1
|
Righetti GIC, Faedi F, Famulari A. Embracing Sustainability: The World of Bio-Based Polymers in a Mini Review. Polymers (Basel) 2024; 16:950. [PMID: 38611207 PMCID: PMC11013738 DOI: 10.3390/polym16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The proliferation of polymer science and technology in recent decades has been remarkable, with synthetic polymers derived predominantly from petroleum-based sources dominating the market. However, concerns about their environmental impacts and the finite nature of fossil resources have sparked interest in sustainable alternatives. Bio-based polymers, derived from renewable sources such as plants and microbes, offer promise in addressing these challenges. This review provides an overview of bio-based polymers, discussing their production methods, properties, and potential applications. Specifically, it explores prominent examples including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and polyhydroxy polyamides (PHPAs). Despite their current limited market share, the growing awareness of environmental issues and advancements in technology are driving increased demand for bio-based polymers, positioning them as essential components in the transition towards a more sustainable future.
Collapse
Affiliation(s)
- Grazia Isa C. Righetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Antonino Famulari
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
2
|
Laoutid F, Lenoir H, Molins Santaeularia A, Toncheva A, Schouw T, Dubois P. Impact-Resistant Poly(3-Hydroxybutyrate)/Poly(ε-Caprolactone)-Based Materials, through Reactive Melt Processing, for Compression-Molding and 3D-Printing Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15228233. [PMID: 36431718 PMCID: PMC9694198 DOI: 10.3390/ma15228233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Biobased and biocompatible polymers, such as polyhydroxyalkanoates (PHAs), are of great interest for a large range of applications in the spirit of green chemistry and upcoming reuse and recycling strategies. Polyhydroxybutyrate (PHB), as a promising biocompatible polymer belonging to PHAs, is subject to increased research concern regarding the high degree of crystallinity and brittle behavior of the resulting materials. Therefore, the improvement of PHB's physico-mechanical properties aims to decrease the Young's modulus values and to increase the ductility of samples. Here, we proposed an ambitious approach to develop melt-processed materials, while combining PHB characteristics with the ductile properties of poly(ε-caprolactone) (PCL). In order to compatibilize the poorly miscible PHB/PCL blends, dicumyl peroxide (DCP) was used as a free-radical promotor of polyester interchain reactions via the reaction extrusion process. The resulting PHB/PCL-DCP materials revealed a slight increase in the elongation at break, and significant improvement in the impact resistance (7.2 kJ.m-2) as compared to PHB. Additional decrease in the Young's modulus values was achieved by incorporating low molecular polyethylene glycol (PEG) as a plasticizer, leading to an important improvement in the impact resistance (15 kJ.m-2). Successful 3D printing using fused deposition melting (FDM) of the resulting PHB/PCL-based blends for the design of a prosthetic finger demonstrated the great potential of the proposed approach for the development of next-generation biomaterials.
