1
|
Courville J, Roupe K, Arold G. Re-discover the value of protein binding assessments in hepatic and renal impairment studies and its contributions in drug labels and dose decisions. Clin Transl Sci 2024; 17:e13810. [PMID: 38716900 PMCID: PMC11077687 DOI: 10.1111/cts.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
One of the key pharmacokinetic properties of most small molecule drugs is their ability to bind to serum proteins. Unbound or free drug is responsible for pharmacological activity while the balance between free and bound drug can impact drug distribution, elimination, and other safety parameters. In the hepatic impairment (HI) and renal impairment (RI) clinical studies, unbound drug concentration is often assessed; however, the relevance and impact of the protein binding (PB) results is largely limited. We analyzed published clinical safety and pharmacokinetic studies in subjects with HI or RI with PB assessment up to October 2022 and summarized the contribution of PB results on their label dose recommendations. Among drugs with HI publication, 32% (17/53) associated product labels include PB results in HI section. Of these, the majority (9/17, 53%) recommend dose adjustments consistent with observed PB change. Among drugs with RI publication, 27% (12/44) of associated product labels include PB results in RI section with the majority (7/12, 58%) recommending no dose adjustment, consistent with the reported absence of PB change. PB results were found to be consistent with a tailored dose recommendation in 53% and 58% of the approved labels for HI and RI section, respectively. We further discussed the interpretation challenges of PB results, explored treatment decision factors including total drug concentration, exposure-response relationships, and safety considerations in these case examples. Collectively, comprehending the alterations in free drug levels in HI and RI informs treatment decision through a risk-based approach.
Collapse
Affiliation(s)
- Jocelyn Courville
- Clinical Pharmacology—Drug Development SolutionICON plcBlue BellPennsylvaniaUSA
| | - Kathryn Roupe
- Clinical Pharmacology, PharmacokineticsWorldwide Clinical TrialsAustinTexasUSA
| | - Gerhard Arold
- Clinical Pharmacology—Drug Development SolutionICON plcLangenGermany
| |
Collapse
|
2
|
Sawicki GS, Wicha WW, Hiley TS, Close NC, Gelone SP, Guico-Pabia CJ. Safety and Pharmacokinetics Following Oral or Intravenous Lefamulin in Adults With Cystic Fibrosis. Clin Ther 2024; 46:96-103. [PMID: 38195348 DOI: 10.1016/j.clinthera.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE Methicillin-resistant Staphylococcus aureus infections are increasing in prevalence in patients with cystic fibrosis (CF) and are associated with worsening lung function and increased mortality. Lefamulin is a pleuromutilin antimicrobial approved to treat community-acquired bacterial pneumonia based on potent in vitro activity and clinical efficacy. This Phase I, open-label, randomized crossover study assessed the safety and pharmacokinetic profile of oral and intravenous (IV) lefamulin in adults with CF. METHODS The study comprised 2 dosing periods in which adults with CF (N = 13) received a single dose of lefamulin via a 150-mg IV infusion or 600-mg immediate-release orally administered tablet, separated by a 4- to 7-day washout period. Pharmacokinetic and safety parameters were assessed after lefamulin treatment. FINDINGS Single doses of lefamulin administered via oral tablet or IV infusion resulted in comparable drug exposure, and sputum analysis suggested rapid penetration of lefamulin into the lung. Comparison of the present results with those obtained from prior single-dose studies of healthy volunteers indicate no meaningful difference in the pharmacokinetic properties of lefamulin in patients with CF. Treatment-emergent adverse events were consistent with previous reports, and the majority were mild in severity. IMPLICATIONS These results show similar lefamulin pharmacokinetic and safety profiles between patients with CF and healthy volunteers receiving the same oral and IV doses, suggesting no need for lefamulin dose adjustment in patients with CF and indicating the potential of lefamulin as therapy for lung infections in patients with CF. CLINICALTRIALS gov identifier: NCT05225805.
