1
|
Li S, Xie F. Foetal and neonatal exposure prediction and dosing evaluation for ampicillin using a physiologically-based pharmacokinetic modelling approach. Br J Clin Pharmacol 2023; 89:1402-1412. [PMID: 36357171 DOI: 10.1111/bcp.15589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Ampicillin is frequently used in neonates for the treatment of sepsis and as an intrapartum prophylaxis option for Group B Streptococcus. Pharmacokinetic data to guide ampicillin dosing in neonates and during the intrapartum period are limited. The objective of this study was to build a physiologically-based pharmacokinetic (PBPK) model to characterize the disposition of ampicillin in neonates and foetuses and to inform corresponding optimal dosing regimens. METHODS An adult ampicillin PBPK model was first developed using the Simcyp® simulator. The adult model was then scaled to neonates by accounting for maturational changes in physiological parameters and age-dependent drug disposition or extended to a pregnancy model for mothers and foetuses. Models were verified using collected mean or individual-level concentration data from the literature. RESULTS The developed adult PBPK model included elimination via glomerular filtration, OAT3-mediated tubular secretion and biliary excretion as well as hepatic metabolism, and 89.8% of the observed mean concentrations in adults were within a 2-fold range of model mean predictions. Most of the observed individual-level observations in neonates (78.4%) and foetuses (about 65% in two studies) were within the 90% prediction intervals. The recommended 50 mg/kg every 8 h (q8h) ampicillin regimen achieved the 75% fraction time of total drug concentration above minimum inhibitory concentration (T > MIC) target for an MIC ≤8 mg/L in >90% virtual neonates, and 1 g ampicillin for pregnant women provided adequate foetal exposure (>0.25 mg/L) for 4 h prior to delivery. CONCLUSIONS A PBPK model was developed to characterize ampicillin's disposition in neonates, pregnant women, and foetuses, and the model supported optimal dosing evaluation in these vulnerable populations.
Collapse
Affiliation(s)
- Sanwang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
2
|
Lim SY, Miller JL. Ampicillin Dose for Early and Late-Onset Group B Streptococcal Disease in Neonates. Am J Perinatol 2022; 39:717-725. [PMID: 33091945 DOI: 10.1055/s-0040-1718880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ampicillin is frequently used in neonates for early- and late-onset group B streptococcal (GBS) disease. In 2019, the American Academy of Pediatrics (AAP) published guidelines for GBS which included updated dosing recommendations for ampicillin for bacteremia and provided specific dosing recommendations for meningitis. The dosing recommendations in the guidelines were based off the 2018 Report of the Committee on Infectious Diseases (i.e., Red Book), which differed from the 2015 Red Book. For bacteremia, no dosing changes were recommended for ampicillin dosing in neonates ≤ 7 days of postnatal age (PNA), but less frequent dosing intervals were recommended for neonates > 7 days PNA. For meningitis, increased dosing recommendations were provided in the update. However, the rationale and supporting evidence for these changes were not provided. A literature search was performed to review articles pertaining to the pharmacokinetics (PK), pharmacodynamics (PD) and safety of ampicillin in neonates. The ampicillin dosing recommendations in the AAP guidelines were mainly supported by a 2014 publication that evaluated the PK and PD of ampicillin in neonates with gestational age (GA) of 24 to 41 weeks and PNA of 0 to 25 days. The proposed dosing from this study for bacteremia is included in the 2018 Red Book and 2019 guidelines. For meningitis, no supporting evidence was identified for the dosing recommendations in the 2018 Red Book and 2019 guidelines. Only one study has evaluated ampicillin concentrations in cerebrospinal fluid, but proposed dosing from this study was much lower than that included in the guidelines. The high ampicillin doses for GBS meningitis should be used with caution, as high ampicillin concentrations have been associated with seizures and no studies have evaluated efficacy of this dosing strategy. The purpose of this review is to identify key pieces of literature regarding dosing recommendations and safety of ampicillin in neonates. KEY POINTS: · Recent guidelines provide dosing recommendations for ampicillin, but the supporting evidence is not included.. · Literature supporting evidence for ampicillin dosing for bacteremia is available, but not for dosing for meningitis.. · Recommended meningitis dose may result in supratherapeutic concentrations and increase seizure risk..
