1
|
Aiken J, Mandel ER, Riddell MC, Birot O. Hyperglycaemia correlates with skeletal muscle capillary regression and is associated with alterations in the murine double minute-2/forkhead box O1/thrombospondin-1 pathway in type 1 diabetic BioBreeding rats. Diab Vasc Dis Res 2019; 16:28-37. [PMID: 30360646 DOI: 10.1177/1479164118805928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes can have deleterious effects on skeletal muscle and its microvasculature. Our laboratory has recently identified murine double minute-2 as a master regulator of muscle microvasculature by controlling expression levels of two key molecular actors of the angio-adaptive process: the pro-angiogenic vascular endothelial growth factor-A and the anti-angiogenic thrombospondin-1. Here, we show for the first time that in the soleus and plantaris muscles of the diabetes-prone BioBreeding rats, a rodent model of autoimmune type 1 diabetes, murine double minute-2 protein levels are significantly decreased, coinciding with elevated protein levels of thrombospondin-1 and its transcription factor forkhead box O1. Significant capillary regression was observed to similar extent in soleus and plantaris muscles of type 1 diabetic rats. Elevated blood glucose levels were correlated with the loss of capillaries, the reduction in murine double minute-2 expression and with the elevations in thrombospondin-1. Vascular endothelial growth factor-A protein levels were unaltered or even increased in diabetic animals, yet type 1 diabetic animals had less vascular endothelial growth factor receptor-2 abundance. The vascular endothelial growth factor-A/thrombospondin-1 ratio, a good indicator of skeletal muscle angio-adaptive environment, was decreased in type 1 diabetic muscle. Our results suggest that the murine double minute-2-forkhead box O1-thrombospondin-1 pathway plays an important role in angio-regulation of the skeletal muscle in the pathophysiological context of type 1 diabetes.
Collapse
Affiliation(s)
- Julian Aiken
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Erin R Mandel
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Michael C Riddell
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Centre, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
2
|
Dunford EC, Leclair E, Aiken J, Mandel ER, Haas TL, Birot O, Riddell MC. The effects of voluntary exercise and prazosin on capillary rarefaction and metabolism in streptozotocin-induced diabetic male rats. J Appl Physiol (1985) 2016; 122:492-502. [PMID: 27932675 DOI: 10.1152/japplphysiol.00762.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022] Open
Abstract
Type-1 diabetes mellitus (T1D) causes impairments within the skeletal muscle microvasculature. Both regular exercise and prazosin have been shown to improve skeletal muscle capillarization and metabolism in healthy rats through distinct angiogenic mechanisms. The aim of this study was to evaluate the independent and additive effects of voluntary exercise and prazosin treatment on capillary-to-fiber ratio (C:F) in streptozotocin (STZ)-treated diabetic rats. STZ (65 mg/kg) was intraperitoneally administered to male Sprague-Dawley rats (n = 36) to induce diabetes, with healthy, nondiabetic, sedentary rats (n = 10) as controls. The STZ-treated rats were then divided into sedentary (SED) or exercising (EX; 24-h access to running wheels) groups and then further subdivided into prazosin (Praz) or water (H2O) treatment groups: nondiabetic-SED-H2O, STZ-SED-H2O, STZ-EX-H2O, STZ-SED-Praz, and STZ-EX-Praz. After 3 wk, untreated diabetes significantly reduced the C:F in tibialis anterior (TA) and soleus muscles in the STZ-SED-H2O animals (both P < 0.05). Voluntary exercise and prazosin treatment independently resulted in a normalization of C:F within the TA (1.86 ± 0.12 and 2.04 ± 0.03 vs 1.71 ± 0.09, P < 0.05) and the soleus (2.36 ± 0.07 and 2.68 ± 0.14 vs 2.13 ± 0.12, P < 0.05). The combined STZ-EX-Praz group resulted in the highest C:F within the TA (2.26 ± 0.07, P < 0.05). Voluntary exercise volume was negatively correlated with fed blood glucose levels (r2 = -0.7015, P < 0.01) and, when combined with prazosin, caused further enhanced nonfasted glucose (P < 0.01). Exercise and prazosin reduced circulating nonesterified fatty acids more than either stimulus alone (P < 0.05). These results suggest that the distinct stimulation of angiogenesis, with both regular exercise and prazosin treatment, causes a cooperative improvement in the microvascular complications associated with T1D.NEW & NOTEWORTHY It is currently well established that poorly controlled diabetes reduces both skeletal muscle mass and muscle capillarization. These muscle-specific features of diabetes may, in turn, compromise insulin sensitivity and glucose control. Using a model of streptozotocin-induced diabetes, we show the vascular complications linked with disease and how chronic exposure to exercise and prazosin (an α1-adrenergic antagonist) can reduce these complications and improve glycemic control.