Collapse
|
3
|
Jayarathna S, Andersson M, Andersson R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers (Basel) 2022; 14:4557. [PMID: 36365555 PMCID: PMC9657003 DOI: 10.3390/polym14214557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 09/10/2023] Open
Abstract
Environmental pollution by synthetic polymers is a global problem and investigating substitutes for synthetic polymers is a major research area. Starch can be used in formulating bioplastic materials, mainly as blends or composites with other polymers. The major drawbacks of using starch in such applications are water sensitivity and poor mechanical properties. Attempts have been made to improve the mechanical properties of starch-based blends and composites, by e.g., starch modification or plasticization, matrix reinforcement, and polymer blending. Polymer blending can bring synergetic benefits to blends and composites, but necessary precautions must be taken to ensure the compatibility of hydrophobic polymers and hydrophilic starch. Genetic engineering offers new possibilities to modify starch inplanta in a manner favorable for bioplastics applications, while the incorporation of antibacterial and/or antioxidant agents into starch-based food packaging materials brings additional advantages. In conclusion, starch is a promising material for bioplastic production, with great potential for further improvements. This review summarizes the recent advances in starch-based blends and composites and highlights the potential strategies for overcoming the major drawbacks of using starch in bioplastics applications.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
4
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
5
|
Compatibilization of Starch/Synthetic Biodegradable Polymer Blends for Packaging Applications: A Review. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5110300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The health and environmental concerns of the usage of non-biodegradable plastics have driven efforts to explore replacing them with renewable polymers. Although starch is a vital renewable polymer, poor water resistivity and thermo-mechanical properties have limited its applications. Recently, starch/synthetic biodegradable polymer blends have captured greater attention to replace inert plastic materials; the question of ‘immiscibility’ arises during the blend preparation due to the mixing of hydrophilic starch with hydrophobic polymers. The immiscibility issue between starch and synthetic polymers impacts the water absorption, thermo-mechanical properties, and chemical stability demanded by various engineering applications. Numerous studies have been carried out to eliminate the immiscibility issues of the different components in the polymer blends while enhancing the thermo-mechanical properties. Incorporating compatibilizers into the blend mixtures has significantly reduced the particle sizes of the dispersed phase while improving the interfacial adhesion between the starch and synthetic biodegradable polymer, leading to fine and homogeneous structures. Thus, Significant improvements in thermo-mechanical and barrier properties and water resistance can be observed in the compatibilized blends. This review provides an extensive discussion on the compatibilization processes of starch and petroleum-based polymer blends.
Collapse
|
6
|
Qazi RA, Khattak R, Ali Shah L, Ullah R, Khan MS, Sadiq M, Hessien MM, El-Bahy ZM. Effect of MWCNTs Functionalization on Thermal, Electrical, and Ammonia-Sensing Properties of MWCNTs/PMMA and PHB/MWCNTs/PMMA Thin Films Nanocomposites. NANOMATERIALS 2021; 11:nano11102625. [PMID: 34685066 PMCID: PMC8539491 DOI: 10.3390/nano11102625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Partially biodegradable polymer nanocomposites Poly(3-Hydroxybutyrate) (PHB)/MultiwalledCarbon Nanotubes (MWCNTs)/Poly(Methyl Methacrylate) (PMMA)and non-biodegradable nanocomposites (MWCNTs/PMMA) were synthesized, and their thermal, electrical, and ammonia-sensing properties were compared. MWCNTs were chemically modified to ensure effective dispersion in the polymeric matrix. Pristine MWCNTs (p-MWCNTs) were functionalized with –COOH (a-MWCNTs) and amine groups (f-MWCNTs). Then, PHB grafted multiwalled carbon nanotubes (g-MWNTs) were prepared by a ‘grafting to’ technique. The p-MWCNTs, a-MWCNTs, f-MWCNTs, and g-MWCNTs were incorporated into the PMMA matrix and PMMA/PHB blend system by solution mixing. The PHB/f-MWCNTs/PMMA blend system showed good thermal properties among all synthesized nanocomposites. Results from TGA and dTGA analysis for PHB/f-MWCNTs/PMMA showed delay in T5 (about 127 °C), T50 (up to 126 °C), and Tmax (up to 65 °C) as compared to neat PMMA. Higher values of frequency capacitance were observed in nanocomposites containing f-MWCNTs and g-MWCNTs as compared to nanocomposites containing p-MWCNTs and a-MWCNTs. This may be attributed to their excellent interaction and good dispersion in the polymeric blend. Analysis of ammonia gas-sensing data showed that PHB/g-MWCNTs/PMMA nanocomposites exhibited good sensitivity (≈100%) and excellent repeatability with a constant response. The calculated limit of detection (LOD) is 0.129 ppm for PHB/g-MWCNTs/PMMA, while that of all other nanocomposites is above 40 ppm.
Collapse
Affiliation(s)
- Raina Aman Qazi
- National Centre of Excellence in Physical Chemistry, Polymer Laboratory, University of Peshawar, Peshawar 25120, Pakistan; (L.A.S.); (R.U.)
