1
|
Rakhmetullina A, Zielenkiewicz P, Odolczyk N. Peptide-Based Inhibitors of Protein-Protein Interactions (PPIs): A Case Study on the Interaction Between SARS-CoV-2 Spike Protein and Human Angiotensin-Converting Enzyme 2 (hACE2). Biomedicines 2024; 12:2361. [PMID: 39457672 PMCID: PMC11504900 DOI: 10.3390/biomedicines12102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many critical biological processes and are crucial in mediating essential cellular functions across diverse organisms, including bacteria, parasites, and viruses. A notable example is the interaction between the SARS-CoV-2 spike (S) protein and the human angiotensin-converting enzyme 2 (hACE2), which initiates a series of events leading to viral replication. Interrupting this interaction offers a promising strategy for blocking or significantly reducing infection, highlighting its potential as a target for anti-SARS-CoV-2 therapies. This review focuses on the hACE2 and SARS-CoV-2 spike protein interaction, exemplifying the latest advancements in peptide-based strategies for developing PPI inhibitors. We discuss various approaches for creating peptide-based inhibitors that target this critical interaction, aiming to provide potential treatments for COVID-19.
Collapse
Affiliation(s)
- Aizhan Rakhmetullina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Norbert Odolczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
2
|
Civit L, Moradzadeh N, Jonczyk A, Neckermann P, Asbach B, Peterhoff D, Wagner R, Famulok M, Mayer G, Kjems J, Valero J. A Multi-Faceted Binding Assessment of Aptamers Targeting the SARS-CoV-2 Spike Protein. Int J Mol Sci 2024; 25:4642. [PMID: 38731860 PMCID: PMC11083479 DOI: 10.3390/ijms25094642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
The COVID-19 pandemic has underscored the critical need for the advancement of diagnostic and therapeutic platforms. These platforms rely on the rapid development of molecular binders that should facilitate surveillance and swift intervention against viral infections. In this study, we have evaluated by three independent research groups the binding characteristics of various published RNA and DNA aptamers targeting the spike protein of the SARS-CoV-2 virus. For this comparative analysis, we have employed different techniques such as biolayer interferometry (BLI), enzyme-linked oligonucleotide assay (ELONA), and flow cytometry. Our data show discrepancies in the reported specificity and affinity among several of the published aptamers and underline the importance of standardized methods, the impact of biophysical techniques, and the controls used for aptamer characterization. We expect our results to contribute to the selection and application of suitable aptamers for the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Laia Civit
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark; (L.C.); (J.K.)
| | - Nima Moradzadeh
- Life and Medical Sciences (LIMES), University of Bonn, 53121 Bonn, Germany; (N.M.)
| | - Anna Jonczyk
- Life and Medical Sciences (LIMES), University of Bonn, 53121 Bonn, Germany; (N.M.)
| | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), Regensburg University, 93053 Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), Regensburg University, 93053 Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), Regensburg University, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), Regensburg University, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Famulok
- Life and Medical Sciences (LIMES), University of Bonn, 53121 Bonn, Germany; (N.M.)
- Center of Aptamer Research & Development, University of Bonn, 53121 Bonn, Germany
| | - Günter Mayer
- Life and Medical Sciences (LIMES), University of Bonn, 53121 Bonn, Germany; (N.M.)
- Center of Aptamer Research & Development, University of Bonn, 53121 Bonn, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark; (L.C.); (J.K.)
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Julián Valero
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark; (L.C.); (J.K.)
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
3
|
Beeg M, Baroni S, Piotti A, Porta A, De Luigi A, Cagnotto A, Gobbi M, Diomede L, Salmona M. A Comprehensive Technology Platform for the Rapid Discovery of Peptide Inhibitors against SARS-CoV-2 Pseudovirus Infection. Int J Mol Sci 2023; 24:12146. [PMID: 37569522 PMCID: PMC10418426 DOI: 10.3390/ijms241512146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
We developed and validated a technology platform for designing and testing peptides inhibiting the infectivity of SARS-CoV-2 spike protein-based pseudoviruses. This platform integrates target evaluation, in silico inhibitor design, peptide synthesis, and efficacy screening. We generated a cyclic peptide library derived from the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor. The cell-free validation process by ELISA competition assays and Surface Plasmon Resonance (SPR) studies revealed that the cyclic peptide c9_05, but not its linear form, binds well to ACE2. Moreover, it effectively inhibited the transduction in HEK293, stably expressing the human ACE2 receptor of pseudovirus particles displaying the SARS-CoV-2 spike in the Wuhan or UK variants. However, the inhibitory efficacy of c9_05 was negligible against the Omicron variant, and it failed to impede the entry of pseudoviruses carrying the B.1.351 (South African) spike. These variants contain three or more mutations known to increase affinity to ACE2. This suggests further refinement is needed for potential SARS-CoV-2 inhibition. Our study hints at a promising approach to develop inhibitors targeting viral infectivity receptors, including SARS-CoV-2's. This platform also promises swift identification and evaluation of inhibitors for other emergent viruses.
