1
|
König C, Frey O, Himmelein S, Mulack L, Brinkmann A, Perez Ruiz de Garibay A, Bingold T. In vitro elimination of antimicrobials during ADVanced Organ Support hemodialysis. Front Pharmacol 2024; 15:1447511. [PMID: 39737068 PMCID: PMC11682888 DOI: 10.3389/fphar.2024.1447511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Background Acute kidney injury (AKI) requiring continuous renal replacement therapy is common in critically ill patients. The ADVanced Organ Support (ADVOS) system is a novel hemodialysis machine that uses albumin enriched dialysate which allows the removal of protein-bound toxins and drugs. To date, data on antimicrobial removal under ADVOS has not yet been reported. Methods An in vitro study was conducted using whole porcine blood and continuous infusions of different antimicrobial agents to investigate the effect of ADVOS on drug exposure. Drugs with varying protein binding, molecular weights and renal clearances, anidulafungin, cefotaxime, daptomycin, fluconazole, ganciclovir, linezolid, meropenem and piperacillin were studied. Results All studied drugs were removed during the in vitro ADVOS experiment. Clearance under ADVOS (CLADVOS) for low protein-bound drugs, such as cefotaxime, fluconazole, ganciclovir, linezolid, meropenem and piperacillin ranged from 2.74 to 3.4 L/h at a blood flow of 100 mL/min. With a doubling of flow rate CL for these drugs increased. Although efficiently removed, this effect was not seen for CLADVOS in high protein-bound substances such as daptomycin (1.36 L/h) and anidulafungin (0.84 L/h). Conclusion The ADVOS system effectively removed protein-bound and unbound antimicrobials to a significant extent indicating that dose adjustments are required. Further, clinical studies are necessary to comprehensively assess the impact of ADVOS on antimicrobial drug removal. Until clinical data are available, therapeutic drug monitoring should guide antimicrobial dosing under ADVOS.
Collapse
Affiliation(s)
- Christina König
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, United States
| | - Otto Frey
- Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany
| | | | - Lisa Mulack
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Brinkmann
- Department of Anesthesiology, Special Pain Management and Intensive Care Medicine, Heidenheim General Hospital, Heidenheim, Germany
| | | | | |
Collapse
|
2
|
Gras-Martín L, Plaza-Diaz A, Zarate-Tamames B, Vera-Artazcoz P, Torres OH, Bastida C, Soy D, Ruiz-Ramos J. Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review. Antibiotics (Basel) 2024; 13:801. [PMID: 39334976 PMCID: PMC11428266 DOI: 10.3390/antibiotics13090801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Knowledge about the behavior of antibiotics in critically ill patients has been increasing in recent years. Some studies have concluded that a high percentage may be outside the therapeutic range. The most likely cause of this is the pharmacokinetic variability of critically ill patients, but it is not clear which factors have the greatest impact. The aim of this systematic review is to identify risk factors among critically ill patients that may exhibit significant pharmacokinetic alterations, compromising treatment efficacy and safety. (2) Methods: The search included the PubMed, Web of Science, and Embase databases. (3) Results: We identified 246 observational studies and ten clinical trials. The most studied risk factors in the literature were renal function, weight, age, sex, and renal replacement therapy. Risk factors with the greatest impact included renal function, weight, renal replacement therapy, age, protein or albumin levels, and APACHE or SAPS scores. (4) Conclusions: The review allows us to identify which critically ill patients are at a higher risk of not reaching therapeutic targets and helps us to recognize the extensive number of risk factors that have been studied, guiding their inclusion in future studies. It is essential to continue researching, especially in real clinical practice and with clinical outcomes.
Collapse
Affiliation(s)
- Laura Gras-Martín
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adrián Plaza-Diaz
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Borja Zarate-Tamames
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Paula Vera-Artazcoz
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Olga H Torres
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Geriatric Unit, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Carla Bastida
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Dolors Soy
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Jesús Ruiz-Ramos
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Lewis SJ, Mueller BA. Antibiotic dosing recommendations in critically ill patients receiving new innovative kidney replacement therapy. BMC Nephrol 2024; 25:73. [PMID: 38413858 PMCID: PMC10900833 DOI: 10.1186/s12882-024-03469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The Tablo Hemodialysis System is a new innovative kidney replacement therapy (KRT) providing a range of options for critically ill patients with acute kidney injury. The use of various effluent rate and treatment durations/frequencies may clear antibiotics differently than traditional KRT. This Monte Carlo Simulation (MCS) study was to develop antibiotic doses likely to attain therapeutic targets for various KRT combinations. METHODS Published body weights and pharmacokinetic parameter estimates were used to predict drug exposure for cefepime, ceftazidime, imipenem, meropenem and piperacillin/tazobactam in virtual critically ill patients receiving five KRT regimens. Standard free β-lactam plasma concentration time above minimum inhibitory concentration targets (40-60%fT> MIC and 40-60%fT> MICx4) were used as efficacy targets. MCS assessed the probability of target attainment (PTA) and likelihood of toxicity for various antibiotic dosing strategies. The smallest doses attaining PTA ≥ 90% during 1-week of therapy were considered optimal. RESULTS MCS determined β-lactam doses achieving ∼90% PTA in all KRT options. KRT characteristics influenced antibiotic dosing. Cefepime and piperacillin/tazobactam regimens designed for rigorous efficacy targets were likely to exceed toxicity thresholds. CONCLUSION The flexibility offered by new KRT systems can influence β-lactam antibiotic dosing, but doses can be devised to meet therapeutic targets. Further clinical validations are warranted.
