1
|
Ahmed Yassine B, Bezbiz M, Belachemi L, Moreau C, Garnier C, Jonchere C, Ben Youcef H, Cathala B, Kaddami H. Preparation of superabsorbent composite(s) based on dialdehyde cellulose extracted from banana fiber waste. Carbohydr Polym 2024; 343:122504. [PMID: 39174109 DOI: 10.1016/j.carbpol.2024.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The study focus is the valorization of banana agriculture by products by the extraction and derivatization of cellulose and its incorporation in formulations to produce superabsorbent materials endowed with high water absorption performances. The extracted cellulose (BP) was subjected to a controlled oxidation by sodium periodate to convert it to cellulose dialdehyde (DAC) with controlled aldehyde content. The cellulosic materials were incorporated into a suspension containing acrylic acid (AA) and itaconic acid (IA) to produce composite hybrid hydrogels (SA-BP/SA-DAC) by radical chain polymerization in water, using N,N-methylene-bis-acrylamide (MBA) as a cross-linking agent and potassium persulfate (KPS) as an initiator. The prepared materials were characterized using techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and rheological analysis. Additionally, the absorption and re-swelling capacities of the superabsorbent composites (SAPs) were assessed through kinetic studies in water and NaCl solution. Notably, dialdehyde cellulose (DAC), due to its low crystallinity index, hydrophilicity (attributed to aldehyde and hemiacetal functions), and high polarity, holds promise for enhancing the swelling and water retention capacity of the hydrogel. A water absorption capacity as high as 1240±60 g.g-1 was obtained for SA-DAC with a DAC content of 5 %wt. Additionally, the reusability of the SAPs was evidenced.
Collapse
Affiliation(s)
- Boussif Ahmed Yassine
- Innovative Materials for Energy and Sustainable Development (IMED-Lab), Cadi Ayyad University, Morocco; UR1268 BIA, INRAE, F-44316 Nantes, France
| | - Mohammed Bezbiz
- Innovative Materials for Energy and Sustainable Development (IMED-Lab), Cadi Ayyad University, Morocco; UR1268 BIA, INRAE, F-44316 Nantes, France
| | - Larbi Belachemi
- Innovative Materials for Energy and Sustainable Development (IMED-Lab), Cadi Ayyad University, Morocco
| | | | | | | | | | | | - Hamid Kaddami
- Innovative Materials for Energy and Sustainable Development (IMED-Lab), Cadi Ayyad University, Morocco; SUSMAT-RC, Mohammed VI Polytechnic University, Morocco.
| |
Collapse
|
2
|
Guimarães DT, de Oliveira Barros M, de Araújo E Silva R, Silva SMF, de Almeida JS, de Freitas Rosa M, Gonçalves LRB, Brígida AIS. Superabsorbent bacterial cellulose film produced from industrial residue of cashew apple juice processing. Int J Biol Macromol 2023; 242:124405. [PMID: 37100327 DOI: 10.1016/j.ijbiomac.2023.124405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The industrial residue of cashew apple juice processing (MRC) was evaluated as an alternative medium for bacterial cellulose (BC) production by Komagataeibacter xylinus ATCC 53582 and Komagataeibacter xylinus ARS B42. The synthetic Hestrin-Schramm medium (MHS) was used as a control for growing and BC production. First, BC production was assessed after 4, 6, 8, 10, and 12 days under static culture. After 12 days of cultivation, K. xylinus ATCC 53582 produced the highest BC titer in MHS (3.1 g·L-1) and MRC (3 g·L-1), while significant productivity was attained at 6 days of fermentation. To understand the effect of culture medium and fermentation time on the properties of the obtained films, BC produced at 4, 6, or 8 days were submitted to infrared spectroscopy with Fourier transform, thermogravimetry, mechanical tests, water absorption capacity, scanning electron microscopy, degree of polymerization and X-ray diffraction. The properties of BC synthesized in MRC were identical to those of BC from MHS, according to structural, physical, and thermal studies. MRC, on the other hand, allows the production of BC with a high water absorption capacity when compared to MHS. Despite the lower titer (0.88 g·L-1) achieved in MRC, the BC from K. xylinus ARS B42 presented a high thermal resistance and a remarkable absorption capacity (14664 %), suggesting that it might be used as a superabsorbent biomaterial.