Collapse
|
4
|
Yang T, Wang SC, Ye L, Maimaitiyiming Y, Naranmandura H. Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opin Drug Discov 2023; 18:247-268. [PMID: 36723288 DOI: 10.1080/17460441.2023.2175812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Emergence of highly infectious SARS-CoV-2 variants are reducing protection provided by current vaccines, requiring constant updates in antiviral approaches. The virus encodes four structural and sixteen nonstructural proteins which play important roles in viral genome replication and transcription, virion assembly, release , entry into cells, and compromising host cellular defenses. As alien proteins to host cells, many viral proteins represent potential targets for combating the SARS-CoV-2. AREAS COVERED Based on literature from PubMed and Web of Science databases, the authors summarize the typical characteristics of SARS-CoV-2 from the whole viral particle to the individual viral proteins and their corresponding functions in virus life cycle. The authors also discuss the potential and emerging targeted interventions to curb virus replication and spread in detail to provide unique insights into SARS-CoV-2 infection and countermeasures against it. EXPERT OPINION Our comprehensive analysis highlights the rationale to focus on non-spike viral proteins that are less mutated but have important functions. Examples of this include: structural proteins (e.g. nucleocapsid protein, envelope protein) and extensively-concerned nonstructural proteins (e.g. NSP3, NSP5, NSP12) along with the ones with relatively less attention (e.g. NSP1, NSP10, NSP14 and NSP16), for developing novel drugs to overcome resistance of SARS-CoV-2 variants to preexisting vaccines and antibody-based treatments.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linyan Ye
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Ibrahim MIA, Solimando X, Stefan L, Pickaert G, Babin J, Arnal-Herault C, Roizard D, Jonquières A, Bodiguel J, Averlant-Petit MC. A lysine-based 2:1-[α/aza]-pseudopeptide series used as additives in polymeric membranes for CO 2 capture: synthesis, structural studies, and application †. RSC Adv 2023; 13:10051-10067. [PMID: 37006376 PMCID: PMC10052764 DOI: 10.1039/d3ra00409k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
The current study presents for the first time the synthesis of a new 2:1-[α/aza]-pseudopeptide series possessing charged amino acids (i.e., lysine) and aims at studying the influences of chirality, backbone length, and the nature of the lysine side chains on the conformation of the 2:1-[α/aza]-oligomers in solution using NMR, FTIR spectroscopy and molecular dynamic calculations. The spectroscopic results emphasized the conservation of the β-turn conformation adopted by the trimers regardless of the chirality which demonstrated a noticeable effect on the conformation of homochiral hexamer (8c) compared with the hetero-analogue (8d). The molecular dynamic calculations predicted that the chirality and the side chain of the lysine residues caused a little distortion from the classical β-turn conformation in the case of short trimer sequences (7c and 7d), while the chirality and the backbone length exerted more distortion on the β-turn adopted by the longer hexamer sequences (8c and 8d). The large disturbance in hexamers from classical β-turn was attributed to increasing the flexibility and the possibility of molecules to adopt a more energetically favorable conformation stabilized by non-classical β-turn intramolecular hydrogen bonds. Thus, alternating d- and l-lysine amino acids in the 2:1-[α/aza]-hexamer (8d) decreases the high steric hindrance between the lysine side chains, as in the homo analogue (8c), and the distortion is less recognized. Finally, short sequences of aza-pseudopeptides containing lysine residues improve CO2 separation when used as additives in Pebax® 1074 membranes. The best membrane performances were obtained with a pseudopeptidic dimer as an additive (6b′; deprotected lysine side chain), with an increase in both ideal selectivity αCO2/N2 (from 42.8 to 47.6) and CO2 permeability (from 132 to 148 Barrer) compared to the virgin Pebax® 1074 membrane. A new 2:1-[α/aza]-pseudopeptide series based charged lysine amino acid was synthesized. Influences of chirality, backbone length, and lysine side chains on the oligomers conformation were investigated in solution using NMR, FTIR and MD calculations.![]()
Collapse
Affiliation(s)
- Mohamed I. A. Ibrahim
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
- National Institute of Oceanography and Fisheries, NIOFEgypt
- Hiroshima Synchrotron Radiation Center, Hiroshima University2-313 Kagamiyama, Higashi-HiroshimaHiroshima 739-0046Japan
