1
|
Şahin FC, Şimşek C, Erbil C. Sulfobetaine/Alginate/Chitosan Supported Hybrid N‐Isopropylacrylamide Hydrogels: Composition‐Dependent Diffusion/Compression Properties and Theophylline/Diclofenac Sodium/Ciprofloxacin Release Kinetics. J Appl Polym Sci 2024. [DOI: 10.1002/app.56507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACTPoly(N‐isopropylacrylamide) (N), poly([3‐(methacryloylamino)propyl] dimethyl(3‐sulfopropyl) ammonium hydroxide) (SB) and SB/N hydrogels were prepared using N,N′‐methylenebisacrylamide as crosslinker, while their hybrid semi‐/full‐IPNs N1A, N1C, N1CA, SB/N1A, SB/N1C, and SB/N1CA were synthesized in the presence of Alginate (A)/Chitosan (C). All the hydrogels were evaluated by taking into account their appearances, compression strengths and swelling behaviors in the ranges of pH 1.2–9.0 and temperature 4°C–40°C. The compressive moduli of N and SB/N hydrogels increased from ~10 to 80 kPa by changing composition (from N, SB/N to N1CA, SB/N1CA), swelling solution (from DDW to PBS) and temperature (from 25° to 37°C). The release profiles of diclofenac sodium (DFNa), theophylline (Thp), and ciprofloxacin (CIP) from N, SB/N, and their semi‐/full‐IPNs were investigated at pH 1.2 and pH 7.4, mimicking gastric and intestinal fluids. Higuchi, Peppas, and Weibull models were used, to describe the mechanisms of DFNa, Thp, and CIP releases from the hybrid IPNs of N and SB/N. The values of n (> 0.45) and β (> 0.75) at 37°C for Peppas and Weibull equations showed that DFNa and CIP releases from SB/N hybrids, which are more hydrophilic than IPNs of N, are mainly controlled by swelling/relaxation process.
Collapse
Affiliation(s)
| | - Ceyda Şimşek
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Candan Erbil
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| |
Collapse
|
2
|
Moreno-Rivas SC, Ibarra-Gutiérrez MJ, Fernández-Quiroz D, Lucero-Acuña A, Burgara-Estrella AJ, Zavala-Rivera P. pH-Responsive Alginate/Chitosan Gel Films: An Alternative for Removing Cadmium and Lead from Water. Gels 2024; 10:669. [PMID: 39451322 PMCID: PMC11507177 DOI: 10.3390/gels10100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Biosorption, a non-expensive and easy method for removing potentially toxic metal ions from water, has been the subject of extensive research. In this context, this study introduces a novel approach using sodium alginate and chitosan, versatile biopolymers that have shown excellent results as biosorbents. The challenge of maintaining high efficiencies and reuse is addressed by developing alginate/chitosan-based films. These films, prepared using solvent casting and crosslinking methods, form a hydrogel network. The alginate/chitosan-based films, obtained using the eco-friendly polyelectrolyte complex method, were characterized by FTIR, SEM, TGA, and DSC. The study of their swelling pH response, adsorption, and desorption behavior revealed promising results. The adsorption of Pb was significantly enhanced by the presence of both biopolymers (98%) in a shorter time (15 min) at pH = 6.5. The adsorption of both ions followed a pseudo-second-order kinetic and the Langmuir isotherm model. The desorption efficiencies for Cd and Pb were 98.8% and 77.6% after five adsorption/desorption cycles, respectively. In conclusion, the alginate/chitosan-based films present a highly effective and novel approach for removing Cd and Pb from water, with a promising potential for reuse, demonstrating their strong potential in potentially toxic metal removal.