Collapse
Affiliation(s)
- Sin Yin Lim
- Division of Pharmacy Practice, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jamie L Miller
- Division of Pharmacy Practice, Department of Pharmacy, Clinical and Administrative Sciences, University of Oklahoma Health Sciences Center College of Pharmacy, Oklahoma City, Oklahoma
| |
Collapse
|
3
|
Matcha S, Raj EA, Mahadevan R, Raju AP, Rajesh V, Lewis LE, Mallayasamy S. Pharmacometric approach to assist dosage regimen design in neonates undergoing therapeutic hypothermia. Pediatr Res 2022; 92:249-254. [PMID: 34493833 PMCID: PMC9411058 DOI: 10.1038/s41390-021-01714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Therapeutic hypothermia (TH) is the treatment of choice for neonates diagnosed with perinatal asphyxia (PA). Dosing recommendations of various therapeutic agents including antimicrobials were not specifically available for the neonates undergoing TH. METHODS A systematic search methodology was used to identify pharmacokinetic (PK) studies of antimicrobials during TH. Antimicrobials with multiple PK studies were identified to create a generalizable PK model. Pharmacometric simulations were performed using the PUMAS software platform to reproduce the results of published studies. A suitable model that could reproduce the results of all other published studies was identified. With the help of a generalizable model, an optimal dosage regimen was designed considering the important covariates of the identified model. RESULTS With the systematic search, only gentamicin had multiple PK reports during TH. A generalizable model was identified and the model predictions could match the reported/observed concentrations of publications. Birth weight and serum creatinine were the significant covariates influencing the PK of gentamicin in neonates. A dosage nomogram was designed using pharmacometric simulations to maintain gentamicin concentrations below 10 μg/mL at peak and below 2 μg/mL at trough. CONCLUSIONS A generalizable PK model for gentamicin during TH in neonates was identified. Using the model, a dosing nomogram for gentamicin was designed. IMPACT Dosing guidelines for antimicrobials during TH in neonates is lacking. This is the first study to identify the generalizable model for gentamicin during TH in neonates. Nomogram, proposed in the study, will aid the clinicians to individualize gentamicin dosing regimen for neonates considering the birth weight and serum creatinine.
Collapse
Affiliation(s)
- Saikumar Matcha
- grid.411639.80000 0001 0571 5193Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka India
| | - Elstin Anbu Raj
- grid.411639.80000 0001 0571 5193Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka India
| | | | - Arun Prasath Raju
- grid.411639.80000 0001 0571 5193Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka India
| | - V Rajesh
- grid.411639.80000 0001 0571 5193Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka India
| | - Leslie Edward Lewis
- grid.411639.80000 0001 0571 5193Department of Paediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India.