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
- Correspondence: (R.A.Q.); (R.K.)
| | - Rozina Khattak
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
- Correspondence: (R.A.Q.); (R.K.)
| | - Luqman Ali Shah
- National Centre of Excellence in Physical Chemistry, Polymer Laboratory, University of Peshawar, Peshawar 25120, Pakistan; (L.A.S.); (R.U.)
| | - Rizwan Ullah
- National Centre of Excellence in Physical Chemistry, Polymer Laboratory, University of Peshawar, Peshawar 25120, Pakistan; (L.A.S.); (R.U.)
| | | | - Muhammad Sadiq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Mahmoud M. Hessien
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| |
Collapse
|
7
|
Syahirah WN, Azami NA, Huong KH, Amirul AA. Preparation, characterization and biodegradation of blend films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with natural biopolymers. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03286-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Toh HW, Toong DWY, Ng JCK, Ow V, Lu S, Tan LP, Wong PEH, Venkatraman S, Huang Y, Ang HY. Polymer blends and polymer composites for cardiovascular implants. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110249] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
|
10
|
Gopi S, Ramsay BA, Ramsay JA, Kontopoulou M. Preparation, Characterization and Processing of PCL/PHO Blends by 3D Bioplotting. INT POLYM PROC 2020. [DOI: 10.3139/217.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S. Gopi
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - B. A. Ramsay
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - J. A. Ramsay
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - M. Kontopoulou
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| |
Collapse
|
11
|
Botaro VR, de Freitas RRM, do Carmo KP, Raimundo IF. A simple and efficient technique to prepare aromatic polyhydroxibutirate/polybutylene adipate terephthalate blends. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03378-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Coltelli MB, Panariello L, Morganti P, Danti S, Baroni A, Lazzeri A, Fusco A, Donnarumma G. Skin-Compatible Biobased Beauty Masks Prepared by Extrusion. J Funct Biomater 2020; 11:jfb11020023. [PMID: 32268483 PMCID: PMC7353523 DOI: 10.3390/jfb11020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023] Open
Abstract
In the cosmetic sector, natural and sustainable products with a high compatibility with skin, thus conjugating wellness with a green-oriented consumerism, are required by the market. Poly(hydroxyalkanoate) (PHA)/starch blends represent a promising alternative to prepare flexible films as support for innovative beauty masks, wearable after wetting and releasing starch and other selected molecules. Nevertheless, preparing these films by extrusion is difficult due to the high viscosity of the polymer melt at the temperature suitable for processing starch. The preparation of blends including poly(butylene succinate-co-adipate) (PBSA) or poly(butylene adipate-co-terephthalate) (PBAT) was investigated as a strategy to better modulate melt viscosity in view of a possible industrial production of beauty mask films. The release properties of films in water, connected to their morphology, was also investigated by extraction trials, infrared spectroscopy and stereo and electron microscopy. Then, the biocompatibility with cells was assessed by considering both mesenchymal stromal cells and keratinocytes. All the results were discussed considering the morphology of the films. This study evidenced the possibility of modulating thanks to the selection of composition and the materials processing of the properties necessary for producing films with tailored properties and processability for beauty masks.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Correspondence: (M.-B.C.); (G.D.); Tel.: +39-050-2217856 (M.-B.C.)
| | - Luca Panariello
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Pierfrancesco Morganti
- Academy of History of Health Care Art, 00193 Rome, Italy;
- Dermatology Department, China Medical University, Shenyang 110001, China
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Adone Baroni
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Andrea Lazzeri
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Alessandra Fusco
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Donnarumma
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy; (L.P.); (A.B.); (A.L.); (A.F.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (M.-B.C.); (G.D.); Tel.: +39-050-2217856 (M.-B.C.)