Collapse
Affiliation(s)
- Silvia Carolina Moreno-Rivas
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - María José Ibarra-Gutiérrez
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | - Armando Lucero-Acuña
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| | | | - Paul Zavala-Rivera
- Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico; (S.C.M.-R.); (M.J.I.-G.); (A.L.-A.)
| |
Collapse
|
3
|
Dulong V, Thebault P, Karakasyan C, Picton L, le Cerf D. Polyelectrolyte complexes of chitosan and hyaluronic acid or carboxymethylpullulan and their aminoguaiacol derivatives with biological activities as potential drug delivery systems. Carbohydr Polym 2024; 341:122330. [PMID: 38876726 DOI: 10.1016/j.carbpol.2024.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Polyelectrolyte complexes (PECs) were elaborated from chitosan as cationic polymer and carboxy-methylpullulan (CMP), hyaluronic acid (HA) and their derivatives grafted with aminoguaiacol (G) with different degrees of substitution (DSGA) with the aim of obtaining nanogels for drug delivery. For each couple of polysaccharides, the charge ratios giving the smaller size with the lower PDI were selected to produce PECs. CMP_CHIT and CMP-G_CHIT PECs had smaller sizes (220-280 nm) than HA_CHIT and HA-G_CHIT PECs (280-390 nm). PECs were stable at 4 °C during 28 days at pH 5. In phosphate buffer saline (PBS) at pH 7.4, at 4 °C, a better stability of PECs based on CMP-G derivatives was observed. The hydrophobic associations between aminoguaiacol groups (highlighted by measurements of pyrene fluorescence) led to a better PECs' stabilization in PBS. The PECs' antioxidant and antibacterial activities were demonstrated and related to the DSGA. Diclofenac and curcumin were used as drug models: their loading reached 260 and 53 μg/mg PEC, respectively. The release of diclofenac in PBS at 37 °C followed a quasi-Fickian diffusion mechanism with release constant between 0.88 and 1.04 h-1. The curcumin release followed a slow linear increase in PBS/EtOH (60/40 V/V) with an effect of DSGA.
Collapse
Affiliation(s)
- Virginie Dulong
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, UMR 6270 PBS, 76000 Rouen, France.
| | - Pascal Thebault
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, UMR 6270 PBS, 76000 Rouen, France
| | - Carole Karakasyan
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, UMR 6270 PBS, 76000 Rouen, France
| | - Luc Picton
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, UMR 6270 PBS, 76000 Rouen, France
| | - Didier le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, UMR 6270 PBS, 76000 Rouen, France
| |
Collapse
|
4
|
Duan Y, Wang W, Jia J, Tuo X, Gong Y, Quan F. Preparation of photothermal alginate/chitosan derivative/CuS@polydopamine composite fibers and application in desalination. Int J Biol Macromol 2024; 277:134142. [PMID: 39059532 DOI: 10.1016/j.ijbiomac.2024.134142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
A polyelectrolyte system consisting of sodium alginate (SA) and quaternary ammonium chitosan (QAC) blended with polydopamine-coated copper sulfide particles (CuS@PDA) was chosen to investigate the function of CuS@PDA in the uniform binary blending of anionic and cationic polyelectrolytes in detail. A smart composite fiber SA/QAC/CuS@PDA was prepared via a dry-wet spinning technique. With the addition of CuS@PDA (about 4.3 % in fiber), the as-prepared SA/QAC/CuS@PDA-0.50 fibers (SQCuS@P-0.50 SCFs) showed notably enhanced intensity 359.2 MPa, excellent moisture response, and photothermal conversion performance, with the temperature increasing from 25.9 to 80.7 °C as irradiated under a 980 nm infrared lamp at distance 20 cm away for 120 s. The photothermal performance was maintained after 6 lighting on-and-off cycles. The tensile strength decreased ~23.8 % after 4 cycles, then remained fixed. The diameter increases to ~480 % in wet state but decreases to the original size in dry state for 10 cycles. When the fabric with 90 wt% SQCuS@P-0.50 SCFs was used as a water evaporator, the water evaporation rate and efficiency were 1.68 kg·m-2·h-1 and 102 % under 1 sun irradiation. This work provides a simple and ecofriendly strategy for fabricating photothermal fabrics by designing and preparing composite fibers.