Collapse
Affiliation(s)
- Darlyson Tavares Guimarães
- Rede Nordeste de Biotecnologia, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Matheus de Oliveira Barros
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Renata de Araújo E Silva
- Universidade Estadual do Ceará, Departamento de Ciência e Tecnologia, Av. Dr. Silas Munguba, 1700, Bairro Itaperi, Fortaleza, CE CEP 60714-903, Brazil
| | - Sarah Maria Frota Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Jessica Silva de Almeida
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Morsyleide de Freitas Rosa
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CE CEP 60511-110, Brazil
| | - Luciana Rocha Barros Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Ana Iraidy Santa Brígida
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CE CEP 60511-110, Brazil.
| |
Collapse
|
3
|
Barakat A, Kamoun EA, El-Moslamy SH, Ghazy MB, Fahmy A. Photo-curable carboxymethylcellulose composite hydrogel as a promising biomaterial for biomedical applications. Int J Biol Macromol 2022; 207:1011-1021. [PMID: 35381281 DOI: 10.1016/j.ijbiomac.2022.03.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
A series of carboxymethylcellulose (CMC) functionalized with glycidyl methacrylate (GMA) was successfully synthesized for producing of CMC-g-GMA copolymer. Water-soluble CMC-g-GMA copolymer was photo-crosslinked while Irgacure-2959 was used as a UV-photo-initiator at 365 nm. On the other hand, cellulose nanocrystals (CNCs) from sugarcane were graft-copolymerized in an aqueous solution utilizing cerium ammonium nitrate (CAN) as an initiator in a redox-initiated free-radical approach. CNCs were grafted with GMA to enhance their physicochemical and biological characteristics. Factors affecting hydrogel formation, e.g. CMC-g-GMA copolymer concentration, irradiation time and incorporation of different concentration of CNCs-g-GMA nano-filler, were discussed in dependance on the swelling degree and gel fraction of the produced hydrogels. Notably, the addition of CNCs-g-GMA nanofillers increased progressively thermal stability of the prepared hydrogel. CMC-g-GMA filled with CNCs-g-GMA composite hydrogel showed antimicrobial activity against multidrug resistance pathogens. Thus, CMC-g-GMA filled with CNCs-g-GMA composite hydrogel could be endorsed as compatible biomaterials for versatile biomedical applications.
Collapse
Affiliation(s)
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt; Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt.
| | - Shahira H El-Moslamy
- Bioprocess Development Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
| | - M B Ghazy
- Chemistry Dep., Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Fahmy
- Chemistry Dep., Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
4
|
Alonso-González M, Felix M, Romero A. Rice Bran-Based Bioplastics: Effects of Biopolymer Fractions on Their Mechanical, Functional and Microstructural Properties. Polymers (Basel) 2021; 14:polym14010100. [PMID: 35012123 PMCID: PMC8747368 DOI: 10.3390/polym14010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 01/31/2023] Open
Abstract
Rice bran is an underutilized by-product of rice production, containing proteins, lipids and carbohydrates (mainly starches). Proteins and starches have been previously used to produce rice bran-based bioplastics, providing a high-added-value by-product, while contributing to the development of biobased, biodegradable bioplastics. However, rice bran contains oil (18–22%), which can have a detrimental effect on bioplastic properties. Its extraction could be convenient, since rice bran oil is becoming increasingly attractive due to its variety of applications in the food, pharmacy and cosmetic industries. In this way, the aim of this work was to analyze the effect of the different components of rice bran on the final properties of the bioplastics. Rice bran refining was carried out by extracting the oil and fiber fractions, and the effects of these two procedures on the final properties were addressed with mechanical, functional and microstructural measures. Results revealed that defatted rice bran produced bioplastics with higher viscoelastic moduli and better tensile behavior while decreasing the water uptake capacity and the soluble matter loss of the samples. However, no significant improvements were observed for systems produced from fiber-free rice bran. The microstructures observed in the SEM micrographs matched the obtained results, supporting the conclusions drawn.
Collapse
Affiliation(s)
- María Alonso-González
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain; (M.F.); (A.R.)
- Correspondence: ; Tel.: +34-954557179
| | - Manuel Felix
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain; (M.F.); (A.R.)
| | - Alberto Romero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain; (M.F.); (A.R.)
| |
Collapse
|
5
|
Liu H, Chen T, Dong C, Pan X. Biomedical Applications of Hemicellulose-Based Hydrogels. Curr Med Chem 2020; 27:4647-4659. [DOI: 10.2174/0929867327666200408115817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/03/2019] [Accepted: 12/08/2019] [Indexed: 01/10/2023]
Abstract
Background:
Hydrogel has a three-dimensional network structure that is able to absorb
a large amount of water/liquid and maintain its original structure. Hemicellulose (HC) is the second
most abundant polysaccharide after cellulose in plants and a heterogeneous polysaccharide
consisting of various saccharide units. The unique physical and chemical properties of hemicellulose
make it a promising material for hydrogels.