Collapse
Affiliation(s)
- Susan J Lewis
- Department of Pharmacy Practice, College of Pharmacy, University of Findlay, 1000 N. Main Street, 45840, Findlay, OH, USA.
- Department of Pharmacy, Mercy Health - St. Anne Hospital, 43623, Toledo, OH, USA.
| | - Bruce A Mueller
- Clinical Pharmacy Department, College of Pharmacy, University of Michigan, MI, 48109, Ann Arbor, USA
| |
Collapse
|
4
|
Selig DJ, DeLuca JP, Chung KK, Pruskowski KA, Livezey JR, Nadeau RJ, Por ED, Akers KS. Pharmacokinetics of piperacillin and tazobactam in critically Ill patients treated with continuous kidney replacement therapy: A mini-review and population pharmacokinetic analysis. J Clin Pharm Ther 2022; 47:1091-1102. [PMID: 35352374 PMCID: PMC9544041 DOI: 10.1111/jcpt.13657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Timely and appropriate dosing of antibiotics is essential for the treatment of bacterial sepsis. Critically ill patients treated with continuous kidney replacement therapy (CKRT) often have physiologic derangements that affect pharmacokinetics (PK) of antibiotics and dosing may be challenging. We sought to aggregate previously published piperacillin and tazobactam (pip-tazo) pharmacokinetic data in critically ill patients undergoing CKRT to better understand pharmacokinetics of pip-tazo in this population and better inform dosing. METHODS The National Library of Medicine Database was searched for original research containing piperacillin or tazobactam clearance (CL) or volume of distribution (V) estimates in patients treated with CKRT. The search yielded 77 articles, of which 26 reported suitable estimates of CL or V. Of the 26 articles, 10 for piperacillin and 8 for tazobactam had complete information suitable for population pharmacokinetic modelling. Also included in the analysis was piperacillin and tazobactam PK data from 4 critically ill patients treated with CKRT in the Military Health System, 2 with burn and 2 without burn. RESULTS AND DISCUSSION Median and range of literature reported PK parameters for piperacillin (CL 2.76 L/hr, 1.4-7.92 L/hr, V 31.2 L, 16.77-42.27 L) and tazobactam (CL 2.34 L/hr, 0.72-5.2 L/hr, V 36.6 L, 26.2-58.87 L) were highly consistent with population estimates (piperacillin CL 2.7 L/hr, 95%CI 1.99-3.41 L/hr, V 25.83 22.07-29.59 L, tazobactam CL 2.49 L/hr, 95%CI 1.55-3.44, V 30.62 95%CI 23.7-37.54). The proportion of patients meeting pre-defined pharmacodynamic (PD) targets (median 88.7, range 71%-100%) was high despite significant mortality (median 44%, range 35%-60%). High mortality was predicted by baseline severity of illness (median APACHE II score 23, range 21-33.25). Choice of lenient or strict PD targets (ie 100%fT >MIC or 100%fT >4XMIC) had the largest impact on probability of target attainment (PTA), whereas presence or intensity of CKRT had minimal impact on PTA. WHAT IS NEW AND CONCLUSION Pip-tazo overexposure may be associated with increased mortality, although this is confounded by baseline severity of illness. Achieving adequate pip-tazo exposure is essential; however, risk of harm from overexposure should be considered when choosing a PD target and dose. If lenient PD targets are desired, doses of 2250-3375 mg every 6 h are reasonable for most patients receiving CKRT. However, if a strict PD target is desired, continuous infusion (at least 9000-13500 mg per day) may be required. However, some critically ill CKRT populations may need higher or lower doses and dosing strategies should be tailored to individuals based on all available clinical data including the specific critical care setting.