Collapse
Affiliation(s)
- Yujie Duan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Wei Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ji Jia
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaohang Tuo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yumei Gong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Fengyu Quan
- State Key Laboratory of Bio-Fibers and Eco-textiles (Qingdao University), Qingdao 266071, PR China
| |
Collapse
|
5
|
Hao T, Xu K, Zheng X, Yao X, Li J, Yu Y, Liu Z. Hydrogen inhibition of wet AlLi alloy dust collector systems using a composite green biopolymer inhibitor based on chitosan/sodium alginate: Experimental and theoretical studies. Int J Biol Macromol 2024; 278:134708. [PMID: 39151867 DOI: 10.1016/j.ijbiomac.2024.134708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Aluminum‑lithium (AlLi) alloy polishing and grinding processes in wet dust collector systems could cause hydrogen fire and explosion. From the fundamental perspective of preventing hydrogen explosions, a safe, nontoxic, and sustainable modified green hydrogen inhibitor based on chitosan (CS) and sodium alginate (SA) was developed in this study and was used as a hydrogen evolution inhibitor for the processing of waste dust from AlLi alloys. The structure and elemental distribution of the synthesized material were characterized through characterization experiments. Hydrogen evolution experiments and a hydrolysis kinetic model were used to explore the inhibitory effect of modified CS/SA on AlLi alloy dust, and the results revealed that the inhibitory concentration of the hydrogen explosion lower limit was 0.40 wt%, with an inhibition efficiency of 91.93 %, indicating an 11.88-61.44 % improvement over that of CS and SA. As the inhibitor concentration increased and the temperature decreased, the hydrogen inhibition effect increased. Characterization experiments and density functional theory showed that CS/SA primarily formed a dense physical protective barrier on the dust surface through chemical adsorption and complexation reactions, interrupting the hydrogen evolution reaction between the metal and water. This study introduces a novel green modified hydrogen inhibitor that fundamentally addresses hydrogen generation and explosion.
Collapse
Affiliation(s)
- Tengteng Hao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Kaili Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Zheng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiwen Yao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Jishuo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yanwu Yu
- School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, China
| | - Zhenhua Liu
- School of Architecture and Environmental Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China
| |
Collapse
|
6
|
Deb D, Khatun B, M BD, Khan MR, Sen Sarma N, Sankaranarayanan K. Utilizing Silk Sericin as a Biomaterial for Drug Encapsulation in a Hydrogel Matrix with Polycaprolactone: Formulation and Evaluation of Antibacterial Activity. ACS OMEGA 2024; 9:32706-32716. [PMID: 39100358 PMCID: PMC11292657 DOI: 10.1021/acsomega.4c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 08/06/2024]
Abstract
Hydrogels have emerged as a potential tool for enhancing bioavailability and regulating the controlled release of therapeutic agents. Owing to its excellent biocompatibility, silk sericin-based hydrogels have garnered interest in biomedical applications. This study focuses on synthesizing a soft hydrogel by blending silk sericin (SS) and polycaprolactone (PCL) at room temperature. The physicochemical characteristics of the hydrogels have been estimated by different analytical techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The rheological studies demonstrate the non-Newtonian behavior of the hydrogels. Further, the porosity analysis indicates a commendable absorption capacity of the hydrogels. The swelling degree of the hydrogels has been checked in both distilled water and buffer solutions of different pHs (2-10). Moreover, the drug release profile of the hydrogels, using diclofenac sodium (DS) as a model drug, has revealed a substantial release of approximately 67% within the first 130 min with a drug encapsulation efficiency of 60.32%. Moreover, both the empty and the drug-loaded hydrogels have shown antibacterial properties against Gram-positive and Gram-negative bacteria, with the drug-loaded hydrogels displaying enhanced effectiveness. Additionally, the prepared hydrogels are biodegradable, demonstrating their future prospects in biomedical applications.