| |
Collapse
|
4
|
Poppe M, Clodi C, Schriefl C, Mueller M, Sunder-Plaßmann R, Reiter B, Rechenmacher M, van Os W, van Hasselt JGC, Holzer M, Herkner H, Schwameis M, Jilma B, Schoergenhofer C, Weiser C. Targeted temperature management after cardiac arrest is associated with reduced metabolism of pantoprazole - A probe drug of CYP2C19 metabolism. Biomed Pharmacother 2021; 146:112573. [PMID: 34959115 DOI: 10.1016/j.biopha.2021.112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE Targeted temperature management (TTM) is part of standard post-resuscitation care. TTM may downregulate cytochrome enzyme activity and thus impact drug metabolism. This study compared the pharmacokinetics (PK) of pantoprazole, a probe drug of CYP2C19-dependent metabolism, at different stages of TTM following cardiac arrest. METHODS This prospective controlled study was performed at the Medical University of Vienna and enrolled 16 patients following cardiac arrest. The patients completed up to three study periods (each lasting 24 h) in which plasma concentrations of pantoprazole were quantified: (P1) hypothermia (33 °C) after admission, (P2) normothermia after rewarming (36 °C, intensive care), and (P3) normothermia during recovery (normal ward, control group). PK was analysed using non-compartmental analysis and nonlinear mixed-effects modelling. RESULTS 16 patients completed periods P1 and P2; ten completed P3. The median half-life of pantoprazole was 2.4 h (quartiles: 1.8-4.8 h) in P1, 2.8 h (2.1-6.8 h, p = 0.046 vs. P1, p = 0.005 vs. P3) in P2 and 1.2 h (0.9 - 2.3 h, p = 0.007 vs. P1) in P3. A two-compartment model described the PK data best. Typical values for clearance were estimated separately for each study period, indicating 40% and 29% reductions during P1 and P2, respectively, compared to P3. The central volume of distribution was estimated separately for P2, indicating a 64% increase compared to P1 and P3. CONCLUSION CYP2C19-dependent drug metabolism is downregulated during TTM following cardiac arrest. These results may influence drug choice and dosing of similarly metabolized drugs and may be helpful for designing studies in similar clinical situations.
Collapse
Affiliation(s)
- Michael Poppe
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Christian Clodi
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | | | - Matthias Mueller
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Raute Sunder-Plaßmann
- Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Birgit Reiter
- Clinical Institute of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Wisse van Os
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | - Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Michael Schwameis
- Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | - Christoph Weiser
- Department of Emergency Medicine, Medical University of Vienna, Austria
| |
Collapse
|
5
|
Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics (Basel) 2021; 10:antibiotics10101182. [PMID: 34680763 PMCID: PMC8532953 DOI: 10.3390/antibiotics10101182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Children show important developmental and maturational changes, which may contribute greatly to pharmacokinetic (PK) variability observed in pediatric patients. These PK alterations are further enhanced by disease-related, non-maturational factors. Specific to the intensive care setting, such factors include critical illness, inflammatory status, augmented renal clearance (ARC), as well as therapeutic interventions (e.g., extracorporeal organ support systems or whole-body hypothermia [WBH]). This narrative review illustrates the relevance of both maturational and non-maturational changes in absorption, distribution, metabolism, and excretion (ADME) applied to antibiotics. It hereby provides a focused assessment of the available literature on the impact of critical illness—in general, and in specific subpopulations (ARC, extracorporeal organ support systems, WBH)—on PK and potential underexposure in children and neonates. Overall, literature discussing antibiotic PK alterations in pediatric intensive care is scarce. Most studies describe antibiotics commonly monitored in clinical practice such as vancomycin and aminoglycosides. Because of the large PK variability, therapeutic drug monitoring, further extended to other antibiotics, and integration of model-informed precision dosing in clinical practice are suggested to optimise antibiotic dose and exposure in each newborn, infant, or child during intensive care.
Collapse
|
6
|
Abstract
BACKGROUND AND AIMS Ampicillin is 1 of the most commonly used antibiotics for treatment of early onset sepsis, but its pharmacokinetics (PK) is poorly characterized. We aimed to define the dose of ampicillin for late preterm and term neonates by evaluating its PK in serum, cerebrospinal (CSF), and epithelial lining fluid. METHODS A prospective study included neonates receiving ampicillin for suspected or proven early onset sepsis and pneumonia. PK samples were collected at steady state, at predose and 5 minutes, 1 hour, 3 hours, 8 hours, and 12 hours after ampicillin 3-minute infusion. Ampicillin concentrations were measured by ultra-high-performance liquid chromatography. Noncompartmental anaysis (NCA) and population pharmacokinetic (pop-PK) modeling were performed and probability of therapeutic target attainment was simulated. RESULTS In 14 neonates (GA of 32-42 wks; mean BW 2873 g), PK parameters (mean ± SD) in NCA were the following: half-life 7.21 ± 7.97 hours; volume of distribution (Vd) 1.07 ± 0.51 L; clearance (CL) 0.20 ± 0.13 L/h; 24-hour area under the concentration-time curve 348.92 ± 114.86 mg*h/L. In pop-PK analysis, a 2-compartmental model described the data most adequately with the final parameter estimates of CL 15.15 (CV 40.47%) L/h/70kg; central Vd 24.87 (CV 37.91%) L/70kg; intercompartmental CL 0.39 (CV 868.56) L/h and peripheral Vd 1.039 (CV 69.32%) L. Peutic target attainment simulations demonstrated that a dosage of 50 mg/kg q 12 hours attained 100% fT > MIC 0.25 mg/L, group B streptococcal breakpoint. CONCLUSIONS We recommend ampicillin dosage 50 mg/kg q 12 hours for neonates with gestational age ≥32 weeks during the first week of life.
