1
|
Sigonya S, Mokhena TC, Mayer P, Makhanya TR, Mokhothu TH. Electrospinning and Rheological Characterization of Polyethylene Terephthalate and Polyvinyl Alcohol with Different Degrees of Hydrolysis Incorporating Molecularly Imprinted Polymers. Polymers (Basel) 2024; 16:3297. [PMID: 39684041 DOI: 10.3390/polym16233297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the electrospinning and rheological properties of polyethylene terephthalate (PET) and polyvinyl alcohol (PVA) with varying degrees of hydrolysis (DH) for molecularly imprinted polymer (MIP) incorporation. The morphology and properties of the electrospun nanofibers were evaluated, revealing that PVA nanofibers exhibited smoother and more uniform structures compared to PET fibers. The rheological behavior of the polymer solutions was also characterized, showing that PVA 99 DH solution exhibited shear-thinning behavior due to the unique structural properties of the polymer chains. The introduction of MIP and NIP additives had no significant impact on the rheological properties, except for PVA 99 MIP and NIP solutions, which showed deviations from Newtonian behavior. The electrospun MIP nanofibers showed a conductivity of 1054 µS/cm for PVA (87-90% DH) and a viscosity of 165.5 mPa·s, leading to optimal fiber formation, while displaying a good adsorption capacity of 0.36 mg for PVA-MIP to effectively target pharmaceuticals such as emtricitabine and tenofovir disoproxil, showing their potential for advanced water treatment applications. The results suggest that the electrospinning process and rheological properties of the polymer solutions are influenced by the molecular structure and interactions within the polymer matrix, which can be exploited to tailor the properties of MIPs for specific applications.
Collapse
Affiliation(s)
- Sisonke Sigonya
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban 4000, South Africa
| | - Teboho Clement Mokhena
- DST/Mintek NIC, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg 2194, South Africa
| | - Paul Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - Talent Raymond Makhanya
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban 4000, South Africa
| | | |
Collapse
|
2
|
Thongkon N, Maisom P, Taewcharoen O, Kamsomjit W, Nilsuwan S, Saejan N, Somrak S. Molecularly imprinted polymer on cotton materials as substrates for smartphone-based image and distance-based analysis of Cu(II) in water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7723-7735. [PMID: 39397443 DOI: 10.1039/d4ay01552e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Cotton fabric was used as a substrate for smartphone-based image analysis of Cu(II) in drinking water. To enhance its selective and specific binding sites on the cotton surface, a molecularly imprinted polymer (MIP) was introduced using color complexes of 4-(2-pyridylazo)resorcinol-Cu(II) (PAR-Cu(II)) as the template molecule, 3-aminopropyltriethoxysilane (APTES) as the functional monomer, tetraethoxysilane (TEOS) as the crosslinker and NH3 as the catalyst. After achieving optimum conditions, the obtained CF-MIP/PAR-Cu(II) presented a red color, which was changed to yellow upon the removal of Cu(II) with 1.5 M HCl. After using CF-MIP/PAR to detect Cu(II), the red, green and blue intensities of the images captured using a smartphone were analyzed using the ImageJ program. For the calibration curve plotted between Δgreen intensity and Cu concentration, the linear range was 0.10-1.0 mg L-1 with the best correlation coefficient (R2) of 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 0.038 and 0.11 mg L-1, respectively. To obtain a distance-based device, MIP-modified cotton thread (CT-MIP/PAR) with a four-channel design was used as an alternative device. The distance of red color development was measured after using CT-MIP/PAR to detect Cu(II). The linear range was 0.50-3.0 mg L-1 with an R2 of 0.997. The LOD and LOQ were 0.18 and 0.56 mg L-1, respectively. The proposed methods provide simple, portable and inexpensive devices with high accuracy and precision for the detection of Cu(II) in drinking water.