Collapse
Affiliation(s)
- Dona Deb
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bably Khatun
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Bidyarani Devi M
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Mojibur R. Khan
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Neelotpal Sen Sarma
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
| | - Kamatchi Sankaranarayanan
- Institute
of Advanced Study in Science and Technology (An Autonomous Institute
Under DST, Govt. of India), Vigyan Path, Paschim Boragaon,
Garchuk, Guwahati 781035, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Lao M, Wang Y, Li X, Li J, Ning X, Yin S, Deng X. Effect of Specific Surface Area and Hydrophobicity of Electrospun Nanofibers on the Sustained Release Performance of Diclofenac Sodium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018474 DOI: 10.1021/acs.langmuir.4c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nanofibers produced by electrospinning are suitable options for slow-release materials. Diclofenac sodium (DS) is a nonsteroidal anti-inflammatory medication with a brief half-life that can serve as an effective sustained-release agent. This paper presents a novel method for producing DS-sustained release nanofibers by electrostatic spinning processes. During the preparation, the slow-release capabilities of biodegradable materials poly(lactic acid) (PLA) and polycaprolactone (PCL) are investigated. A composite drug-carrying scaffold is prepared to enhance the sustained-release performance. The sustained release ability is affected by the specific surface area of the nanofibers and the hydrophobicity of the polymer. The findings indicate that the composite nanofiber with a PLA/PCL ratio of 1:1 demonstrates the most effective sustained-release performance. The release rate is mostly influenced by the hydrophobicity of the polymer at this point. Sustained-release kinetic simulations were performed and revealed that the release of nanofibers follows a first-order release paradigm. This work presents a straightforward approach for creating a sustained-release formulation of DS.
Collapse
Affiliation(s)
- Min Lao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Yingjie Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xin Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Junlang Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xin Ning
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Shaofeng Yin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xiaoting Deng
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
8
|
Di Spirito N, Grizzuti N, Lutz-Bueno V, Urciuoli G, Auriemma F, Pasquino R. Pluronic F68 Micelles as Carriers for an Anti-Inflammatory Drug: A Rheological and Scattering Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1544-1554. [PMID: 38166478 PMCID: PMC10795184 DOI: 10.1021/acs.langmuir.3c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
Age-long ambition of medical scientists has always been advancement in healthcare and therapeutic medicine. Biomedical research indeed claims paramount importance in nanomedicine and drug delivery, and the development of biocompatible storage structures for delivering drugs stands at the heart of emerging scientific works. The delivery of drugs into the human body is nevertheless a nontrivial and challenging task, and it is often addressed by using amphiphilic compounds as nanosized delivery vehicles. Pluronics belong to a peculiar class of biocompatible and thermosensitive nonionic amphiphilic copolymers, and their self-assemblies are employed as drug delivery excipients because of their unique properties. We herein report on the encapsulation of diclofenac sodium within Pluronic F68 self-assemblies in water, underpinning the impact of the drug on the rheological and microstructural evolution of pluronic-based systems. The self-assembly and thermoresponsive micellization were studied through isothermal steady rheological experiments at different temperatures on samples containing 45 wt % Pluronic F68 and different amounts of diclofenac sodium. The adoption of scattering techniques, small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), allowed for the description of the system features at the nanometer length scale, providing information about the characteristic size of each part of the micellar structures as a function of temperature and drug concentration. Diclofenac sodium is not a good fellow for Pluronic F68. The triblock copolymer aids the encapsulation of the drug, highly improving its water solubility, whereas diclofenac sodium somehow hinders Pluronic self-assembly. By using a simple empirical model and no fitting parameters, the steady viscosity can be predicted, although qualitatively, through the volume fraction of the micelles extracted through scattering techniques and compared to the rheological one. A tunable control of the viscous behavior of such biomedical systems may be achieved through the suitable choice of their composition.