Collapse
Affiliation(s)
- Emily C Dunford
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Erwan Leclair
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Julian Aiken
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Erin R Mandel
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Tara L Haas
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Olivier Birot
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Aiken J, Birot O. The Vascular Endothelial Growth Factor-A phosphorylates Murine Double Minute-2 on its Serine 166 via the Extracellular Signal-Regulated Kinase 1/2 and p90 Ribosomal S6 Kinase in primary human endothelial cells. Biochem Biophys Res Commun 2016; 478:1548-54. [PMID: 27591897 DOI: 10.1016/j.bbrc.2016.08.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Murine Double Minute-2 (Mdm2) has been identified as an essential regulator of skeletal muscle angiogenesis and the pro-angiogenic activity of endothelial cells. We have recently demonstrated that the pro-angiogenic Vascular Endothelial Growth Factor-A (VEGF-A) is a potent upstream regulator of Mdm2 phosphorylation on its Serine 166 (p-Ser166-Mdm2), a protein modification leading to an increase in endothelial cell migration. Here, we investigated the kinase signaling pathways that could be responsible for mediating VEGF-A-dependent Mdm2 phosphorylation. Incubation of primary human dermal microvascular endothelial cells with recombinant VEGF-A for 15 min led to increased phosphorylation levels of VEGF-receptor-2, Mdm2, Akt, Extracellular Signal-Regulated Kinase 1/2 (ERK1/2), and p90 Ribosomal S6 Kinase (p90RSK) proteins. In addition to being linked to VEGF-A signaling, Akt, ERK1/2 and p90RSK have been shown to potentially lead to Mdm2 phosphorylation. We therefore next analyzed which of these kinases could be responsible for VEGF-A-dependent Mdm2 phosphorylation on Serine 166 by using kinase-specific pharmacological inhibitors. Inhibition of ERK1/2 phosphorylation by UO126 entirely abrogated the response of p-Ser166-Mdm2 to VEGF-A treatment, while Akt phosphorylation inhibition by wortmannin led to further elevations in p-Ser166-Mdm2. p90RSK has been identified as a potential candidate downstream of ERK1/2 that could induce Mdm2 Ser166 phosphorylation. Two independent p90RSK inhibitors, FMK and BI-D1870, each led to an entire loss of p-Ser166-Mdm2 responsiveness to VEGF-A. Taken together, our results demonstrate that VEGF-A driven Mdm2 phosphorylation on Ser166 is dependent on the ERK1/2/p90RSK signaling pathway in primary human endothelial cells, furthering our understanding of the complex relationship between Mdm2 and VEGF-A in a physiological context.
Collapse
Affiliation(s)
- Julian Aiken
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Olivier Birot
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, ON, Canada.