Collapse
Affiliation(s)
- Daniel J Selig
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, Maryland, USA
| | - Jesse P DeLuca
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, Maryland, USA
| | - Kevin K Chung
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kaitlin A Pruskowski
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,United States Army Institute of Surgical Research, US Army Burn Center, San Antonio, Texas, USA
| | - Jeffrey R Livezey
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Robert J Nadeau
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, Maryland, USA
| | - Elaine D Por
- Walter Reed Army Institute of Research, Experimental Therapeutics, Silver Spring, Maryland, USA
| | - Kevin S Akers
- United States Army Institute of Surgical Research, US Army Burn Center, San Antonio, Texas, USA
| |
Collapse
|
5
|
Matusik E, Boidin C, Friggeri A, Richard JC, Bitker L, Roberts JA, Goutelle S. Therapeutic Drug Monitoring of Antibiotic Drugs in Patients Receiving Continuous Renal Replacement Therapy or Intermittent Hemodialysis: A Critical Review. Ther Drug Monit 2022; 44:86-102. [PMID: 34772891 DOI: 10.1097/ftd.0000000000000941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Antibiotics are frequently used in patients receiving intermittent or continuous renal replacement therapy (RRT). Continuous renal replacement may alter the pharmacokinetics (PK) and the ability to achieve PK/pharmacodynamic (PD) targets. Therapeutic drug monitoring (TDM) could help evaluate drug exposure and guide antibiotic dosage adjustment. The present review describes recent TDM data on antibiotic exposure and PK/PD target attainment (TA) in patients receiving intermittent or continuous RRT, proposing practical guidelines for performing TDM. METHODS Studies on antibiotic TDM performed in patients receiving intermittent or continuous RRT published between 2000 and 2020 were searched and assessed. The authors focused on studies that reported data on PK/PD TA. TDM recommendations were based on clinically relevant PK/PD relationships and previously published guidelines. RESULTS In total, 2383 reports were retrieved. After excluding nonrelevant publications, 139 articles were selected. Overall, 107 studies reported PK/PD TA for 24 agents. Data were available for various intermittent and continuous RRT techniques. The study design, TDM practice, and definition of PK/PD targets were inconsistent across studies. Drug exposure and TA rates were highly variable. TDM seems to be necessary to control drug exposure in patients receiving intermittent and continuous RRT techniques, especially for antibiotics with narrow therapeutic margins and in critically ill patients. Practical recommendations can provide insights on relevant PK/PD targets, sampling, and timing of TDM for various antibiotic classes. CONCLUSIONS Highly variable antibiotic exposure and TA have been reported in patients receiving intermittent or continuous RRT. TDM for aminoglycosides, beta-lactams, glycopeptides, linezolid, and colistin is recommended in patients receiving RRT and suggested for daptomycin, fluoroquinolones, and tigecycline in critically ill patients on RRT.
Collapse
Affiliation(s)
- Elodie Matusik
- Pôle Pharmacie & Pôle Urgences-Réanimation-Anesthésie, Centre Hospitalier de Valenciennes, Valenciennes, France
| | - Clément Boidin
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service de Pharmacie, Pierre-Bénite
- Univ Lyon, Université Claude Bernard Lyon 1, EA 3738 CICLY - Centre pour l'Innovation en Cancérologie de Lyon, Oullins
| | - Arnaud Friggeri
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'Anesthésie, Médecine Intensive et Réanimation, Pierre-Bénite
- Univ Lyon, Université Claude Bernard Lyon, Faculté de Médecine Lyon Sud-Charles Mérieux, Oullins
- UMR CNRS 5308, Inserm U1111, Centre International de Recherche en Infectiologie, Laboratoire des Pathogènes Émergents
| | - Jean-Christophe Richard
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Médecine Intensive Réanimation, Lyon
- Université de Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR CNRS 5220, Inserm U1206, Villeurbanne, France
| | - Laurent Bitker
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Médecine Intensive Réanimation, Lyon
- Université de Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR CNRS 5220, Inserm U1206, Villeurbanne, France
| | - Jason A Roberts
- Faculty of Medicine the University of Queensland, University of Queensland Centre for Clinical Research
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes
| | - Sylvain Goutelle
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Pharmacie
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon ; and
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive Villeurbanne, France
| |
Collapse
|
6
|
Farrar JE, Mueller SW, Stevens V, Kiser TH, Taleb S, Reynolds PM. Correlation of antimicrobial fraction unbound and sieving coefficient in critically ill patients on continuous renal replacement therapy: a systematic review. J Antimicrob Chemother 2021; 77:310-319. [DOI: 10.1093/jac/dkab396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Fraction unbound has been used as a surrogate for antimicrobial sieving coefficient (SC) to predict extracorporeal clearance in critically ill patients on continuous renal replacement therapy (CRRT), but this is based largely on expert opinion.
Objectives
To examine relationships between package insert-derived fraction unbound (Fu-P), study-specific fraction unbound (Fu-S), and SC in critically ill patients receiving CRRT.