Collapse
|
7
|
De Rose DU, Cairoli S, Dionisi M, Santisi A, Massenzi L, Goffredo BM, Dionisi-Vici C, Dotta A, Auriti C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. Int J Mol Sci 2020; 21:E5898. [PMID: 32824472 PMCID: PMC7460644 DOI: 10.3390/ijms21165898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Therapeutic drug monitoring (TDM) should be adopted in all neonatal intensive care units (NICUs), where the most preterm and fragile babies are hospitalized and treated with many drugs, considering that organs and metabolic pathways undergo deep and progressive maturation processes after birth. Different developmental changes are involved in interindividual variability in response to drugs. A crucial point of TDM is the choice of the bioanalytical method and of the sample to use. TDM in neonates is primarily used for antibiotics, antifungals, and antiepileptic drugs in clinical practice. TDM appears to be particularly promising in specific populations: neonates who undergo therapeutic hypothermia or extracorporeal life support, preterm infants, infants who need a tailored dose of anticancer drugs. This review provides an overview of the latest advances in this field, showing options for a personalized therapy in newborns and infants.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Marco Dionisi
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Luca Massenzi
- Neonatal Intensive Care Unit and Neonatal Pathology, Fatebenefratelli Hospital, 00186 Rome, Italy;
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Carlo Dionisi-Vici
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| |
Collapse
|
8
|
Lutz IC, Allegaert K, de Hoon JN, Marynissen H. Pharmacokinetics during therapeutic hypothermia for neonatal hypoxic ischaemic encephalopathy: a literature review. BMJ Paediatr Open 2020; 4:e000685. [PMID: 32577535 PMCID: PMC7299043 DOI: 10.1136/bmjpo-2020-000685] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neonatal hypoxic ischaemic encephalopathy due to perinatal asphyxia, can result in severe neurodevelopmental disability or mortality. Hypothermia is at present the only proven neuroprotective intervention. During hypothermia, the neonate may need a variety of drugs with their specific pharmacokinetic profile. The aim of this paper is to determine the effect that hypothermia for neonates suffering from hypoxic ischaemic encephalopathy has on the pharmacokinetics and to what extent dosing regimens need adjustments. METHOD A systematic search was performed on PubMed, Embase and Cochrane Library of literature (2000-2020) using a combination of the following search terms: therapeutic hypothermia, neonate, hypoxic ischemic encephalopathy and pharmacokinetics. Titles and abstracts were screened, and inclusion/exclusion criteria were applied. Finally, relevant full texts were read, and secondary inclusion was applied on the identified articles. RESULTS A total of 380 articles were retrieved, and 34 articles included after application of inclusion/exclusion criteria and duplicate removal, two additional papers were included as suggested by the reviewers. Twelve out of 36 studies on 15 compounds demonstrated a significant decrease in clearance, be it that the extent differs between routes of elimination and compounds, most pronounced for renal elimination (phenobarbital no difference, midazolam metabolite -21%, lidocaine -24%; morphine -21% to -47%, gentamicin -25% to -35%, amikacin -40%) during hypothermia. The data as retrieved in literature were subsequent compared with the dosing regimen as stated in the Dutch paediatric formulary. CONCLUSION Depending on the drug-specific disposition characteristics, therapeutic hypothermia in neonates with hypoxic ischaemic encephalopathy affects pharmacokinetics.
