1
|
Przekop RE, Sztorch B, Głowacka J, Martyła A, Romańczuk-Ruszuk E, Jałbrzykowski M, Derpeński Ł. OH End-Capped Silicone as an Effective Nucleating Agent for Polylactide-A Robotizing Method for Evaluating the Mechanical Characteristics of PLA/Silicone Blends. Polymers (Basel) 2024; 16:1142. [PMID: 38675061 PMCID: PMC11053881 DOI: 10.3390/polym16081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Current research on materials engineering focuses mainly on bio-based materials. One of the most frequently studied materials in this group is polylactide (PLA), which is a polymer derived from starch. PLA does not have a negative impact on the natural environment and additionally, it possesses properties comparable to those of industrial polymers. The aim of the work was to investigate the potential of organosilicon compounds as modifiers of the mechanical and rheological properties of PLA, as well as to develop a new method for conducting mechanical property tests through innovative high-throughput technologies. Precise dosing methods were utilized to create PLA/silicone polymer blends with varying mass contents, allowing for continuous characterization of the produced blends. To automate bending tests and achieve comprehensive characterization of the blends, a self-created workstation setup has been used. The tensile properties of selected blend compositions were tested, and their ability to withstand dynamic loads was studied. The blends were characterized through various methods, including rheological (MFI), X-ray (XRD), spectroscopic (FTIR), and thermal properties analysis (TG, DSC, HDT), and they were evaluated using microscopic methods (MO, SEM) to examine their structures.
Collapse
Affiliation(s)
- Robert E. Przekop
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (R.E.P.); (J.G.); (A.M.)
| | - Bogna Sztorch
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (R.E.P.); (J.G.); (A.M.)
| | - Julia Głowacka
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (R.E.P.); (J.G.); (A.M.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland
| | - Agnieszka Martyła
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, 10 Uniwersytetu Poznańskiego, 61-614 Poznań, Poland; (R.E.P.); (J.G.); (A.M.)
| | - Eliza Romańczuk-Ruszuk
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Bialystok, Poland;
| | - Marek Jałbrzykowski
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Bialystok, Poland;
| | - Łukasz Derpeński
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Bialystok, Poland;
| |
Collapse
|
2
|
Zhang C, Zhou T, Gu G, Cai C, Hao D, Zou G, Li J, Yang R. Super-tough poly(lactic acid)/silicone rubber thermoplastic vulcanizates: The organic and inorganic synergistic interfacial compatibilization. Int J Biol Macromol 2024; 258:129110. [PMID: 38161016 DOI: 10.1016/j.ijbiomac.2023.129110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Polymer modification using silicone rubber represents a promising avenue for enhancing physico-mechanical properties. However, achieving optimal performance through direct blending is hindered by the poor interface compatibility between silicone rubber and the matrix. In this study, we prepared super-tough thermoplastic vulcanizates (TPVs) of polylactic acid/silicone rubber through dynamic vulcanization with PLA, methyl vinyl silicone rubber (MVQ), glycidyl methacrylate grafted MVQ (MVQ-g-GMA), and fumed silica nanoparticles (SiO2). The impact of the SiO2 addition in MVQ on the morphology, mechanical properties, crystallization, and thermal properties of the TPVs was investigated. The results showed that MVQ-g-GMA and SiO2 exhibited a synergistic compatibilization effect significantly improving the interfacial adhesion between PLA and MVQ. Therefore, the impact and tensile strength of the TPVs increased from 8.0 kJ/m2 and 22.2 MPa to 62.6 kJ/m2 and 36.7 MPa, respectively. Moreover, the TPVs also presented good low-temperature toughness with a maximum impact strength of 40.4 kJ/m2 at -20 °C. Additionally, improvements in thermal stability and crystallization rate were also observed. Overall, combining organic and inorganic synergistic compatibilization is a feasible and effective method to fabricate outstanding low-temperature toughness to PLA.