Methods
English-language studies containing patient-specific in vivo pharmacokinetic parameters for antimicrobials in critically ill patients requiring CRRT were included. The primary outcome included correlations between Fu-S, Fu-P, and SC. Secondary outcomes included correlations across protein binding quartiles, serum albumin, and predicted in-hospital mortality, and identification of predictors for SC through multivariable analysis.
Results
Eighty-nine studies including 32 antimicrobials were included for analysis. SC was moderately correlated to Fu-S (R2 = 0.55, P < 0.001) and Fu-P (R2 = 0.41, P < 0.001). SC was best correlated to Fu-S in first (<69%) and fourth (>92%) quartiles of fraction unbound and above median albumin concentrations of 24.5 g/L (R2 = 0.71, P = 0.07). Conversely, correlation was weaker in patients with mortality estimates greater than the median of 55% (R2 = 0.06, P = 0.84). SC and Fu-P were also best correlated in the first quartile of antimicrobial fraction unbound (R2 = 0.66, P < 0.001). Increasing Fu-P, flow rate, membrane surface area, and serum albumin, and decreasing physiologic charge significantly predicted increasing SC.
Conclusions
Fu-S and Fu-P were both reasonably correlated to SC. Caution should be taken when using Fu-S to calculate extracorporeal clearance in antimicrobials with 69%–92% fraction unbound or with >55% estimated in-hospital patient mortality. Fu-P may serve as a rudimentary surrogate for SC when Fu-S is unavailable.
Collapse
Affiliation(s)
- Julie E. Farrar
- Auburn University Harrison School of Pharmacy, 650 Clinic Dr, Mobile, AL 36688, USA
| | - Scott W. Mueller
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA
| | - Victoria Stevens
- University of Colorado Hospital, 12505 E 16th Ave, Aurora, CO 80045, USA
| | - Tyree H. Kiser
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA
| | - Sim Taleb
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA
| | - Paul M. Reynolds
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, 12850 E. Montview Blvd, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Jang SM, Awdishu L. Drug dosing considerations in continuous renal replacement therapy. Semin Dial 2021; 34:480-488. [PMID: 33939855 DOI: 10.1111/sdi.12972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a common complication in critically ill patients, which is associated with increased in-hospital mortality. Delivering effective antibiotics to treat patients with sepsis receiving continuous renal replacement therapy (RRT) is complicated by variability in pharmacokinetics, dialysis delivery, lack of primary literature, and therapeutic drug monitoring. Pharmacokinetic alterations include changes in absorption, distribution, protein binding (PB), metabolism, and renal elimination. Drug absorption may be significantly changed due to alterations in gastric pH, perfusion, gastrointestinal motility, and intestinal atrophy. Volume of distribution for hydrophilic drugs may be increased due to volume overload. Estimation of renal clearance is challenged by the effective delivery of RRT. Drug characteristics such as PB, volume of distribution, and molecular weight impact removal of the drug by RRT. The totality of these alterations leads to reduced exposure. Despite our best knowledge, therapeutic drug monitoring of patients receiving continuous RRT demonstrates wide variability in antimicrobial concentrations, highlighting the need for expanded monitoring of all drugs. This review article will focus on changes in drug pharmacokinetics in AKI and dosing considerations to attain antibiotic pharmacodynamic targets in critically ill patients receiving continuous RRT.
Collapse
Affiliation(s)
- Soo Min Jang
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| | - Linda Awdishu
- Clinical Pharmacy, UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| |
Collapse
|
8
|
Caro Y, Cámara M, De Zan M. A review of bioanalytical methods for the therapeutic drug monitoring of β-lactam antibiotics in critically ill patients: Evaluation of the approaches used to develop and validate quality attributes. Talanta 2020; 210:120619. [DOI: 10.1016/j.talanta.2019.120619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
|
9
|
Pharmacokinetics and Pharmacodynamics of Anti-infective Agents during Continuous Veno-venous Hemofiltration in Critically Ill Patients: Lessons Learned from an Ancillary Study of the IVOIRE Trial. J Transl Int Med 2019; 7:155-169. [PMID: 32010602 PMCID: PMC6985915 DOI: 10.2478/jtim-2019-0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Hemofiltration rate, changes in blood and ultrafiltration flow, and discrepancies between the prescribed and administered doses strongly influence pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobial agents during continuous veno-venous hemofiltration (CVVH) in critically ill patients. Methods Ancillary data were from the prospective multicenter IVOIRE (hIgh VOlume in Intensive caRE) study. High volume (HV, 70 mL/kg/h) was at random compared with standard volume (SV, 35 mL/kg/h) CVVH in septic shock patients with acute kidney injury (AKI). PK/PD parameters for all antimicrobial agents used in each patient were studied during five days. Results Antimicrobial treatment met efficacy targets for both percentage of time above the minimal inhibitory concentration and inhibitory quotient. A significant correlation was observed between the ultrafiltration flow and total systemic clearance (Spearman test: P < 0.005) and between CVVH clearance and drug elimination half-life (Spearman test: P < 0.005). All agents were easily filtered. Mean sieving coefficient ranged from 38.7% to 96.7%. Mean elimination half-life of all agents was significantly shorter during HV-CVVH (from 1.29 to 28.54 h) than during SV-CVVH (from 1.51 to 33.85 h) (P < 0.05). Conclusions This study confirms that CVVH influences the PK/PD behavior of most antimicrobial agents. Antimicrobial elimination was directly correlated with convection rate. Current antimicrobial dose recommendations will expose patients to underdosing and increase the risk for treatment failure and development of resistance. Dose recommendations are proposed for some major antibiotic and antifungal treatments in patients receiving at least 25 mL/kg/h CVVH.
