1
|
He Y, Luscombe CK. Quantitative comparison of the copolymerisation kinetics in catalyst-transfer copolymerisation to synthesise polythiophenes. Polym Chem 2024; 15:2598-2605. [PMID: 38933685 PMCID: PMC11197037 DOI: 10.1039/d4py00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Polythiophenes are one of the most widely studied conjugated polymers. With the discovery of the chain mechanism of Kumada catalyst-transfer polymerisation (KCTP), various polythiophene copolymer structures, such as random, block, and gradient copolymers, have been synthesized via batch or semi-batch (sequential addition) methods. However, the lack of quantitative kinetic data for thiophene monomers brings challenges to experimental design and structure prediction when synthesizing the copolymers. In this study, the reactivity ratios and the polymerisation rate constants of 3-hexylthiophene with 4 thiophene comonomers in KCTP are measured by adapting the Mayo-Lewis equation and the first-order kinetic behaviour of chain polymerisation. The obtained kinetic information highlights the impact of the monomer structure on the reactivity in the copolymerisations. The kinetic data are used to predict the copolymer structure of equimolar batch copolymerisations of the 4 thiophene derivatives with 3-hexylthiophene, with the experimental data agreeing well with the predictions. 3-Dodecylthiophene and 3-(6-bromo)hexylthiophene, which have higher structural similarity to 3-hexylthiophene, show nearly equivalent reactivity to 3-hexylthiophene and give random copolymers in the batch copolymerisation. 3-(2-Ethylhexyl)thiophene with a branched side chain is less reactive compared to 3-hexylthiophene and failed to homopolymerize at room temperature, but produced gradient copolymers with 3-hexylthiophene. Finally, the bulkiest 3-(4-octylphenyl)thiophene, despite its ability to homopolymerize, failed to maintain chain polymerisation in the copolymerisation with 3-hexylthiophene, possibly due to the large steric hindrance caused by the phenyl ring directly attached to the thiophene center. This study highlights the importance of monomer structures in copolymerisations and the need for accurate kinetic data.
Collapse
Affiliation(s)
- Yifei He
- Department of Materials Science and Engineering, University of Washington Seattle USA
| | - Christine K Luscombe
- Pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Okinawa Japan
| |
Collapse
|
2
|
Zheng Y, Yu Z, Zhang S, Kong X, Michaels W, Wang W, Chen G, Liu D, Lai JC, Prine N, Zhang W, Nikzad S, Cooper CB, Zhong D, Mun J, Zhang Z, Kang J, Tok JBH, McCulloch I, Qin J, Gu X, Bao Z. A molecular design approach towards elastic and multifunctional polymer electronics. Nat Commun 2021; 12:5701. [PMID: 34588448 PMCID: PMC8481247 DOI: 10.1038/s41467-021-25719-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C-H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V-1 s-1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Zhiao Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Song Zhang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesbury, MS, USA
| | - Xian Kong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Wesley Michaels
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Weichen Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Gan Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Deyu Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Nathaniel Prine
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesbury, MS, USA
| | - Weimin Zhang
- King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Shayla Nikzad
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Zhitao Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jiheong Kang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesbury, MS, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|