1
|
Hatakeyama-Sato K, Oyaizu K. Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices. Chem Rev 2023; 123:11336-11391. [PMID: 37695670 DOI: 10.1021/acs.chemrev.3c00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Persistent radicals can hold their unpaired electrons even under conditions where they accumulate, leading to the unique characteristics of radical ensembles with open-shell structures and their molecular properties, such as magneticity, radical trapping, catalysis, charge storage, and electrical conductivity. The molecules also display fast, reversible redox reactions, which have attracted particular attention for energy conversion and storage devices. This paper reviews the electrochemical aspects of persistent radicals and the corresponding macromolecules, radical polymers. Radical structures and their redox reactions are introduced, focusing on redox potentials, bistability, and kinetic constants for electrode reactions and electron self-exchange reactions. Unique charge transport and storage properties are also observed with the accumulated form of redox sites in radical polymers. The radical molecules have potential electrochemical applications, including in rechargeable batteries, redox flow cells, photovoltaics, diodes, and transistors, and in catalysts, which are reviewed in the last part of this paper.
Collapse
Affiliation(s)
- Kan Hatakeyama-Sato
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
2
|
Farokhi A, Shahroosvand H, Monache GD, Pilkington M, Nazeeruddin MK. The evolution of triphenylamine hole transport materials for efficient perovskite solar cells. Chem Soc Rev 2022; 51:5974-6064. [PMID: 35770784 DOI: 10.1039/d1cs01157j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, the dramatic increase in power conversion efficiency (PCE) coupled with a decrease in the total cost of third-generation solar cells has led to a significant increase in the collaborative research efforts of academic and industrial researchers. Such interdisciplinary studies have afforded novel materials, which in many cases are now ready to be brought to the marketplace. Within this framework, the field of perovskite solar cells (PSCs) is currently an important area of research due to their extraordinary light-harvesting properties. In particular, PSCs prepared via facile synthetic procedures, containing hole transport materials (HTMs) with versatile triphenylamine (TPA) structural cores, amenable to functionalization, have become a focus of intense global research activity. To optimize the efficiency of the solar cells to achieve efficiencies closer to rival silicon-based technology, TPA building blocks must exhibit favourable electrochemical, photophysical, and photochemical properties that can be chemically tuned in a rational manner. Although PSCs based on TPA building blocks exhibit attractive properties such as high-power efficiencies, a reduction in their synthetic costs coupled with higher stabilities and environmental considerations still need to be addressed. Considering the above, a detailed summary of the most promising compounds and current methodologies employed to overcome the remaining challenges in this field is provided. The objective of this review is to provide guidance to readers on exploring new avenues for the discovery of efficient TPA derivatives, to aid in the future development and advancement of TPA-based PSCs for commercial applications.
Collapse
Affiliation(s)
- Afsaneh Farokhi
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran.
| | - Hashem Shahroosvand
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran.
| | - Gabriele Delle Monache
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S3A1, Canada.
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S3A1, Canada.
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Kran E, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Synthesis of Stannylated Aryl Imines and Amines via Aryne Insertion Reactions into Sn-N Bonds. Chemistry 2021; 27:9281-9285. [PMID: 33929056 DOI: 10.1002/chem.202101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 11/11/2022]
Abstract
The reaction of in situ generated arynes with stannylated imines to provide ortho-stannyl-aniline derivatives is reported. The readily prepared trimethylstannyl benzophenone imine is introduced as an efficient reagent to realize the aryne σ-insertion reaction. The imine functionality is an established N-protecting group and insertions proceed with good yields and good to excellent regioselectivities. The product anilines are valuable starting materials for follow-up chemistry thanks to the rich chemistry offered by the trimethylstannyl moiety.
