1
|
Consul P, Feuchtgruber M, Bauer B, Drechsler K. Influence of Extrusion Parameters on the Mechanical Properties of Slow Crystallizing Carbon Fiber-Reinforced PAEK in Large Format Additive Manufacturing. Polymers (Basel) 2024; 16:2364. [PMID: 39204583 PMCID: PMC11360394 DOI: 10.3390/polym16162364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Additive Manufacturing (AM) enables the automated production of complex geometries with low waste and lead time, notably through Material Extrusion (MEX). This study explores Large Format Additive Manufacturing (LFAM) with carbon fiber-reinforced polyaryletherketones (PAEK), particularly a slow crystallizing grade by Victrex. The research investigates how extrusion parameters affect the mechanical properties of the printed parts. Key parameters include line width, layer height, layer time, and extrusion temperature, analyzed through a series of controlled experiments. Thermal history during printing, including cooling rates and substrate temperatures, was monitored using thermocouples and infrared cameras. The crystallization behavior of PAEK was replicated in a Differential Scanning Calorimetry (DSC) setup. Mechanical properties were evaluated using three-point bending tests to analyze the impact of thermal conditions at the deposition interface on interlayer bonding and overall part strength. The study suggests aggregated metrics, enthalpy deposition rate and shear rate under the nozzle, that should be maximized to enhance mechanical performance. The findings show that the common practice of setting fixed layer times falls short of ensuring repeatable part quality.
Collapse
Affiliation(s)
- Patrick Consul
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85748 Garching, Germany; (M.F.); (B.B.); (K.D.)
| | | | | | | |
Collapse
|
2
|
Chen P, Wang H, Su J, Tian Y, Wen S, Su B, Yang C, Chen B, Zhou K, Yan C, Shi Y. Recent Advances on High-Performance Polyaryletherketone Materials for Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200750. [PMID: 35385149 DOI: 10.1002/adma.202200750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Polyaryletherketone (PAEK) is emerging as an important high-performance polymer material in additive manufacturing (AM) benefiting from its excellent mechanical properties, good biocompatibility, and high-temperature stability. The distinct advantages of AM facilitate the rapid development of PAEK products with complex customized structures and functionalities, thereby enhancing their applications in various fields. Herein, the recent advances on AM of high-performance PAEKs are comprehensively reviewed, concerning the materials properties, AM processes, mechanical properties, and potential applications of additively manufactured PAEKs. To begin, an introduction to fundamentals of AM and PAEKs, as well as the advantages of AM of PAEKs is provided. Discussions are then presented on the material properties, AM processes, processing-matter coupling mechanism, thermal conductivity, crystallization characteristics, and microstructures of AM-processed PAEKs. Thereafter, the mechanical properties and anisotropy of additively manufactured PAEKs are discussed in depth. Their representative applications in biomedical, aerospace, electronics, and other fields are systematically presented. Finally, current challenges and possible solutions are discussed for the future development of high-performance AM polymers.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haoze Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shifeng Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binling Chen
- College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, EX4 4QF, UK
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Manzoor F, Golbang A, Dixon D, Mancuso E, Azhar U, Manolakis I, Crawford D, McIlhagger A, Harkin-Jones E. 3D Printed Strontium and Zinc Doped Hydroxyapatite Loaded PEEK for Craniomaxillofacial Implants. Polymers (Basel) 2022; 14:1376. [PMID: 35406250 PMCID: PMC9002955 DOI: 10.3390/polym14071376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, Strontium (Sr) and Zinc (Zn) doped-HA nanoparticles were synthesized and incorporated into polyetheretherketone (PEEK) up to 30 wt.% and processed by a novel approach i.e., fused deposition modelling (FDM) 3D printing for the production of patient specific cranial implants with improved bioactivity and the required mechanical performance. Filaments were produced via extrusion and subsequently 3D-printed using FDM. To further improve the bioactivity of the 3D-printed parts, the samples were dip-coated in polyethylene glycol-DOPA (PEG-DOPA) solution. The printing quality was influenced by filler loading, but was not significantly influenced by the nature of doped-HA. Hence, the printing conditions were optimized for each sample. Micro-CT and Scanning Electron Microscopy (SEM) showed a uniform distribution of bioceramic particles in PEEK. Although agglomeration of particles increased with increase in filler loadings. Differential Scanning Calorimetry (DSC) showed that the melting point and crystallinity of PEEK increased with an increase in doped-HA loading from 343 °C to 355 °C and 27.7% to 34.6%, respectively. Apatite formation was confirmed on the 3D-printed samples after immersion in simulated body fluid (SBF) for 7, 14 and 28 days via SEM, X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The tensile strength and impact strength decreased from 75 MPa to 51 MPa and 14 kJ/m2 to 4 kJ/m2, respectively, while Young's modulus increased with increasing doped-HA content from 2.8 GPa to 4.2 GPa. However, the tensile strengths of composites remained in the range of human cortical bone i.e., ≥50 MPa. In addition, there was a slight increase in mechanical strength after 28 days immersion which was attributed to apatite formation. Water contact angle showed that the hydrophilicity of the samples improved after coating the 3D-printed samples with PEG-DOPA. Hence, based on the results, the 3D-printed PEEK nanocomposites with 20 wt.% doped-HA is selected as the best candidate for the 3D-printing of craniomaxillofacial implants.
Collapse
Affiliation(s)
- Faisal Manzoor
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (A.M.); (E.H.-J.)
| | - Atefeh Golbang
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (A.M.); (E.H.-J.)
| | - Dorian Dixon
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (D.D.); (E.M.)
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (D.D.); (E.M.)
| | - Usaid Azhar
- Precision Engineering, Materials & Manufacturing (PEM) Research Centre, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland; (U.A.); (I.M.)
- Department of Life Sciences, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Ioannis Manolakis
- Precision Engineering, Materials & Manufacturing (PEM) Research Centre, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland; (U.A.); (I.M.)
- Department of Life Sciences, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Daniel Crawford
- Axial 3D, Alexander House, 17a Ormeau Ave, Belfast BT2 8HD, UK;
| | - Alistair McIlhagger
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (A.M.); (E.H.-J.)
| | - Eileen Harkin-Jones
- Department of Mechanical Engineering, School of Engineering, Ulster University, Shore Road, Newtownabbey BT37 0QB, UK; (A.M.); (E.H.-J.)
| |
Collapse
|
4
|
Affiliation(s)
- Samuel Lowe
- Victrex, Hillhouse International Victrex Technology Centre Thornton‐Cleveleys UK
| | - Oana Ghita
- Centre for Additive Layer Manufacturing (CALM), College of Engineering, Mathematics and Physical Sciences, North Park Road University of Exeter Exeter UK
| | - John G Hardy
- Department of Chemistry Lancaster University Lancaster UK
- Materials Science Institute Lancaster University Lancaster UK
| |
Collapse
|