Collapse
Affiliation(s)
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Intensive Care and Pediatric Surgery, Erasmus MC Sophia, Rotterdam, The Netherlands
| | - Jan N de Hoon
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | - Heleen Marynissen
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Smits A, Annaert P, Van Cruchten S, Allegaert K. A Physiology-Based Pharmacokinetic Framework to Support Drug Development and Dose Precision During Therapeutic Hypothermia in Neonates. Front Pharmacol 2020; 11:587. [PMID: 32477113 PMCID: PMC7237643 DOI: 10.3389/fphar.2020.00587] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic hypothermia (TH) is standard treatment for neonates (≥36 weeks) with perinatal asphyxia (PA) and hypoxic-ischemic encephalopathy. TH reduces mortality and neurodevelopmental disability due to reduced metabolic rate and decreased neuronal apoptosis. Since both hypothermia and PA influence physiology, they are expected to alter pharmacokinetics (PK). Tools for personalized dosing in this setting are lacking. A neonatal hypothermia physiology-based PK (PBPK) framework would enable precision dosing in the clinic. In this literature review, the stepwise approach, benefits and challenges to develop such a PBPK framework are covered. It hereby contributes to explore the impact of non-maturational PK covariates. First, the current evidence as well as knowledge gaps on the impact of PA and TH on drug absorption, distribution, metabolism and excretion in neonates is summarized. While reduced renal drug elimination is well-documented in neonates with PA undergoing hypothermia, knowledge of the impact on drug metabolism is limited. Second, a multidisciplinary approach to develop a neonatal hypothermia PBPK framework is presented. Insights on the effect of hypothermia on hepatic drug elimination can partly be generated from in vitro (human/animal) profiling of hepatic drug metabolizing enzymes and transporters. Also, endogenous biomarkers may be evaluated as surrogate for metabolic activity. To distinguish the impact of PA versus hypothermia on drug metabolism, in vivo neonatal animal data are needed. The conventional pig is a well-established model for PA and the neonatal Göttingen minipig should be further explored for PA under hypothermia conditions, as it is the most commonly used pig strain in nonclinical drug development. Finally, a strategy is proposed for establishing and fine-tuning compound-specific PBPK models for this application. Besides improvement of clinical exposure predictions of drugs used during hypothermia, the developed PBPK models can be applied in drug development. Add-on pharmacotherapies to further improve outcome in neonates undergoing hypothermia are under investigation, all in need for dosing guidance. Furthermore, the hypothermia PBPK framework can be used to develop temperature-driven PBPK models for other populations or indications. The applicability of the proposed workflow and the challenges in the development of the PBPK framework are illustrated for midazolam as model drug.
Collapse
Affiliation(s)
- Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Steven Van Cruchten
- Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Clinical Pharmacy, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
10
|
Cies JJ, Habib T, Bains V, Young M, Menkiti OR. Population Pharmacokinetics of Gentamicin in Neonates with Hypoxemic-Ischemic Encephalopathy Receiving Controlled Hypothermia. Pharmacotherapy 2018; 38:1120-1129. [PMID: 30300445 DOI: 10.1002/phar.2186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Identify population pharmacokinetics and pharmacodynamic target attainment of gentamicin in neonates with hypoxic-ischemic encephalopathy (HIE) undergoing controlled hypothermia (CH). DESIGN Prospective open-label pharmacokinetic study. Gentamicin concentrations were modeled and dosing regimens simulated for a 5000-patient neonatal population with HIE receiving CH using PMetrics, a nonparametric, pharmacometric modeling, and simulation package for R. SETTING A 189-bed children's tertiary care teaching hospital. RESULTS Twelve patients, 5 (42%) females and 7 (58%) males, met inclusion criteria with a median gestation age of 39.9 weeks (interquartile range [IQR] 38.5-40.2 wks) and a median birthweight (BW) of 3.3 kg (IQR 3.1-3.7 kg). Gentamicin concentrations were best described by a two-compartment model with first-order elimination with BW as a covariate on volume of distribution (Vd). The mean total body