Collapse
Affiliation(s)
- N Thongkon
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Thailand.
| | - Phakamas Maisom
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Thailand.
| | - Orawan Taewcharoen
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Thailand.
| | - Wannaree Kamsomjit
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Thailand.
| | - Supacha Nilsuwan
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Thailand.
| | - Nattakul Saejan
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Thailand.
| | - S Somrak
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Thailand.
| |
Collapse
|
3
|
Rujiralai T, Rungsawang N, Hama N, Sirimahachai U, Salea A, Putson C. Novel polyvinyl alcohol/gum tragacanth molecularly imprinted-electrospun nanofibers as adsorbent for selective solid phase extraction of bisphenol A. Int J Biol Macromol 2024; 278:134706. [PMID: 39151869 DOI: 10.1016/j.ijbiomac.2024.134706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
A polyvinyl alcohol/gum tragacanth molecularly imprinted nanofiber fabricated by electrospinning (PVA/GT-MIN) was used as an efficient adsorbent for the solid phase extraction (SPE) of bisphenol A (BPA) in water samples. PVA and GT were functional polymers and BPA was the template for molecular imprinting. BPA was bound to the polymer matrix through hydrogen bonding. The SEM image of PVA/GT-MIN demonstrated a rough morphology with pores and a diameter of 501 nm. The data for the adsorption of BPA on PVA/GT-MIN fitted the Freundlich isotherm and pseudo-second-order kinetics models. The proposed SPE using PVA/GT-MIN coupled with high performance liquid chromatography-diode array detection presented good linearity from 50 μg/L-5 mg/L (R2 = 0.9999) and yielded a limit of detection of 21 μg/L. The PVA/GT-MIN was applied to extract bottled water for BPA analysis and recoveries were 93.1-97.7 % (RSDs ≤ 3.6 %). This study presents a novel, easily prepared PVA/GT-MIN adsorbent for the extraction of BPA in water.
Collapse
Affiliation(s)
- Thitima Rujiralai
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
| | - Narin Rungsawang
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Nuryanee Hama
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Uraiwan Sirimahachai
- Center of Excellence for Innovation in Chemistry and Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ahamad Salea
- Materials Physics Laboratory, Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Chatchai Putson
- Materials Physics Laboratory, Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Zhang Y, Zhang X, Wang S. Recent advances in the removal of emerging contaminants from water by novel molecularly imprinted materials in advanced oxidation processes-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163702. [PMID: 37105485 DOI: 10.1016/j.scitotenv.2023.163702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Recently, there has been a global focus on effectively treating emerging contaminants (ECs) in water bodies. Advanced oxidation processes (AOPs) are the primary technology used for ECs removal. However, the low concentrations of ECs make it difficult to overcome the interference of background substances in complex water quality, which limits the practical application of AOPs. To address this limitation, many researchers are developing new catalysts with preferential adsorption. Molecular imprinting technology (MIT) combined with conventional catalysts has been found to effectively enhance the selectivity of catalysts for the targeted catalytic degradation of pollutants. This review presents a comprehensive summary of the progress made in research on molecularly imprinted polymers (MIPs) in the selective oxidation of ECs in water. The preparation methods, principles, and control points of novel MIP catalysts are discussed. Furthermore, the performance and mechanism of the catalysts in photocatalytic oxidation, electrocatalytic oxidation, and persulfate activation are analyzed with examples. The possible ecotoxicological risks of MIP catalysts are also discussed. Finally, the challenges and prospects of applying MIP catalysts in AOP are presented along with proposed solutions. This review provides a better understanding of using MIP catalysts in AOPs to target the degradation of ECs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
5
|
Torabi E, Moghadasi M, Mirzaei M, Amiri A. Nanofiber-based sorbents: Current status and applications in extraction methods. J Chromatogr A 2023; 1689:463739. [PMID: 36586288 DOI: 10.1016/j.chroma.2022.463739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Advanced sorbents gradually become a research hotspot on account of the increasing attention paid to environmental problems. Due to the prominent physicochemical features of nanofibers (NFs), such as high porosity, large surface area, favorable interconnectivity, high adsorption capacity, wettability, and the possibility of surface modification using functional groups, these nanostructures are regarded as excellent candidates for extraction applications. Therefore, the research in the field of NFs and their nanocomposites has been increasing in recent years. In the present review, we summarize the most recent studies on NFs-based sorbents focusing on strategies for preparation, characterization, and their unique capabilities as porous sorbents in various sorbent-based extraction methods. Moreover, we further described the performance and selectivity of sorbents to achieve improved extraction efficiency. Finally, some perspectives on the challenges and outlook are provided to aid future investigations related to this topic.