Collapse
Affiliation(s)
| | | | - Tara S Hiley
- Nabriva Therapeutics US, Inc, Fort Washington, Pennsylvania, USA
| | | | - Steven P Gelone
- Nabriva Therapeutics US, Inc, Fort Washington, Pennsylvania, USA
| | | |
Collapse
|
3
|
Paukner S, Mendes RE, Arends SJR, Gassner G, Gelone SP, Sader HS. 7-Year (2015-21) longitudinal surveillance of lefamulin in vitro activity against bacterial pathogens collected worldwide from patients with respiratory tract infections including pneumonia and characterization of resistance mechanisms. J Antimicrob Chemother 2024; 79:360-369. [PMID: 38113528 DOI: 10.1093/jac/dkad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVES Lefamulin (Xenleta™), a pleuromutilin antibiotic, was approved for the oral and IV treatment of community-acquired bacterial pneumonia (CABP) in adults in 2019/2020. This study evaluated the in vitro activity of lefamulin and comparators against 19 584 unique bacterial isolates collected from patients with community-acquired respiratory tract infections and hospitalized patients with pneumonia within the global SENTRY Antimicrobial Surveillance Program during 2015-21. METHODS Isolates were susceptibility tested by the CLSI broth microdilution method, and resistance mechanisms were investigated in isolates with elevated lefamulin MICs. RESULTS Lefamulin exhibited potent antibacterial activity against the most common and typical CABP pathogens tested, including Streptococcus pneumoniae [MIC50/90, 0.06/0.25 mg/L; 99.9% susceptible (S)], Staphylococcus aureus (MIC50/90, 0.06/0.12 mg/L; 99.6% S), Haemophilus influenzae (MIC50/90, 0.5/2 mg/L; 99.1% S) and Moraxella catarrhalis (MIC50/90, 0.06/0.12 mg/L; 100.0% S). Potent activity was also observed against the less common pneumonia pathogens: β-haemolytic (MIC50/90 of 0.03/0.06 mg/L) and viridans group Streptococcus spp. (MIC50/90 of 0.06/0.25 mg/L) and Haemophilus parainfluenzae (MIC50/90 of 1/4 mg/L). Lefamulin's activity was not adversely affected by resistance to macrolides, penicillin, tetracyclines, fluoroquinolones and other resistance phenotypes. Non-susceptibility/resistance to lefamulin was rare and primarily determined by ribosomal protection through vga(A) variants in S. aureus, overexpression of AcrAB-TolC efflux pump in H. influenzae or modifications in L3, L4 and 23SrRNA in Streptococcus spp. CONCLUSIONS Based on the coverage of the most important CABP pathogens and lacking cross-resistance, lefamulin may represent a valuable empirical treatment option for ambulatory and hospitalized patients with CABP, particularly in settings with high prevalence of resistance.
Collapse
Affiliation(s)
- Susanne Paukner
- Nabriva Therapeutics GmbH, Leberstrasse 20, A-1110 Vienna, Austria
| | - Rodrigo E Mendes
- JMI Laboratories, 345 Beaver Kreek Center, Suite A, North Liberty, IA 52317, USA
| | - S J Ryan Arends
- JMI Laboratories, 345 Beaver Kreek Center, Suite A, North Liberty, IA 52317, USA
| | - Gisela Gassner
- Nabriva Therapeutics GmbH, Leberstrasse 20, A-1110 Vienna, Austria
| | - Steven P Gelone
- Nabriva Therapeutics US Inc., 414 Commerce Drive, Suite 120, Fort Washington, PA 19034, USA
| | - Helio S Sader
- JMI Laboratories, 345 Beaver Kreek Center, Suite A, North Liberty, IA 52317, USA
| |
Collapse
|
4
|
Ruggieri F, Compagne N, Antraygues K, Eveque M, Flipo M, Willand N. Antibiotics with novel mode of action as new weapons to fight antimicrobial resistance. Eur J Med Chem 2023; 256:115413. [PMID: 37150058 DOI: 10.1016/j.ejmech.2023.115413] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistance (AMR) is a major public health issue, causing 5 million deaths per year. Without any action plan, AMR will be in a near future the leading cause of death ahead of cancer. AMR comes from the ability of bacteria to rapidly develop and share resistance mechanisms towards current antibiotics, rendering them less effective. To circumvent this issue and avoid the phenomenon of cross-resistance, new antibiotics acting on novel targets or with new modes of action are required. Today, the pipeline of potential new treatments with these characteristics includes promising compounds such as gepotidacin, zoliflodacin, ibezapolstat, MGB-BP-3, CRS-3123, afabicin and TXA-709, which are currently in clinical trials, and lefamulin, which has been recently approved by FDA and EMA. In this review, we report the chemical synthesis, mode of action, structure-activity relationships, in vitro and in vivo activities as well as clinical data of these eight small molecules listed above.