Methods:
This review first summarizes the three research hotspots on the hemicellulose-based
hydrogels: intelligence, biodegradability and biocompatibility. It also overviews the progress in
the fabrication and applications of hemicellulose hydrogels in the drug delivery system and tissue
engineering (articular cartilage, cell immobilization, and wound dressing).
Results:
Hemicellulose-based hydrogels have many unique properties, such as stimuliresponsibility,
biodegradability and biocompatibility. Interpenetrating networking can endow appropriate
mechanical properties to hydrogels. These properties make the hemicellulose-based hydrogels
promising materials in biomedical applications such as drug delivery systems and tissue
engineering (articular cartilage, cell immobilization, and wound dressing).
Conclusion:
Hydrogels have been widely used in biomedicine and tissue engineering areas, such
as tissue fillers, drug release agents, enzyme encapsulation, protein electrophoresis, contact lenses,
artificial plasma, artificial skin, and tissue engineering scaffold materials. This article reviews the
recent progress in the fabrication and applications of hemicellulose-based hydrogels in the biomedical
field.
Collapse
Affiliation(s)
- Haitang Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Chen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cuihua Dong
- Key Laboratory of Pulp and Paper Science and Technology of Chinese Ministry of Education and Shandong Province, Qilu University of Technology, Jinan 250353, China
| | - Xuejun Pan
- Biological Systems Engineering, University of Wisconsin-Madison, Madison WI 53706, United States
| |
Collapse
|
6
|
Raghavendran V, Asare E, Roy I. Bacterial cellulose: Biosynthesis, production, and applications. Adv Microb Physiol 2020; 77:89-138. [PMID: 34756212 DOI: 10.1016/bs.ampbs.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC) is a natural polymer produced by the acetic acid producing bacterium and has gathered much interest over the last decade for its biomedical and biotechnological applications. Unlike the plant derived cellulose nanofibres, which require pretreatment to deconstruct the recalcitrant lignocellulosic network, BC are 100% pure, and are extruded by cells as nanofibrils. Moreover, these nanofibrils can be converted to macrofibers that possess excellent material properties, surpassing even the strength of steel, and can be used as substitutes for fossil fuel derived synthetic fibers. The focus of the review is to present the fundamental long-term research on the influence of environmental factors on the organism's BC production capabilities, the production methods that are available for scaling up/scaled-up processes, and its use as a bulk commodity or for biomedical applications.
Collapse
Affiliation(s)
- Vijayendran Raghavendran
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Emmanuel Asare
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
7
|
Alam MN, Islam MS, Christopher LP. Sustainable Production of Cellulose-Based Hydrogels with Superb Absorbing Potential in Physiological Saline. ACS OMEGA 2019; 4:9419-9426. [PMID: 31460032 PMCID: PMC6649005 DOI: 10.1021/acsomega.9b00651] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/16/2019] [Indexed: 05/23/2023]
Abstract
Nowadays, most of the commonly used superabsorbent polymers (SAPs) are derived from synthetic polymers, particularly acrylic acid and its copolymers made with acrylamide. Here, we describe a novel and environmentally friendly aqueous-based process for fabrication of a new, natural, cellulose-based SAP (hydrogel). In this two-step process, cellulose was first reacted with sodium monochloroacetate (MCA) to obtain carboxymethyl cellulose (CMC) and then cross-linked with epichlorohydrin (ECH). In distilled water (d-water), the water retention value (WRV) of the newly fabricated hydrogels reached 725 g d-water/g gel, which is significantly greater than any other commercially available superabsorbent cellulose-based material (WRV of 10-100 g/g) and comparable to the commercial synthetic (polyacrylate) SAP gels (WRV of up to 1000 g/g). In saline water (s-water; 0.9% NaCl), the maximum WRV attained was 118 g s-water/g gel, which exceeds more than 2-fold the WRV of commercial gels (40-50 g/g). Compositional analysis was carried out to determine the amount of carboxyl groups and average molecular mass, and the parameters for hydrogel preparation were optimized. The natural SAP was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The hydrogels showed good re-swelling properties losing only 5-10% of their capabilities to reabsorb d-water when reused in four consecutive cycles. Because of their superior swelling properties in physiological saline, the new hydrogels can compete with their synthetic counterparts in applications such as high-value hygiene and biomedical products.
Collapse
Affiliation(s)
- Md Nur Alam
- Biorefining
Research Institute, Lakehead University, 1294 Balmoral Street, Thunder Bay, Ontario P7B5Z5, Canada
| | - Md. Shahidul Islam
- Biorefining
Research Institute, Lakehead University, 1294 Balmoral Street, Thunder Bay, Ontario P7B5Z5, Canada
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lew P. Christopher
- Biorefining
Research Institute, Lakehead University, 1294 Balmoral Street, Thunder Bay, Ontario P7B5Z5, Canada
| |
Collapse
|