Collapse
Affiliation(s)
- Elham Torabi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Milad Moghadasi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.; Khorasan Science and Technology Park (KSTP), 12th km of Mashhad-Quchan Road, Mashhad, 9185173911, Khorasan Razavi, Iran.
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran..
| |
Collapse
|
6
|
Montesinos-Vázquez T, Pérez-Silva I, Galán-Vidal CA, Ibarra IS, Rodríguez JA, Páez-Hernández ME. Solution blow spinning polysulfone-Aliquat 336 nanofibers: synthesis, characterization, and application for the extraction and preconcentration of losartan from aqueous solutions. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nanofibers are materials used in a wide range of applications due to their unique physicochemical properties. As an alternative to the most common method of its manufacturing (electrospinning) blow spinning has been used since it has greater production efficiency and simplicity. A wide variety of polymers is used for its preparation and can be modified to improve the interaction and selectivity toward specific analytes. Thereby nanofibers have been used for the extraction or removal of organic compounds such as drugs but there are still few reports of drug extractions like losartan. In this work polysulfone-Aliquat 336 nanofibers were prepared using the blow spinning method to extract and preconcentrate losartan. The studies showed that Aliquat 336 incorporation significantly improve the extraction of losartan with polysulfone fibers. Adsorption process was thermodynamically favorable with an adsorption capacity of 15.45 mg·g−1. Thus, it was possible to extract more than 92% of initial losartan using 10 mg of polysulfone-Aliquat 336 fibers (9 and 3.5% (w/v)), at pH 6 from deionized water and synthetic wastewater. Finally, losartan preconcentration was evaluated to facilitate its quantification using ultraviolet–visible spectrometry (UV-Vis), which allowed the determination of this drug at concentrations below the detection limit.
Collapse
Affiliation(s)
- Tanese Montesinos-Vázquez
- Laboratorio 2, Área Académica de Química , Universidad Autónoma del Estado de Hidalgo , Carretera Pachuca-Tulancingo Km. 4.5 , 42184 Mineral de la Reforma , Hidalgo , Mexico
| | - Irma Pérez-Silva
- Laboratorio 2, Área Académica de Química , Universidad Autónoma del Estado de Hidalgo , Carretera Pachuca-Tulancingo Km. 4.5 , 42184 Mineral de la Reforma , Hidalgo , Mexico
| | - Carlos A. Galán-Vidal
- Laboratorio 2, Área Académica de Química , Universidad Autónoma del Estado de Hidalgo , Carretera Pachuca-Tulancingo Km. 4.5 , 42184 Mineral de la Reforma , Hidalgo , Mexico
| | - Israel S. Ibarra
- Laboratorio 2, Área Académica de Química , Universidad Autónoma del Estado de Hidalgo , Carretera Pachuca-Tulancingo Km. 4.5 , 42184 Mineral de la Reforma , Hidalgo , Mexico
| | - José A. Rodríguez
- Laboratorio 2, Área Académica de Química , Universidad Autónoma del Estado de Hidalgo , Carretera Pachuca-Tulancingo Km. 4.5 , 42184 Mineral de la Reforma , Hidalgo , Mexico
| | - M. Elena Páez-Hernández
- Laboratorio 2, Área Académica de Química , Universidad Autónoma del Estado de Hidalgo , Carretera Pachuca-Tulancingo Km. 4.5 , 42184 Mineral de la Reforma , Hidalgo , Mexico
| |
Collapse
|
7
|
Adsorption and fluorescence detection of nonylphenol in soil samples by cotton fabrics coated with molecularly imprinted polymers/carbon dots. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02043-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Yu M, Li H, Xie J, Xu Y, Lu X. A descriptive and comparative analysis on the adsorption of PPCPs by molecularly imprinted polymers. Talanta 2022; 236:122875. [PMID: 34635255 DOI: 10.1016/j.talanta.2021.122875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022]
Abstract
Molecularly imprinted polymers (MIPs) have aroused great attention as a new material for the removal or detection of pharmaceuticals and personal care products (PPCPs). However, it is not clear about the superiority and deficiency of MIPs in the process of removing or detecting PPCPs. Herein, we evaluated the performance of MIPs in the aspects of adsorption capacity, binding affinity, adsorption rate, and compatibility to other techniques, and proposed ways to improve its performance. Without regard to the selectivity of MIPs, for the PPCPs adsorption, MIPs surprisingly did not always perform better than the conventional adsorbents (non-imprinted polymers, biochar, activated carbon and resin), indicating that MIPs should be used where selectivity is crucial, for example recovery of specific PPCPs in an environmental sample extraction process. Compared to the traditional solid-phase extraction for PPCPs detection pretreatment, the usage of MIPs as substitute extraction agents could obtain high selectivity of specific substance, due to the uniformity and effectiveness of the specific sites. A promising development in the future would be to combine other simple and rapid quantitative technologies, such as electro/photochemical sensor and catalytic degradation, to realize rapid and sensitive detection of trace PPCPs.