| |
Collapse
|
13
|
Imre B, García L, Puglia D, Vilaplana F. Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydr Polym 2018; 209:20-37. [PMID: 30732800 DOI: 10.1016/j.carbpol.2018.12.082] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
Our society is amidst a technological revolution towards a sustainable economy, focused on the development of biobased products in virtually all sectors. In this context, plant polysaccharides, as the most abundant macromolecules present in biomass represent a fundamental renewable resource for the replacement of fossil-based polymeric materials in commodity and engineering applications. However, native polysaccharides have several disadvantages compared to their synthetic counterparts, including reduced thermal stability, moisture absorption and limited mechanical performance, which hinder their direct application in native form in advanced material systems. Thus, polysaccharides are generally used in a derivatized form and/or in combination with other biobased polymers, requiring the compatibilization of such blends and composites. In this review we critically explore the current status and the future outlook of reactive compatibilization strategies of the most common plant polysaccharides in blends with biobased polymers. The chemical processes for the modification and compatibilization of starch and lignocellulosic based materials are discussed, together with the practical implementation of these reactive compatibilization strategies with special emphasis on reactive extrusion. The efficiency of these strategies is critically discussed in the context on the definition of blending and compatibilization from a polymer physics standpoint; this relies on the detailed evaluation of the chemical structure of the constituent plant polysaccharides and biobased polymers, the morphology of the heterogeneous polymeric blends, and their macroscopic behavior, in terms of rheological and mechanical properties.
Collapse
Affiliation(s)
- Balázs Imre
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lidia García
- Fundación Aitiip, Polígono Industrial Empresarium, C/Romero Nº 12, Zaragoza 50720, Spain; Tecnopackaging S.L., Polígono Industrial Empresarium, C/Romero Nº 12, Zaragoza 50720, Spain
| | - Debora Puglia
- Department of Civil and Environmental Engineering, University of Perugia, Terni, Italy
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
14
|
Fuchs J, Feldmann M, Aßmann C, Vorwerg W, Heim HP. Cross-Linked Hydrophobic Starch Granules in Blends with PLA. INT POLYM PROC 2018. [DOI: 10.3139/217.3407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The majority of native starch is used in the food sector and in the paper industry. Only a small amount is used in polymer engineering. One reason for the reluctance of the plastics processing industry to use starch as a filling material in polymer blends is the unsatisfactory mechanical behavior of starch when combined with thermoplastics. Another reason is the hydrophilicity of starch. In order to make these materials capable of competing, an amelioration of the mechanical properties is compulsory. By means of modifying the native starch and optimizing the compounding process, it is possible to improve the performance of starch blends, and, thus, increase the number of application areas of these materials. For this reason, native starch was modified with a cross-linking agent using a laboratory mixer. Subsequently, the modified starch and poly(lactic acid) were compounded using a co-rotating twin screw extruder. Cross-linking of the native starch in the laboratory mixer resulted in an increase in the mechanical strength of the starch blends. In addition, the blends with cross-linked starch displayed lower moisture absorption levels than blends with native starch as a filling material.
Collapse
Affiliation(s)
- J. Fuchs
- Institute of Material Engineering , Polymer Engineering, University of Kassel, Kassel , Germany
| | - M. Feldmann
- Institute of Material Engineering , Polymer Engineering, University of Kassel, Kassel , Germany
| | - C. Aßmann
- Institute of Material Engineering , Polymer Engineering, University of Kassel, Kassel , Germany
| | - W. Vorwerg
- Fraunhofer Institute for Applied Polymer Research , Potsdam , Germany
| | - H.-P. Heim
- Institute of Material Engineering , Polymer Engineering, University of Kassel, Kassel , Germany
| |
Collapse
|
15
|
Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1253-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Garrison TF, Murawski A, Quirino RL. Bio-Based Polymers with Potential for Biodegradability. Polymers (Basel) 2016; 8:E262. [PMID: 30974537 PMCID: PMC6432354 DOI: 10.3390/polym8070262] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 01/20/2023] Open
Abstract
A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid) (PLA), widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.
Collapse
Affiliation(s)
- Thomas F Garrison
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Amanda Murawski
- Department of Chemistry, Georgia Southern University, Statesboro, GA 30460, USA.
| | - Rafael L Quirino
- Department of Chemistry, Georgia Southern University, Statesboro, GA 30460, USA.
| |
Collapse
|