Collapse
|
10
|
The pharmacokinetics of meropenem and piperacillin-tazobactam during sustained low efficiency haemodiafiltration (SLED-HDF). Eur J Clin Pharmacol 2019; 76:239-247. [DOI: 10.1007/s00228-019-02792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
|
11
|
Hoff BM, Maker JH, Dager WE, Heintz BH. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann Pharmacother 2019; 54:43-55. [PMID: 31342772 DOI: 10.1177/1060028019865873] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective: To summarize current antibiotic dosing recommendations in critically ill patients receiving intermittent hemodialysis (IHD), prolonged intermittent renal replacement therapy (PIRRT), and continuous renal replacement therapy (CRRT), including considerations for individualizing therapy. Data Sources: A literature search of PubMed from January 2008 to May 2019 was performed to identify English-language literature in which dosing recommendations were proposed for antibiotics commonly used in critically ill patients receiving IHD, PIRRT, or CRRT. Study Selection and Data Extraction: All pertinent reviews, selected studies, and references were evaluated to ensure appropriateness for inclusion. Data Synthesis: Updated empirical dosing considerations are proposed for antibiotics in critically ill patients receiving IHD, PIRRT, and CRRT with recommendations for individualizing therapy. Relevance to Patient Care and Clinical Practice: This review defines principles for assessing renal function, identifies RRT system properties affecting drug clearance and drug properties affecting clearance during RRT, outlines pharmacokinetic and pharmacodynamic dosing considerations, reviews pertinent updates in the literature, develops updated empirical dosing recommendations, and highlights important factors for individualizing therapy in critically ill patients. Conclusions: Appropriate antimicrobial selection and dosing are vital to improve clinical outcomes. Dosing recommendations should be applied cautiously with efforts to consider local epidemiology and resistance patterns, antibiotic dosing and infusion strategies, renal replacement modalities, patient-specific considerations, severity of illness, residual renal function, comorbidities, and patient response to therapy. Recommendations provided herein are intended to serve as a guide in developing and revising therapy plans individualized to meet a patient's needs.
Collapse
Affiliation(s)
- Brian M Hoff
- Northwestern Memorial Hospital, Chicago, IL, USA
| | - Jenana H Maker
- University of the Pacific Thomas J. Long School of Pharmacy and Health Sciences, Stockton, CA, USA.,University of California Davis Medical Center, Sacramento, CA, USA
| | - William E Dager
- University of California Davis Medical Center, Sacramento, CA, USA
| | - Brett H Heintz
- University of Iowa College of Pharmacy, Iowa City, IA, USA.,Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, USA
| |
Collapse
|
12
|
Pilmis B, Petitjean G, Lesprit P, Lafaurie M, El Helali N, Le Monnier A. Continuous infusion of ceftolozane/tazobactam is associated with a higher probability of target attainment in patients infected with Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2019; 38:1457-1461. [PMID: 31073653 DOI: 10.1007/s10096-019-03573-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/28/2019] [Indexed: 10/26/2022]
Abstract
Ceftolozane/tazobactam (CTZ/TZ) exhibits time-dependent antimicrobial activity, and prolonged infusion can better achieve the pharmacodynamic target than an intermittent bolus. We aimed to compare the use of prolonged or continuous infusion with intermittent administration of CTZ/TZ for the treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa. We performed a multicentric prospective cohort study to evaluate continuous, prolonged, or intermittent infusion of CTZ/TZ. We assessed the plasma concentration as a function of the duration of infusion and then performed a simulation of the percentage of patients who would reach the PK/PD targets, set at 100% ƒT> MIC or 100% ƒT>4 MIC. Seventy-two patients were enrolled with a median [IQR] age of 48.5 [32.4-63.2] years. Fifty-seven (79%) were hospitalized in an intensive care unit. Thirty-seven (51.4%) were immunosuppressed, and the in-hospital mortality rate was 15.2%. The major site of infection was the respiratory tract (66.7%). The PK/PD objectives (100% ƒT>4 MIC) were achieved for all patients infected with strains with CTZ/TZ MICs < 4 mg/L, regardless of the mode of administration. In contrast, intermittent bolus administration and prolonged infusion did not achieve the PK/PD objectives when the CTZ/TZ MICs were ≥ 4 mg/L. However, the PK/PD objectives (100% ƒT>4 MIC) were achieved for strains with MICs up to 8 mg/L in patients receiving continuous infusion of CTZ/TZ. A dosing regimen of 2 g/1 g CTZ/TZ administered every 8 h as a 1-h intravenous infusion, as currently recommended, did not provided adequate coverage to achieve a sufficient probability of target attainment for P. aeruginosa strains with MICs ≥ 4 mg/L.