| |
Collapse
|
4
|
Lindholm ME, Giacomello S, Werne Solnestam B, Fischer H, Huss M, Kjellqvist S, Sundberg CJ. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts. PLoS Genet 2016; 12:e1006294. [PMID: 27657503 PMCID: PMC5033478 DOI: 10.1371/journal.pgen.1006294] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023] Open
Abstract
Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. Skeletal muscle is the most abundant tissue of the healthy human body. It is also highly adaptable to different environmental stimuli, e.g. regular exercise. Exercise training improves overall health and muscle function, and can be used to prevent and treat several common diseases e.g. cardiovascular disease and type II diabetes. Therefore, it is of great importance to understand the molecular mechanisms behind adaptation processes in human skeletal muscle. In this study, we show that different expression variants from the same gene can be regulated in different directions with training, implicating alternative protein functions from one single gene. Such findings are emblematic of the complex mechanisms regulating the effects of training. We also find that training changes the activity of functionally unknown parts of the genome, with the potential for new proteins involved in the health-enhancing effects of exercise. Additionally, our results challenge the belief of a skeletal muscle memory, where previous training can affect the response to a subsequent training period. Overall, we provide understanding of the skeletal muscle biology and novel insights into the mechanisms behind the massive benefits of regular exercise on the human skeletal muscle transcriptome, inspiring further studies for deeper investigation.
Collapse
Affiliation(s)
- Maléne E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MEL); (CJS)
| | - Stefania Giacomello
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Beata Werne Solnestam
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Helene Fischer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Huss
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Sanela Kjellqvist
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MEL); (CJS)
| |
Collapse
|
5
|
Yu M, King B, Ewert E, Su X, Mardiyati N, Zhao Z, Wang W. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model. PLoS One 2016; 11:e0160939. [PMID: 27509024 PMCID: PMC4979999 DOI: 10.1371/journal.pone.0160939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.
Collapse
Affiliation(s)
- Miao Yu
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, Kansas, United States of America
| | - Brenee King
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, Kansas, United States of America
| | - Emily Ewert
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, Kansas, United States of America
| | - Xiaoyu Su
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, Kansas, United States of America
| | - Nur Mardiyati
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, Kansas, United States of America
| | - Zhihui Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiqun Wang
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Olfert IM. Physiological Capillary Regression is not Dependent on Reducing VEGF Expression. Microcirculation 2016; 23:146-56. [PMID: 26660949 PMCID: PMC4744091 DOI: 10.1111/micc.12263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/03/2015] [Indexed: 01/04/2023]
Abstract
Investigations into physiologically controlled capillary regression report the provocative finding that microvessel regression occurs in the face of persistent elevation of skeletal muscle VEGF expression. TSP-1, a negative angiogenic regulator, is increasingly being observed to temporally correlate with capillary regression, suggesting that increased TSP-1 (and not reduction in VEGF per se) is needed to initiate, and likely regulate, capillary regression. Based on evidence being gleaned from physiologically mediated regression of capillaries, it needs to be recognized that capillary regression (and perhaps capillary rarefaction with disease) is not simply the reversal of factors used to stimulate angiogenesis. Rather, the conceptual understanding that angiogenesis and capillary regression each have specific and unique requirements that are biologically constrained to opposite sides of the balance between positive and negative angioregulatory factors may shed light on why anti-VEGF therapies have not lived up to the promise in reversing angiogenesis and providing the cure that many had hoped toward fighting cancer. Emerging evidence from physiological controlled angiogenesis suggest that cases involving excessive or uncontrolled capillary expansion may be best treated by therapies designed to increase expression of negative angiogenic regulators, whereas those involving capillary rarefaction may benefit from inhibiting negative regulators (like TSP-1).
Collapse
Affiliation(s)
- I Mark Olfert
- Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Mary Babb Randolph Cancer Center, West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
7
|
Haas TL, Nwadozi E. Regulation of skeletal muscle capillary growth in exercise and disease. Appl Physiol Nutr Metab 2015; 40:1221-32. [PMID: 26554747 DOI: 10.1139/apnm-2015-0336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| | - Emmanuel Nwadozi
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
8
|
Gliemann L, Olesen J, Biensø RS, Schmidt JF, Akerstrom T, Nyberg M, Lindqvist A, Bangsbo J, Hellsten Y. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men. Am J Physiol Heart Circ Physiol 2014; 307:H1111-9. [PMID: 25128170 DOI: 10.1152/ajpheart.00168.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis.
Collapse
Affiliation(s)
- Lasse Gliemann
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Jesper Olesen
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Sjørup Biensø
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Friis Schmidt
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Thorbjorn Akerstrom
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Michael Nyberg
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Anna Lindqvist
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Jens Bangsbo
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Ylva Hellsten
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|