38178226 PMCID: PMC10768341 DOI: 10.1186/s13039-023-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The contribution of genetic variants to congenital heart defects (CHDs) has been investigated in many postnatal cohorts but described in few prenatal fetus cohorts. Overall, specific genetic variants especially copy number variants (CNVs) leading to CHDs are somewhat diverse among different prenatal cohort studies. In this study, a total of 1118 fetuses with confirmed CHDs were recruited from three units over a 5-year period, composing 961 of singleton pregnancies and 157 of twin pregnancies. We performed chromosomal microarray analysis on all cases to detect numerical chromosomal abnormalities (NCAs) and pathogenic/likely pathogenic CNVs (P/LP CNVs) and employed whole-exome sequencing for some cases without NCAs and P/LP CNVs to detect P/LP sequence variants (P/LP SVs). RESULTS Overall, NCAs and P/LP CNVs were identified in 17.6% (197/1118) of cases, with NCA accounting for 9.1% (102/1118) and P/LP CNV for 8.5% (95/1118). Nonisolated CHDs showed a significantly higher frequency of NCA than isolated CHD (27.3% vs. 4.4%, p < 0.001), but there was no significant difference in the frequency of P/LP CNVs between isolated and nonisolated CHD (11.7% vs. 7.7%). A total of 109 P/LP CNVs were identified in 95 fetuses, consisting of 97 (89.0%) de novo, 6 (5.5%) parental inherited and 6 (5.5%) with unavailable parental information. The 16p11.2 proximal BP4-BP5 deletion was detected in 0.9% (10/1118) of all cases, second only to the most common 22q11.21 proximal A-D deletion (2.1%, 23/1118). Most of the 16p11.2 deletions (8/10) detected were de novo, and were enriched in CHD cases compared with a control cohort from a previous study. Additionally, SV was identified in 12.9% (8/62) of cases without NCA and P/LP CNV, most of which were de novo with autosomal dominant inheritance. CONCLUSIONS Our cohort study provides a deep profile of the contribution of genetic variants to CHDs in both singleton and twin fetuses; NCA and P/LP CNV contribute to 9.1% and 8.5% of CHD in fetuses, respectively. We confirmed the 16p11.2 deletion as a CHD-associated hotspot CNV, second only to the 22q11.21 deletion in frequency. Most 16p11.2 deletions detected were de novo. Additionally, P/LP SV was identified in 12.9% (8/62) of fetuses without NCA or P/LP CNV.
Collapse
Affiliation(s)
- Shaobin Lin
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, Guangdong, China
| | - Shanshan Shi
- Fetal Medicine Center, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Guangzhou, 510630, Guangdong, China
| | - Jian Lu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, No.521, Xingnan Road, Panyu District, Guangzhou, 511400, Guangdong, China
| | - Zhiming He
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, Guangdong, China
| | - Danlun Li
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, Guangdong, China
| | - Linhuan Huang
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, Guangdong, China
| | - Xuan Huang
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, Guangdong, China
| | - Yi Zhou
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, Guangdong, China.
| | - Yanmin Luo
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
7
|
Li M, Ye B, Chen Y, Gao L, Wu Y, Cheng W. Analysis of genetic testing in fetuses with congenital heart disease of single atria and/or single ventricle in a Chinese prenatal cohort. BMC Pediatr 2023; 23:577. [PMID: 37980516 PMCID: PMC10656988 DOI: 10.1186/s12887-023-04382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2023] [Indexed: 11/20/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the genetic etiologies of fetuses with single atria and/or ventricle (SA or/and SV) using different genetic detection methods in a Chinese prenatal cohort. METHODS In this retrospective study, the various genetic results of 44 fetuses with SA and/or SV were analyzed. All 44 cases were tested by chromosomal microarray analysis (CMA) and karyotyping simultaneously, and 8 underwent whole exome sequencing (WES). Data on the pregnancy outcomes and neonatal prognoses were collected from medical records and postnatal follow-up. RESULTS The whole cohort of 44 fetuses included 14 SA cases (31.8%), 12 SV cases (27.3%), and 18 SA and SV cases (40.9%). A total of 9 pathogenic genetic results were detected by conventional karyotyping, CMA and trio-WES, indicating an overall detection rate of 20.5% (9/44). Six pathogenic chromosomal abnormalities were identified by CMA among the 44 cases, showing a detection rate of 13.6% (6/44). Two microdeletions being missed by karyotyping were diagnosed by CMA, showing an additional diagnostic yield of 4.5% for CMA in present cohort(2/44). Three pathogenic variants in two fetuses were identified by WES, indicating an incremental diagnostic yield of 4.5%(2/44) for WES in fetuses with SA or/and SV. CONCLUSION In this study, WES achieved an additional diagnostic yield of 4.5% in fetuses with SA or/and SV. WES is valuable for fetal prognosis assessment and could add diagnostic value for fetuses with SA and/or SV when CMA is negative. It would be a valuable technique for the identification of underlying pathogenic variants in prenatal cohorts.
Collapse
Affiliation(s)
- Min Li
- Prenatal Diagnosis Center, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Baoying Ye
- Department of Ultrasonography, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyao Chen
- Department of Reproductive Genetics, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- Prenatal Diagnosis Center, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Wu
- Prenatal Diagnosis Center, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Weiwei Cheng
- Prenatal Diagnosis Center, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|