Collapse
Affiliation(s)
- Benoît Pilmis
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France. .,EA4043 Unité Bactéries Pathogènes et Santés (UBaPS), Université Paris-Sud Saclay, Chatenay-Malabry, Orsay, France.
| | - Grégoire Petitjean
- EA4043 Unité Bactéries Pathogènes et Santés (UBaPS), Université Paris-Sud Saclay, Chatenay-Malabry, Orsay, France.,Plateforme de Dosage des Anti-infectieux, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | | | - Matthieu Lafaurie
- Unité d'Intervention en Infectiologie (U2i), Hôpital Saint-Louis, Paris, France
| | - Najoua El Helali
- Plateforme de Dosage des Anti-infectieux, Groupe Hospitalier Paris Saint-Joseph, Paris, France.,Laboratoire de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Alban Le Monnier
- EA4043 Unité Bactéries Pathogènes et Santés (UBaPS), Université Paris-Sud Saclay, Chatenay-Malabry, Orsay, France.,Plateforme de Dosage des Anti-infectieux, Groupe Hospitalier Paris Saint-Joseph, Paris, France.,Laboratoire de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | | |
Collapse
|
13
|
Lonsdale DO, Baker EH, Kipper K, Barker C, Philips B, Rhodes A, Sharland M, Standing JF. Scaling beta-lactam antimicrobial pharmacokinetics from early life to old age. Br J Clin Pharmacol 2018; 85:316-346. [PMID: 30176176 DOI: 10.1111/bcp.13756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Beta-lactam dose optimization in critical care is a current priority. We aimed to review the pharmacokinetics (PK) of three commonly used beta-lactams (amoxicillin ± clavulanate, piperacillin-tazobactam and meropenem) to compare PK parameters reported in critically and noncritically ill neonates, children and adults, and to investigate whether allometric and maturation scaling principles could be applied to describe changes in PK parameters through life. METHODS A systematic review of PK studies of the three drugs was undertaken using MEDLINE and EMBASE. PK parameters and summary statistics were extracted and scaled using allometric principles to 70 kg individual for comparison. Pooled data were used to model clearance maturation and decline using a sigmoidal (Hill) function. RESULTS A total of 130 papers were identified. Age ranged from 29 weeks to 82 years and weight from 0.9-200 kg. PK parameters from critically ill populations were reported with wider confidence intervals than those in healthy volunteers, indicating greater PK variability in critical illness. The standard allometric size and sigmoidal maturation model adequately described increasing clearance in neonates, and a sigmoidal model was also used to describe decline in older age. Adult weight-adjusted clearance was achieved at approximately 2 years postmenstrual age. Changes in volume of distribution were well described by the standard allometric model, although amoxicillin data suggested a relatively higher volume of distribution in neonates. CONCLUSIONS Critical illness is associated with greater PK variability than in healthy volunteers. The maturation models presented will be useful for optimizing beta-lactam dosing, although a prospective, age-inclusive study is warranted for external validation.
Collapse
Affiliation(s)
- Dagan O Lonsdale
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Emma H Baker
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Karin Kipper
- Institute for Infection and Immunity, St George's, University of London, London, UK.,Institute of Chemistry, University of Tartu, Tartu, Estonia.,Analytical Services International Ltd
| | - Charlotte Barker
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Barbara Philips
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Andrew Rhodes
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Mike Sharland
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joseph F Standing
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Kanji S, Roberts JA, Xie J, Alobaid A, Zelenitsky S, Hiremath S, Zhang G, Watpool I, Porteous R, Patel R. Piperacillin Population Pharmacokinetics in Critically Ill Adults During Sustained Low-Efficiency Dialysis. Ann Pharmacother 2018; 52:965-973. [PMID: 29730948 DOI: 10.1177/1060028018773771] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sustained low-efficiency dialysis (SLED), is increasingly being used in intensive care units (ICUs) but studies informing drug dosing for such patients is lacking. OBJECTIVE To describe the population pharmacokinetics (PKs) of piperacillin/tazobactam in critically ill adults receiving SLED and to provide dosing recommendations. METHODS This prospective population PK study was conducted in adult ICU patients prescribed piperacillin/tazobactam while receiving SLED; 321 blood samples were obtained from 34 participants during and between approximately 50 SLED treatments for quantification of piperacillin and tazobactam concentrations in plasma. A population PK model was developed. Monte Carlo simulation was used to determine the probability of target attainment and pathogen-specific fractional target attainment at different doses. RESULTS From a 2-compartment linear model with zero-order input, the mean (SD) clearance of piperacillin on SLED and off SLED were 4.81 (8.48) and 1.42 (1.54) L/h, respectively. Tazobactam concentrations were not sufficient for analysis. For the target of 50% fT>MIC (unbound concentrations of drug are above the minimum inhibitory concentration for >50% of the dosing interval), 3-g of piperacillin infused over 0.5 hours every 8 hours was appropriate for susceptible organisms with MIC ≤16 mg/L. For life-threatening infections where the target of 100% fT>MIC is preferred, a 9-g dose administered as a continuous infusion every 24 hours was appropriate for susceptible organisms with MIC ≤32 mg/L. CONCLUSIONS AND RELEVANCE In critically ill patients receiving SLED, piperacillin doses need to be guided by the frequency of SLED treatments and susceptibility of the known or suspected pathogen.