population clearance (CL) was 2.2 ± 0.7 ml/minute/kg, and the volume of the central compartment was 0.44 ± 0.06 L/kg. The R2 , bias, and precision for the observed versus population predicted model were 0.917, 1.15, and 10.9 μg/ml; the R2 , bias, and precision for the observed versus individual predicted model were 0.982, -0.132, and 0.932 μg/ml, respectively. The calculated mean population estimate for the total Vd was 0.96 ± 0.4 L/kg. The dosing regimen that most consistently produced a maximum concentration (Cmax ) in the range of 10-12 mg/L with a minimum concentration (Cmin ) level less than 2 mg/L was 5 mg/kg/dose given every 36 hours. CONCLUSION These data suggest the population pharmacokinetics of gentamicin in neonates with HIE receiving CH have an increase in gentamicin CL and are different from previous reports in neonates with HIE not receiving CH and/or neonates without HIE. This analysis suggests a dosing regimen of 5 mg/kg/dose every 36 hours results in a gentamicin Cmax within the range of 10-12 mg/L with a Cmin lower than 2 mg/L, which is appropriate for treating susceptible gram-negative organisms with minimum inhibitory concentrations of 1 mg/L or lower.
Collapse
Affiliation(s)
- Jeffrey J Cies
- The Center for Pediatric Pharmacotherapy, LLC, Pottstown, Pennsylvania.,St. Christopher's Hospital for Children, Philadelphia, Pennsylvania.,Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Thomas Habib
- St. Christopher's Hospital for Children, Philadelphia, Pennsylvania.,Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Vidhy Bains
- St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Megan Young
- St. Christopher's Hospital for Children, Philadelphia, Pennsylvania
| | - Ogechukwu R Menkiti
- St. Christopher's Hospital for Children, Philadelphia, Pennsylvania.,Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Neely M, Bayard D, Desai A, Kovanda L, Edginton A. Pharmacometric Modeling and Simulation Is Essential to Pediatric Clinical Pharmacology. J Clin Pharmacol 2018; 58 Suppl 10:S73-S85. [DOI: 10.1002/jcph.1316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/17/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Michael Neely
- Children's Hospital Los Angeles; University of Southern California; Los Angeles CA USA
| | - David Bayard
- Children's Hospital Los Angeles; University of Southern California; Los Angeles CA USA
| | - Amit Desai
- Astellas Pharma Global Development, Inc.; Northbrook IL USA
| | - Laura Kovanda
- Astellas Pharma Global Development, Inc.; Northbrook IL USA
| | | |
Collapse
|
12
|
Choi DW, Park JH, Lee SY, An SH. Effect of hypothermia treatment on gentamicin pharmacokinetics in neonates with hypoxic-ischaemic encephalopathy: A systematic review and meta-analysis. J Clin Pharm Ther 2018; 43:484-492. [PMID: 29781085 DOI: 10.1111/jcpt.12711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Hypothermia is the current standard therapy for asphyxiated neonates with hypoxic-ischaemic encephalopathy (HIE). Gentamicin is used for the empirical treatment of early-onset neonatal sepsis. We investigated the influence of hypothermia treatment on gentamicin pharmacokinetics and suggested the appropriate dosing recommendations for gentamicin in neonates with HIE receiving hypothermia treatment. METHODS We searched studies published until February 2017 in MEDLINE using PubMed, EMBASE and the Cochrane Library. Three independent reviewers screened the literature and extracted data from each study. All of the studies that reported the blood concentrations or pharmacokinetic parameters of gentamicin in hypothermic neonates with HIE were included in this review. Articles were excluded if they were not original research. RESULT AND DISCUSSION A total of 8 observational studies met the inclusion criteria. Meta-analyses were performed in which the mean difference of gentamicin for the trough concentration and clearance between hypothermic and normothermic neonates were 0.81 mg/L (95% confidence interval [-0.07, 1.69]) and -0.21 mL/kg/min (95% confidence interval [-0.31, -0.12]), respectively. The factors affecting gentamicin clearance in hypothermic neonates with HIE were gestational age, birthweight and serum creatinine. WHAT IS NEW AND CONCLUSION Gentamicin clearance is decreased in neonates with HIE receiving hypothermia treatment compared to those not receiving hypothermia treatment. Modified gentamicin dosing regimens are required to avoid potential toxicity related to higher concentrations during hypothermia treatment.