Collapse
Affiliation(s)
- Eva Kran
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
4
|
Hashimoto R, Anh Truong M, Gopal A, Imanah Rafieh A, Nakamura T, Murdey R, Wakamiya A. Hole-Transporting Polymers Containing Partially Oxygen-Bridged Triphenylamine Units and Their Application for Perovskite Solar Cells. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Anesh Gopal
- Institute for Chemical Research, Kyoto University
| | | | | | | | | |
Collapse
|
5
|
Suwa K, Cojocaru L, Wienands K, Hofmann C, Schulze PSC, Bett AJ, Winkler K, Goldschmidt JC, Glunz SW, Nishide H. Vapor-Phase Formation of a Hole-Transporting Thiophene Polymer Layer for Evaporated Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6496-6502. [PMID: 31931567 DOI: 10.1021/acsami.9b20981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Homogeneous layer formation on textured silicon substrates is essential for the fabrication of highly efficient monolithic perovskite silicon tandem solar cells. From all well-known techniques for the fabrication of perovskite solar cells (PSCs), the evaporation method offers the highest degree of freedom for layer-by-layer deposition independent of the substrate's roughness or texturing. Hole-transporting polymers with high hole mobility and structural stability have been used as effective hole-transporting materials (HTMs) of PSCs. However, the strong intermolecular interactions of the polymers do not allow for a layer formation via the evaporation method, which is a big challenge for the perovskite community. Herein, we first applied a hole-transporting terthiophene polymer (PTTh) as an HTM for evaporated PSCs via an in situ vapor-phase polymerization using iodine (I2) as a sublimable oxidative agent. PTTh showed high hole mobility of 1.2 × 10-3 cm2/(V s) and appropriate energy levels as HTM in PSCs (EHOMO = -5.3 eV and ELUMO = -3.3 eV). The PSCs with the in situ vapor-phase polymerized PTTh hole-transporting layer and a co-evaporated perovskite layer exhibited a photovoltaic conversion efficiency of 5.9%, as a proof of concept, and high cell stability over time. Additionally, the polymer layer could fully cover the pyramidal structure of textured silicon substrates and was identified as an effective hole-transporting material for perovskite silicon tandem solar cells by optical simulation.
Collapse
Affiliation(s)
- Koki Suwa
- Department of Applied Chemistry and Research Institute for Science and Engineering , Waseda University , Tokyo 169-8555 , Japan
| | - Ludmila Cojocaru
- Department of Sustainable Systems Engineering (INATECH), Laboratory for Photovoltaic Energy Conversion , University of Freiburg , Freiburg 79110 , Germany
| | - Karl Wienands
- Department of Sustainable Systems Engineering (INATECH), Laboratory for Photovoltaic Energy Conversion , University of Freiburg , Freiburg 79110 , Germany
| | - Clarissa Hofmann
- Fraunhofer Institute for Solar Energy Systems ISE , Freiburg 79110 , Germany
- Institute of Microstructure Technology , Karlsruhe Institute of Technology (KIT) , Karlsruhe 76344 , Germany
| | | | - Alexander J Bett
- Fraunhofer Institute for Solar Energy Systems ISE , Freiburg 79110 , Germany
| | - Kristina Winkler
- Fraunhofer Institute for Solar Energy Systems ISE , Freiburg 79110 , Germany
| | | | - Stefan W Glunz
- Department of Sustainable Systems Engineering (INATECH), Laboratory for Photovoltaic Energy Conversion , University of Freiburg , Freiburg 79110 , Germany
- Fraunhofer Institute for Solar Energy Systems ISE , Freiburg 79110 , Germany
| | - Hiroyuki Nishide
- Department of Applied Chemistry and Research Institute for Science and Engineering , Waseda University , Tokyo 169-8555 , Japan
| |
Collapse
|
6
|
Suwa K, Oyaizu K, Segawa H, Nishide H. Anti-Oxidizing Radical Polymer-Incorporated Perovskite Layers and their Photovoltaic Characteristics in Solar Cells. CHEMSUSCHEM 2019; 12:5207-5212. [PMID: 31625275 DOI: 10.1002/cssc.201901601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Indexed: 06/10/2023]
Abstract
A small amount of a radical-bearing redox-active polymer, poly(1-oxy-2,2,6,6-tetramethylpiperidin-4-yl methacrylate) (PTMA), incorporated into the photovoltaic organo-lead halide perovskite layer significantly enhanced durability of both the perovskite layer and its solar cell and even exposure to ambient air or oxygen. PTMA acted as an eliminating agent of the superoxide anion radical formed upon light irradiation on the layer, which can react with the perovskite compound and decompose it to lead halide. A cell fabricated with a PTMA-incorporated perovskite layer and a hole-transporting polytriarylamine layer gave a photovoltaic conversion efficiency of 18.8 % (18.2 % for the control without PTMA). The photovoltaic current was not reduced in the presence of PTMA in the perovskite layer probably owing to a carrier conductivity of PTMA. The incorporated PTMA also worked as a water-repelling coating for providing humidity-resistance to the organo-lead halide perovskite layer.
Collapse
Affiliation(s)
- Koki Suwa
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Hiroshi Segawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroyuki Nishide
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| |
Collapse
|
7
|
Hole-transporting diketopyrrolopyrrole-thiophene polymers and their additive-free application for a perovskite-type solar cell with an efficiency of 16.3%. Polym J 2018. [DOI: 10.1038/s41428-018-0116-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|