Collapse
Affiliation(s)
- Salmaan Kanji
- 1 The Ottawa Hospital, Ottawa, ON, Canada.,2 The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jason A Roberts
- 3 The University of Queensland, Brisbane, Australia.,4 Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jiao Xie
- 3 The University of Queensland, Brisbane, Australia
| | | | | | - Swapnil Hiremath
- 1 The Ottawa Hospital, Ottawa, ON, Canada.,2 The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Guijun Zhang
- 2 The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Irene Watpool
- 2 The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | | |
Collapse
|
15
|
Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. THE LANCET. INFECTIOUS DISEASES 2018; 18:108-120. [DOI: 10.1016/s1473-3099(17)30615-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
|
16
|
Delattre IK, Taccone FS, Jacobs F, Hites M, Dugernier T, Spapen H, Laterre PF, Wallemacq PE, Van Bambeke F, Tulkens PM. Optimizing β-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets: are first conventional doses effective? Expert Rev Anti Infect Ther 2017; 15:677-688. [PMID: 28571493 DOI: 10.1080/14787210.2017.1338139] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The pharmacokinetic/pharmacodynamic index determining β-lactam activity is the percentage of the dosing interval (%T) during which their free serum concentration remains above a critical threshold over the minimum inhibitory concentration (MIC). Regrettably, neither the value of %T nor that of the threshold are clearly defined for critically-ill patients. Areas covered: We review and assess the targets proposed for β-lactams in critical illness by screening the literature since 1997. Depending on the study intention (clinical cure vs. suppression of resistance), targets proposed range from 20%T > 1xMIC to 100%T > 5xMIC. Assessment and comparative analysis of their respective clinical efficacy suggest that a value of 100%T > 4xMIC may be needed. Simulation studies, however, show that this target will not be reached at first dose for the majority of critically-ill patients if using the most commonly recommended doses. Expert commentary: Considering that critically-ill patients are highly vulnerable and likely to experience antibiotic underexposure, and because effective initial treatment is a key determinant of clinical outcome, we support the use of a target of 100%T > 4xMIC, which could not only maximize efficacy but also minimize emergence of resistance. Clinical and microbiological studies are needed to test for the feasibility and effectiveness of reaching such a demanding target.