Collapse
Affiliation(s)
- Miaomiao Yu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haixiao Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingyi Xie
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Xu
- Department of Soils and Agri-Food Engineering, Paul Comtois Bldg., Laval University, Quebec City, QC, G1K 7P4, Canada
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Bhogal S, Kaur K, Mohiuddin I, Kumar S, Lee J, Brown RJC, Kim KH, Malik AK. Hollow porous molecularly imprinted polymers as emerging adsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117775. [PMID: 34329047 DOI: 10.1016/j.envpol.2021.117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Hollow porous molecularly imprinted polymers (HPMIPs) are identified as promising adsorbents with many advantageous properties (e.g., large number of imprinted cavities, highly accessible binding sites, controllable pore structure, and fast mass transfer). Because of such properties, HPMIPs can exhibit improved binding capacity and kinetics to make analyte molecules readily interact with a greater number of recognition sites on the imprinted shell. This review highlights the synthesis and utility of HPMIPs as adsorbents to cover diverse targets of interest (e.g., endocrine disrupting chemicals, pharmaceuticals, pesticides, and heavy metal ions). The overall potential of HPMIPs is thus discussed in the context of analytical chemistry with particular focus on the efficient extraction of trace-level targets from complex matrices.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, 140406, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
10
|
Metwally MG, Benhawy AH, Khalifa RM, El Nashar RM, Trojanowicz M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021; 26:6515. [PMID: 34770924 PMCID: PMC8587002 DOI: 10.3390/molecules26216515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The increase of the global population and shortage of renewable water resources urges the development of possible remedies to improve the quality and reusability of waste and contaminated water supplies. Different water pollutants, such as heavy metals, dyes, pesticides, endocrine disrupting compounds (EDCs), and pharmaceuticals, are produced through continuous technical and industrial developments that are emerging with the increasing population. Molecularly imprinted polymers (MIPs) represent a class of synthetic receptors that can be produced from different types of polymerization reactions between a target template and functional monomer(s), having functional groups specifically interacting with the template; such interactions can be tailored according to the purpose of designing the polymer and based on the nature of the target compounds. The removal of the template using suitable knocking out agents renders a recognition cavity that can specifically rebind to the target template which is the main mechanism of the applicability of MIPs in electrochemical sensors and as solid phase extraction sorbents. MIPs have unique properties in terms of stability, selectivity, and resistance to acids and bases besides being of low cost and simple to prepare; thus, they are excellent materials to be used for water analysis. The current review represents the different applications of MIPs in the past five years for the detection of different classes of water and wastewater contaminants and possible approaches for future applications.
Collapse
Affiliation(s)
- Mahmoud G. Metwally
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Abdelaziz H. Benhawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Reda M. Khalifa
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Rasha M. El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.G.M.); (A.H.B.); (R.M.K.)
| | - Marek Trojanowicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
11
|
Role of Functional Monomers upon the Properties of Bisphenol A Molecularly Imprinted Silica Films. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, two types of bisphenol A molecularly imprinted films (BPA-MIP) were successfully prepared via sol-gel derived methods using two different organosilane functional monomers N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO-T) or (3-mercaptopropyl)trimethoxysilane (MPTES). The physical-chemical characterization of films, in terms of morphology, structure, thermal analysis, and optical features, suggested that thinner films with a homogenous porous structure were more likely to retain BPA molecules. The MIP films revealed the rapid and quantitative adsorption of BPA, registering the most specific binding in the first five minutes of contact with the BPA-MIP film. Silica films were effectively regenerated for further usage for at least five times, demonstrating their high stability and reusability. Even if the performance of films for BPA uptake dropped dramatically after the third adsorption/reconditioning cycle, this synthesis method for BPA-MIP films has proven to be a reliable and cheap way to prepare sensitive films with potential application for re-usable optical sensors.