Collapse
Affiliation(s)
- Francesca Ruggieri
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nina Compagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Kevin Antraygues
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Maxime Eveque
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
5
|
Adhikary S, Duggal MK, Nagendran S, Chintamaneni M, Tuli HS, Kaur G. Lefamulin: a New Hope in the Field of Community-Acquired Bacterial Pneumonia. CURRENT PHARMACOLOGY REPORTS 2022; 8:418-426. [PMID: 35811574 PMCID: PMC9257118 DOI: 10.1007/s40495-022-00297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Purpose of Review Community-acquired bacterial pneumonia (CABP) continues to be a worldwide health concern since it is the major cause of mortality and hospitalisation worldwide. Increased macrolide resistance among Streptococcus pneumoniae and other infections has resulted in a significantly larger illness burden, which has been exacerbated by evolving demography and a higher prevalence of comorbid disorders. Owing to such circumstances, the creation of new antibiotic classes is critical. Recent Findings Lefamulin, also referred to as BC-3781, is the primary pleuromutilin antibiotic which has been permitted for both intravenous and oral use in humans for the remedy of bacterial infections. It has shown activity against gram-positive bacteria including methicillin-resistant strains as well as atypical organisms which as often implicated in CABP. It has a completely unique mechanism of action that inhibits protein synthesis via way of means of stopping the binding of tRNA for peptide transfer. The C(14) side chain is responsible for its pharmacodynamic and antimicrobial properties, together with supporting in overcoming bacterial ribosomal resistance and mutations improvement amplifying the number of hydrogen bonds to the target site. Summary This review aims to highlight the pre-existing treatment options and specific purposes to shed some light upon the development of a new drug lefamulin and its specifications and explore this novel drug's superior efficacy to already existing treatment strategies.
Collapse
Affiliation(s)
- Shubham Adhikary
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai-56, India
| | - Meher Kaur Duggal
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai-56, India
| | - Saraswathy Nagendran
- Department of Botany, SVKM’s Mithibai College of Arts Chauhan Institute of Science and Amrutben Jivanlal College Of Commerce and Economics, Vile Parle (W), 400056 Mumbai, India
| | - Meena Chintamaneni
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai-56, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana Ambala, 133207 Haryana India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai-56, India
| |
Collapse
|
6
|
Abstract
Lefamulin is a novel antibiotic agent within the pleuromutilin derivative class approved for the treatment of community-acquired bacterial pneumonia (CABP) by the United States Food and Drug Administration and the European Commission in 2019 and 2020, respectively. The objective of this article is to provide a summary of clinically relevant data underlying lefamulin and to provide recommendations for its place in therapy. In vitro data establish lefamulin's activity against a number of Gram-positive, Gram-negative and atypical organisms relevant in the treatment of CABP, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Legionella pneumophila, Mycoplasma pneumoniae and Chlamydophila pneumoniae. Two phase-3 studies, the Lefamulin Evaluation Against Pneumonia trials, established non-inferiority of lefamulin against moxifloxacin in the treatment of CABP, including the sequential transition from intravenous to oral therapy and across a broad set of patient demographics and severities. Pooled and post hoc analyses have confirmed these effects for a variety of subgroups and secondary endpoints. Real-world study data post-approval have largely not yet emerged for lefamulin, and there is a need for further investigation into safety/efficacy for off-label indications such as acute bacterial skin and skin structure infections and sexually transmitted infections. Further data regarding tolerability, particularly with long-term use, as well as the emergence of resistance over time, are still undefined.
Collapse
Affiliation(s)
- Jordan R Covvey
- Division of Pharmaceutical, Administrative and Social Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Anthony J Guarascio
- Division of Pharmacy Practice, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
McCarthy MW. Clinical Pharmacokinetics and Pharmacodynamics of Lefamulin. Clin Pharmacokinet 2021; 60:1387-1394. [PMID: 34254252 DOI: 10.1007/s40262-021-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Lefamulin (Xenleta) has been approved by the US FDA for the treatment of community-acquired bacterial pneumonia (CABP). It may be taken intravenously or orally and has activity against a broad range of pulmonary pathogens, including Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydophila pneumonia, as well as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Lefamulin has an adverse effect profile that is similar to other antimicrobial agents commonly used to treat CABP. Despite these promising features, the use of lefamulin remains limited in clinical practice. However, given the rise of antibiotic-resistant organisms, this may soon change. This review examines what is known about the pharmacokinetics and pharmacodynamics of lefamulin and looks ahead to its potential applications in clinical practice, including the treatment of sexually transmitted infections such as multidrug-resistant Mycoplasma genitalium, as well as its role as a synergistic agent used in combination with other antimicrobials in the treatment of drug-resistant organisms.
Collapse
Affiliation(s)
- Matthew William McCarthy
- Weill Cornell Medicine and NewYork-Presbyterian Hospital, 525 E. 68th Street, New York, NY, 10065, USA.
| |
Collapse
|