Collapse
Affiliation(s)
- Isabelle K Delattre
- a Louvain Drug Research Institute , Université catholique de Louvain , Brussels , Belgium.,b Department of Clinical Chemistry , Cliniques Universitaires St-Luc , Brussels , Belgium
| | - Fabio S Taccone
- c Department of Intensive Care , Hôpital Erasme , Brussels , Belgium
| | - Frédérique Jacobs
- d Department of Infectious Diseases , Hôpital Erasme , Brussels , Belgium
| | - Maya Hites
- d Department of Infectious Diseases , Hôpital Erasme , Brussels , Belgium
| | - Thierry Dugernier
- e Department of Intensive Care , Clinique St-Pierre , Ottignies , Belgium
| | - Herbert Spapen
- f Department of Intensive Care , Universitair Ziekenhuis Brussel , Brussels , Belgium
| | | | - Pierre E Wallemacq
- b Department of Clinical Chemistry , Cliniques Universitaires St-Luc , Brussels , Belgium
| | - Françoise Van Bambeke
- a Louvain Drug Research Institute , Université catholique de Louvain , Brussels , Belgium
| | - Paul M Tulkens
- a Louvain Drug Research Institute , Université catholique de Louvain , Brussels , Belgium
| |
Collapse
|
17
|
Economou CJP, Wong G, McWhinney B, Ungerer JPJ, Lipman J, Roberts JA. Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents 2017; 49:589-594. [PMID: 28341612 DOI: 10.1016/j.ijantimicag.2017.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 12/29/2022]
Abstract
The objective of this study was to describe the effect of therapeutic drug monitoring (TDM) and dose adjustments of β-lactam antibiotics administered to critically ill patients undergoing continuous renal replacement therapy (CRRT) in a 30-bed tertiary intensive care unit (ICU). β-Lactam TDM data in our tertiary referral ICU were retrospectively reviewed. Clinical, demographic and dosing data were collected for patients administered β-lactam antibiotics while undergoing CRRT. The target trough concentration range was 1-10× the minimum inhibitory concentration (MIC). A total of 111 TDM samples from 76 patients (46 male) with a mean ± standard deviation age of 56.6 ± 15.9 years and weight of 89.1 ± 25.8 kg were identified. The duration of antibiotic therapy was between 2 days and 42 days. TDM identified a need for dose modification of β-lactam antibiotics in 39 (35%) instances; in 27 (24%) samples, TDM values resulted in decreasing the prescribed dose of β-lactam antibiotic whereas an increase in the prescribed dose occurred in 12 (11%) cases. In patients treated for hospital-acquired pneumonia and primary or secondary bacteraemia, the dose was required to be decreased in 10/25 (40%) and 7/46 (15%) cases, respectively, to attain target concentrations. β-Lactam TDM is a useful tool for guiding drug dosing in complex patients such as those receiving CRRT. Although over one-third of patients manifested concentrations outside the therapeutic range, most of these CRRT patients had excessive β-lactam concentrations.
Collapse
Affiliation(s)
- Caleb J P Economou
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Brisbane, QLD, Australia; Department of Research, ICON Cancer Foundation, Brisbane, QLD, Australia
| | - Gloria Wong
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Brett McWhinney
- Department of Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jacobus P J Ungerer
- Department of Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jeffrey Lipman
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Brisbane, QLD, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Jason A Roberts
- Burns, Trauma & Critical Care Research Centre, The University of Queensland, Brisbane, QLD, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Ruiz J, Favieres C, Broch MJ, Villarreal E, Gordon M, Quinzá A, Castellanos Ortega Á, Ramirez P. Individualised antimicrobial dosing in critically ill patients undergoing continuous renal replacement therapy: focus on total drug clearance. Eur J Hosp Pharm 2017; 25:123-126. [PMID: 31157005 DOI: 10.1136/ejhpharm-2016-001114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 11/03/2022] Open
Abstract
Background Continuous renal replacement therapy (CRRT) is common practice in critical care patients with acute renal failure. Objectives To evaluate the adequacy of antimicrobial doses calculated based on the total drug clearance and dose recommended by different guides in critically ill patients undergoing CRRT. Methods Retrospective observational study. Patients admitted to a critical care unit during May 2014 to May 2016 and subjected to CRRT were included. The recommended dose was established as the product of the usual dose of the drug by total drug clearance. Results 177 antimicrobial agents, used in 64 patients were analysed; 45 (25.4%) antimicrobials were given in an insufficient dose (<20%) according to the theoretical calculation. Following the recommendations in the revised guidelines, between 10% and 20% of antimicrobials were given in insufficient doses. A higher success rate of treatment in those patients not receiving a low drug dosage was seen (35.2% vs 24.0%). Conclusions There is a great disparity between the antimicrobial dose prescribed, recommended and calculated based on drug clearance in critically ill patients undergoing CRRT.
Collapse
Affiliation(s)
- Jesus Ruiz
- Intensive Care Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cassandra Favieres
- Pharmacy Depatment, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Maria Jesús Broch
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Esther Villarreal
- Intensive Care Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Monica Gordon
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adrián Quinzá
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Paula Ramirez
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
19
|
Ceftolozane-Tazobactam Pharmacokinetics in a Critically Ill Patient on Continuous Venovenous Hemofiltration. Antimicrob Agents Chemother 2015; 60:1899-901. [PMID: 26711770 DOI: 10.1128/aac.02608-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
Extended-infusion ceftolozane-tazobactam treatment at 1.5 g every 8 h was used to treat multidrug-resistant Pseudomonas aeruginosa in a critically ill patient on continuous venovenous hemofiltration. Serum drug concentrations were measured at 1, 4, 5, 6, and 8 h after the start of infusion. Prefilter levels of ceftolozane produced a maximum concentration of drug (Cmax) of 38.57 μg/ml, concentration at the end of the dosing interval (Cmin) of 31.63 μg/ml, time to Cmax (Tmax) of 4 h, area under the concentration-time curve from 0 to 8 h (AUC0-8) of 284.38 μg · h/ml, and a half-life (t1/2) of 30.7 h. The concentrations were eight times the susceptibility breakpoint for the entire dosing interval.
Collapse
|