Collapse
Affiliation(s)
| | - Nino Grizzuti
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| | - Viviane Lutz-Bueno
- Laboratory
for Neutron Scattering & Imaging, Paul
Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Gaia Urciuoli
- Dipartimento
di Scienze Chimiche, Università di
Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy
| | - Finizia Auriemma
- Dipartimento
di Scienze Chimiche, Università di
Napoli “Federico II”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy
| | - Rossana Pasquino
- DICMaPI, Università degli Studi di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
9
|
Meskelis L, F Agondi R, Duarte LGR, de Carvalho MD, Sato ACK, Picone CSF. New approaches for modulation of alginate-chitosan delivery properties. Food Res Int 2024; 175:113737. [PMID: 38129047 DOI: 10.1016/j.foodres.2023.113737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Alginate is a biopolymer widely used on delivery systems when bioactive protection at acidic pH is required, while chitosan can enhance mucoadhesion and controlled release at alkaline pHs. In this work, alginate ionotropic gelation and electrostatic complexation to chitosan were evaluated concomitantly or in a two-step approach to improve the delivery properties of systems in different pHs. The effect of pH on alginate gelation and chitosan interactions were also evaluated. Alginate microspheres were prepared by ionotropic gelation in CaCl2 at different pH values (2.5 and 6.0) by extrusion. Complexation with chitosan was carried out during alginate ionotropic gelation (one-step approach) or after alginate gel formation (two-step approach). Alginate microparticles without chitosan showed larger pores and lower mechanical strength. Extruded microspheres at pH 6.0 were more stable to pH and showed smaller pores than the formed at pH 2.5. One-step production retained a large amount of bioactive at pH 7.0 and resulted in lower release at the pH of intestinal digestion. The two-step approach retained less amount of bioactive but confer more protection to the pH of the stomach phase and higher release in pH of the intestinal phase than one-step samples. These results indicate that the formation of alginate gels by ionotropic gelation followed by the complexation with chitosan (in two-step) is promising for the transport and delivery of bioactives into intestinal conditions, whereas the ionotropic gelation concomitantly to electrostatic complexation (one-step approach) is indicated to the delivery of bioactives into lower pH environments.
Collapse
Affiliation(s)
- Ludmilla Meskelis
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Raquel F Agondi
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Larissa G R Duarte
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Matheus D de Carvalho
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Ana Carla K Sato
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Carolina S F Picone
- School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
10
|
Ahmadi F, Saeedi M, Akbari J, Seyedabadi M, Ebrahimnejad P, Morteza-Semnani K, Ghasemi S, Moalem-Banhangi M, Babaei A, Hashemi SMH, Asare-Addo K, Nokhodchi A. Nanohybrid Based on (Mn, Zn) Ferrite Nanoparticles Functionalized With Chitosan and Sodium Alginate for Loading of Curcumin Against Human Breast Cancer Cells. AAPS PharmSciTech 2023; 24:222. [PMID: 37935931 DOI: 10.1208/s12249-023-02683-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
This study reports on the synthesis of Mn1 - xZnxFe2O4 (Mn, Zn ferrite) magnetic nanoparticles (MNPs) as drug delivery carriers for effective therapeutic outcomes. The MNPs were prepared using the coprecipitation method, and their magnetic properties were investigated based on their composition. Among the compositions tested, Mn0.8Zn0.2Fe2O4 MNPs exhibited superparamagnetic properties with a saturation magnetization moment of 34.6 emu/g at room temperature (25°C). To enhance the water solubility of curcumin (Cur), known for its hydrophobic nature, it was successfully loaded onto alginate (Alg)/chitosan (Chit)@Mn0.8Zn0.2Fe2O4 nanoparticles (NPs). The nanocomposite was characterized by field emission scanning electron microscopy (FE-SEM) which revealed a particle size of approximately 20 nm. The crystalline structure of the NPs was analyzed using X-ray diffraction, while Fourier-transform infrared (FTIR), energy-dispersive X-ray, and map analysis techniques were employed for further characterization. In terms of drug release, there was an initial burst release of Cur (around 18%) within the first hour, followed by a slower release (approximately 61%) over the next 36 h. The anti-tumor properties of the Cur-loaded NPs were evaluated using the Methyl Thiazol Tetrazolium (MTT) assay and quantitative real-time polymerase chain reaction. The MTT assay confirmed a higher cytotoxic effect of Cur-loaded Alg/Chit@Mn0.8Zn0.2Fe2O4 NPs on the MCF-7 breast cancer cell line compared to free Cur, highlighting the significance of incorporating Cur into nano-sized carrier systems.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | | - Amirhossein Babaei
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Ali Nokhodchi
- Pharmaceutical Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA.