| | | | - Loïc Stefan
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
| | | | - Jérôme Babin
- Université de Lorraine, CNRS, LCPMF-54000 NancyFrance
| | | | - Denis Roizard
- Université de Lorraine, CNRS, LRGPF-54000 NancyFrance
| | | | | | | |
Collapse
|
6
|
Zareei S, Pourmand S, Amanlou M. Design of novel disturbing peptides against ACE2 SARS-CoV-2 spike-binding region by computational approaches. Front Pharmacol 2022; 13:996005. [PMID: 36438825 PMCID: PMC9692113 DOI: 10.3389/fphar.2022.996005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/24/2022] [Indexed: 10/12/2023] Open
Abstract
The SARS-CoV-2, the virus which is responsible for COVID-19 disease, employs its spike protein to recognize its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequently enters the host cell. In this process, the receptor-binding domain (RBD) of the spike has an interface with the α1-helix of the peptidase domain (PD) of ACE2. This study focuses on the disruption of the protein-protein interaction (PPI) of RBD-ACE2. Among the residues in the template (which was extracted from the ACE2), those with unfavorable energies were selected for substitution by mutagenesis. As a result, a library of 140 peptide candidates was constructed and the binding affinity of each candidate was evaluated by molecular docking and molecular dynamics simulations against the α1-helix of ACE2. Finally, the most potent peptides P23 (GFNNYFPHQSYGFMPTNGVGY), P28 (GFNQYFPHQSYGFPPTNGVGY), and P31 (GFNRYFPHQSYGFCPTNGVGY) were selected and their dynamic behaviors were studied. The results showed peptide inhibitors increased the radius, surface accessible area, and overall mobility of residues of the protein. However, no significant alteration was seen in the key residues in the active site. Meanwhile, they can be proposed as promising agents against COVID-19 by suppressing the viral attachment and curbing the infection at its early stage. The designed peptides showed potency against beta, gamma, delta, and omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Sara Zareei
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Pourmand
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Odolczyk N, Klim J, Podsiadła-Białoskórska M, Winiewska-Szajewska M, Szolajska E, Zielenkiewicz U, Poznański J, Zielenkiewicz P. Improvement of native structure-based peptides as efficient inhibitors of protein-protein interactions of SARS-CoV-2 spike protein and human ACE2. Front Mol Biosci 2022; 9:983014. [PMID: 36250011 PMCID: PMC9555309 DOI: 10.3389/fmolb.2022.983014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
New pathogens responsible for novel human disease outbreaks in the last two decades are mainly the respiratory system viruses. Not different was the last pandemic episode, caused by infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the extensively explored targets, in the recent scientific literature, as a possible way for rapid development of COVID-19 specific drug(s) is the interaction between the receptor-binding domain of the virus’ spike (S) glycoprotein and human receptor angiotensin-converting enzyme 2 (hACE2). This protein-protein recognition process is involved in the early stages of the SARS-CoV-2 life cycle leading to the host cell membrane penetration. Thus, disrupting this interaction may block or significantly reduce the infection caused by the novel pathogen. Previously we have designed (by in silico structure-based analysis) three very short peptides having sequences inspirited by hACE2 native fragments, which effectively bind to the SARS-CoV-2 S protein and block its interaction with the human receptor. In continuation of the above mentioned studies, here we presented an application of molecular modeling approach resulting in improved binding affinity of the previously proposed ligand and its enhanced ability to inhibit meaningful host-virus protein-protein interaction. The new optimized hexapeptide binds to the virus protein with affinity one magnitude higher than the initial ligand and, as a very short peptide, has also great potential for further drug development. The peptide-based strategy is rapid and cost-effective for developing and optimizing efficient protein-protein interactions disruptors and may be successfully applied to discover antiviral candidates against other future emerging human viral infections.
Collapse
Affiliation(s)
- Norbert Odolczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Klim
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | | | | - Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- *Correspondence: Jarosław Poznański, ; Piotr Zielenkiewicz,
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Jarosław Poznański, ; Piotr Zielenkiewicz,
| |
Collapse
|