Collapse
|
12
|
Mamman S, Suah FBM, Raaov M, Mehamod FS, Asman S, Zain NNM. Removal of bisphenol A from aqueous media using a highly selective adsorbent of hybridization cyclodextrin with magnetic molecularly imprinted polymer. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201604. [PMID: 33959329 PMCID: PMC8074973 DOI: 10.1098/rsos.201604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/27/2021] [Indexed: 05/03/2023]
Abstract
In this study, a unique magnetic molecularly imprinted polymer (MMIP) adsorbent towards bisphenol A (BPA) as a template molecule was developed by bulk polymerization using β-cyclodextrin (β-CD) as a co-monomer with methacrylic acid (MAA) to form MMIP MAA-βCD as a new adsorbent. β-CD was hybridized with MAA to obtain water-compactible imprinting sites for the effective removal of BPA from aqueous samples. Benzoyl peroxide and trimethylolpropane trimethacrylate were used as the initiator and cross-linker, respectively. The adsorbents were characterized by Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscopy, vibrating sample magnetometer, Brunauer-Emmett-Teller and X-ray diffraction. 1H nuclear magnetic resonance spectroscopy was used to characterize the MAA-βCD and BPA-MAA-βCD complex. Several parameters influencing the adsorption efficiency of BPA such as adsorbent dosage, pH of sample solution, contact time, initial concentrations and temperature as well as selectivity and reusability study have been evaluated. MMIP MAA-βCD showed significantly higher removal efficiency and selective binding capacity towards BPA compared to MMIP MAA owing to its unique morphology with the presence of β-CD. The kinetics data can be well described by the pseudo second-order kinetic and Freundlich isotherm and Halsey models best fitted the isotherm data. The thermodynamic studies indicated that the adsorption reaction was a spontaneous and exothermic process. Therefore, MMIP based on the hybrid monomer of MAA-βCD shows good potential of a new monomer in molecularly imprinted polymer preparation and can be used as an effective adsorbent for the removal of BPA from aqueous solutions.
Collapse
Affiliation(s)
- S. Mamman
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Faculty of Natural and Applied Sciences Department of Chemistry, Nasarawa State University Keffi, PMB 1022 Keffi, Nasarawa, Nigeria
| | - F. B. M. Suah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - M. Raaov
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - F. S. Mehamod
- Advanced Nano Materials (ANoMA) Research Group, School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - S. Asman
- Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Pagoh Higher Education Hub, 84600 Muar, Johor, Malaysia
| | - N. N. M. Zain
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Penang, Malaysia
| |
Collapse
|
13
|
Baghali M, Jayathilaka W, Ramakrishna S. The Role of Electrospun Nanomaterials in the Future of Energy and Environment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:558. [PMID: 33503924 PMCID: PMC7865989 DOI: 10.3390/ma14030558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Electrospinning is one of the most successful and efficient techniques for the fabrication of one-dimensional nanofibrous materials as they have widely been utilized in multiple application fields due to their intrinsic properties like high porosity, large surface area, good connectivity, wettability, and ease of fabrication from various materials. Together with current trends on energy conservation and environment remediation, a number of researchers have focused on the applications of nanofibers and their composites in this field as they have achieved some key results along the way with multiple materials and designs. In this review, recent advances on the application of nanofibers in the areas-including energy conversion, energy storage, and environmental aspects-are summarized with an outlook on their materials and structural designs. Also, this will provide a detailed overview on the future directions of demanding energy and environment fields.
Collapse
Affiliation(s)
| | | | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore; (M.B.); (W.A.D.M.J.)
| |
Collapse
|