| |
Collapse
|
11
|
Santhamoorthy M, Thirupathi K, Kumar SSD, Pandiaraj S, Rahaman M, Phan TTV, Kim SC. k-Carrageenan based magnetic@polyelectrolyte complex composite hydrogel for pH and temperature-responsive curcumin delivery. Int J Biol Macromol 2023:125467. [PMID: 37336380 DOI: 10.1016/j.ijbiomac.2023.125467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The dual stimuli-responsive drug delivery system has attracted a lot of interest in controlled drug delivery to specific sites. The magnetic iron oxide nanoparticles integrated polyelectrolyte complex-based hydrogel (MPEC HG) system was developed in this work. First, magnetic nanoparticles were produced in situ in the synthetic polymer polyhexamethylene guanidine (PHMG). Furthermore, the natural biopolymer k-carrageenan (kCG) was employed to form the polyelectrolyte complex (PEC) through charge-balancing interaction between positively charged guanidine units and negatively charged sulfonate groups. Various characterization approaches were used to characterize the developed magnetic polyelectrolyte complex hydrogel (MPEC HG) system. Curcumin (Cur) was employed as a model bioactive agent to examine the drug loading and stimuli-responsive drug release efficiency of the MPEC HG system. Under the combined pH and temperature stimuli conditions (pH 5.0/42 °C), the developed hydrogel system demonstrated great drug loading efficiency (~ 68 %) and enhanced drug release. Furthermore, the MPEC HG system's in vitro cytotoxicity behavior was investigated on a human liver cancer (HepG2) cell line, and the results revealed that the MPEC HG system is biocompatible. As a result, the MPEC HG system might be used for dual pH and temperature stimuli-responsive drug delivery applications in cancer therapy.
Collapse
Affiliation(s)
| | - Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimngalam-635111, Dharmapuri, Tamil Nadu, India
| | - Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Viet Nam.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
12
|
Himiniuc LM, Socolov R, Nica I, Agop M, Volovat C, Ochiuz L, Vasincu D, Rotundu AM, Rosu IA, Ghizdovat V, Volovat SR. Theoretical and Experimental Aspects of Sodium Diclofenac Salt Release from Chitosan-Based Hydrogels and Possible Applications. Gels 2023; 9:gels9050422. [PMID: 37233013 DOI: 10.3390/gels9050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Two formulations based on diclofenac sodium salt encapsulated into a chitosan hydrogel were designed and prepared, and their drug release was investigated by combining in vitro results with mathematical modeling. To understand how the pattern of drug encapsulation impacted its release, the formulations were supramolecularly and morphologically characterized by scanning electron microscopy and polarized light microscopy, respectively. The mechanism of diclofenac release was assessed by using a mathematical model based on the multifractal theory of motion. Various drug-delivery mechanisms, such as Fickian- and non-Fickian-type diffusion, were shown to be fundamental mechanisms. More precisely, in a case of multifractal one-dimensional drug diffusion in a controlled-release polymer-drug system (i.e., in the form of a plane with a certain thickness), a solution that allowed the model's validation through the obtained experimental data was established. The present research reveals possible new perspectives, for example in the prevention of intrauterine adhesions occurring through endometrial inflammation and other pathologies with an inflammatory mechanism background, such as periodontal diseases, and also therapeutic potential beyond the anti-inflammatory action of diclofenac as an anticancer agent, with a role in cell cycle regulation and apoptosis, using this type of drug-delivery system.