Collapse
Affiliation(s)
- D W Choi
- College of Pharmacy, Wonkwang University, Iksan, Korea
| | - J H Park
- College of Pharmacy, Wonkwang University, Iksan, Korea
| | - S Y Lee
- College of Pharmacy, Wonkwang University, Iksan, Korea
| | - S H An
- College of Pharmacy, Wonkwang University, Iksan, Korea
| |
Collapse
|
13
|
Goetzl L, Merabova N, Darbinian N, Martirosyan D, Poletto E, Fugarolas K, Menkiti O. Diagnostic Potential of Neural Exosome Cargo as Biomarkers for Acute Brain Injury. Ann Clin Transl Neurol 2018; 5:4-10. [PMID: 29376087 PMCID: PMC5771318 DOI: 10.1002/acn3.499] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/10/2022] Open
Abstract
Objective Neuronal exosomes purified from peripheral blood samples have been proposed as diagnostic tool in the setting of acute brain injury but never tested clinically. We hypothesized that exosome protein biomarkers would change over time following acute hypoxic brain injury and would predict response to therapy. Methods Synaptopodin (SYNPO), an actin-associated protein present in postsynaptic spines, was evaluated as a potential biomarker as well as: synaptophysin, neuron-specific enolase, and mitochondrial cytochrome c oxidase. A secondary analysis was performed on neonatal samples collected at 8, 10, and 14 h after the initiation of therapeutic-controlled hypothermia for acute hypoxic-ischemic encephalopathy (n = 14). Neuronal exosomes were purified from serum and protein levels were quantified using standard ELISA methods. The primary study outcomes were length of stay (LOS), discharge on seizure medication (DCMED), and composite neuroimaging score (NIS). Results The slope of change in neuronal exosome SYNPO between 8 and 14 h appeared to be the most promising biomarker for all three clinical study outcomes. SYNPO was highly correlated with LOS (-0.91, P < 0.001). SYNPO increased in 6/8 without DCMED and was worse or neutral in 5/5 with DCMED (P = 0.02). All four neonates with an abnormal NIS had neutral or decreasing SYNPO (P = 0.055). Other candidate biomarkers were not associated with outcomes. Interpretation This report provides the first clinical evidence that neural exosomes turn over rapidly enough in the peripheral circulation to be used as a "troponin-like" test following acute brain injury. Optimal sampling and biomarkers likely vary with type of brain injury.
Collapse
Affiliation(s)
- Laura Goetzl
- Departments of Obstetrics & GynecologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvania
| | - Nana Merabova
- Shriner's Hospital Pediatric Research Center for Neural Repair and RehabilitationPhiladelphiaPennsylvania
| | - Nune Darbinian
- Shriner's Hospital Pediatric Research Center for Neural Repair and RehabilitationPhiladelphiaPennsylvania
| | - Diana Martirosyan
- Shriner's Hospital Pediatric Research Center for Neural Repair and RehabilitationPhiladelphiaPennsylvania
| | - Erica Poletto
- Department of RadiologyDrexel University School of MedicineSt. Christopher's Hospital for ChildrenPhiladelphiaPennsylvania
| | - Keri Fugarolas
- Departments of NeonatologyDrexel University School of MedicineSt. Christopher's Hospital for ChildrenPhiladelphiaPennsylvania
| | - Ogechukwu Menkiti
- Departments of NeonatologyDrexel University School of MedicineSt. Christopher's Hospital for ChildrenPhiladelphiaPennsylvania
| |
Collapse
|