Collapse
Affiliation(s)
- Chengpeng Zhang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Tianyi Zhou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Guozhang Gu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Chaoyi Cai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dongdong Hao
- Changzhou University Huaide College, Jiangsu, Jingjiang 214500, China
| | - Guoxiang Zou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jinchun Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Rong Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Lee W, Lee J, Chung JW, Kwak SY. Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: The effect of mesophase transition on mechanical properties. Int J Biol Macromol 2021; 193:1103-1113. [PMID: 34710481 DOI: 10.1016/j.ijbiomac.2021.09.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Increasing the toughness of poly(lactic acid) (PLA), i.e., simultaneously increasing both the tensile strength and ductility, remains a major challenge. In this study, fully bio-based PLA blends with polydecalactone (PDL)-grafted cellulose copolymer (CgPD) were prepared and comprehensively analyzed to enhance the toughness of the PLA matrix. The blends were found by FT-IR and solid-state 1H NMR to be physically intact and miscible at the sub-twenty-nanometer scale. The WXRD and DSC analyses indicated that the addition of the alkyl-branched CgPD imparts a more structurally disordered PLA mesophase state to the prepared PLA_CgPD bio-blends. UTM analysis was used to characterize the macroscopic mechanical properties of the PLA_CgPD bio-blends. Both the tensile strength and elongation properties were simultaneously improved with the addition of 1 wt% CgPD loading amount to PLA (PLA_CgPD1). This study experimentally demonstrates that the enhanced mechanical properties of PLA_CgPD1 are closely related to the existence of more ordered PLA mesophases induced by the introduction of an optimal amount of CgPD into the PLA matrix.
Collapse
Affiliation(s)
- Woojin Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhyung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Woo Chung
- Department of Organic Materials and Fiber Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Seung-Yeop Kwak
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Zaaba NF, Jaafar M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25511] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nor Fasihah Zaaba
- School of Materials and Mineral Resources EngineeringEngineering Campus, Universiti Sains Malaysia Nibong Tebal Pulau Pinang 14300 Malaysia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources EngineeringEngineering Campus, Universiti Sains Malaysia Nibong Tebal Pulau Pinang 14300 Malaysia
| |
Collapse
|
5
|
Samthong C, Kunanusont N, Deetuam C, Wongkhan T, Supannasud T, Somwangthanaroj A. Effect of acrylonitrile content of acrylonitrile butadiene rubber on mechanical and thermal properties of dynamically vulcanized poly(lactic acid) blends. POLYM INT 2019. [DOI: 10.1002/pi.5912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chavakorn Samthong
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Nappaphan Kunanusont
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Chutimar Deetuam
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Tanchanok Wongkhan
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Thanapat Supannasud
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
| | - Anongnat Somwangthanaroj
- Department of Chemical Engineering, Faculty of EngineeringChulalongkorn University Bangkok Thailand
- Special Task Force of Activating Research (STAR) in Novel Technology for Food Packaging and Control of Shelf LifeChulalongkorn University Bangkok Thailand
| |
Collapse
|
6
|
Celebi H, Gunes E. Combined effect of a plasticizer and carvacrol and thymol on the mechanical, thermal, morphological properties of poly(lactic acid). J Appl Polym Sci 2017. [DOI: 10.1002/app.45895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hande Celebi
- Department of Chemical Engineering; Anadolu University; Eskisehir 26555 Turkey
| | - Elif Gunes
- Department of Chemical Engineering; Anadolu University; Eskisehir 26555 Turkey
| |
Collapse
|
7
|
Wang XF, Zhang ZX, Li JL, Yang JH, Wang Y, Zhang JH. Largely improved fracture toughness of an immiscible poly(l-lactide)/ethylene-co-vinyl acetate blend achieved by adding carbon nanotubes. RSC Adv 2015. [DOI: 10.1039/c5ra11192g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through the bridging effect of CNTs, the fracture toughness of the immiscible PLLA/EVA blend was greatly improved.
Collapse
Affiliation(s)
- Xiong-fei Wang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Zhi-xing Zhang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Jia-le Li
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Jing-hui Yang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Yong Wang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Ji-hong Zhang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| |
Collapse
|