Collapse
Affiliation(s)
- Loredana Maria Himiniuc
- Department of Obstetrics and Gynecology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Razvan Socolov
- Department of Obstetrics and Gynecology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina Nica
- Department of Odontology-Periodontology, Fixed Prosthesis, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maricel Agop
- Department of Physics, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Maria Rotundu
- Faculty of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Iulian Alin Rosu
- Faculty of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
13
|
Lam ILJ, Mohd Affandy MA, 'Aqilah NMN, Vonnie JM, Felicia WXL, Rovina K. Physicochemical Characterization and Antimicrobial Analysis of Vegetal Chitosan Extracted from Distinct Forest Fungi Species. Polymers (Basel) 2023; 15:polym15102328. [PMID: 37242902 DOI: 10.3390/polym15102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/28/2023] Open
Abstract
The main goal of this investigation is to conduct a thorough analysis of the physical, chemical, and morphological characteristics of chitosan derived from various forest fungi. Additionally, the study aims to determine the effectiveness of this vegetal chitosan as an antimicrobial agent. In this study, Auricularia auricula-judae, Hericium erinaceus, Pleurotus ostreatus, Tremella fuciformis, and Lentinula edodes were examined. The fungi samples were subjected to a series of rigorous chemical extraction procedures, including demineralization, deproteinization, discoloration, and deacetylation. Subsequently, the chitosan samples were subjected to a comprehensive physicochemical characterization analysis, encompassing Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), degree of deacetylation determination, ash content determination, moisture content determination, and solubility determination. To evaluate the antimicrobial efficacy of the vegetal chitosan samples, two different sampling parameters were employed, namely human hand and banana, to assess their effectiveness in inhibiting microbial growth. Notably, the percentage of chitin and chitosan varied significantly among the distinct fungal species examined. Moreover, EDX spectroscopy confirmed the extraction of chitosan from H. erinaceus, L. edodes, P. ostreatus, and T. fuciformis. The FTIR spectra of all samples revealed a similar absorbance pattern, albeit with varying peak intensities. Furthermore, the XRD patterns for each sample were nearly identical, with the exception of the A. auricula-judae sample, which exhibited sharp peaks at ~37° and ~51°, while the crystallinity index of this same sample was approximately 17% lower than the others. The moisture content results indicated that the L. edodes sample was the least stable, while the P. ostreatus sample was the most stable, in terms of degradation rate. Similarly, the solubility of the samples showed substantial variation among each species, with the H. erinaceus sample displaying the highest solubility among the rest. Lastly, the antimicrobial activity of the chitosan solutions exhibited different efficacies in inhibiting microbial growth of skin microflora and microbes found on the peel of Musa acuminata × balbisiana.
Collapse
Affiliation(s)
- Iversen Luk Jun Lam
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | | | - Nasir Md Nur 'Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
14
|
Does the Freeze-Thaw Technique Affect the Properties of the Alginate/Chitosan Glutamate Gels with Posaconazole as a Model Antifungal Drug? Int J Mol Sci 2022; 23:ijms23126775. [PMID: 35743216 PMCID: PMC9224349 DOI: 10.3390/ijms23126775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels are semi-solid systems with high flexibility, which, due to holding large amounts of water, are similar to natural tissues and are very useful in the field of biomedical applications. Despite the wide range of polymers available to form hydrogels, novel techniques utilized to obtain hydrogels with adequate properties are still being developed. The aim of this study was to evaluate the impact of the freeze–thaw technique on the properties of cryogels based on sodium alginate and chitosan glutamate with posaconazole as a model antifungal substance. The effect of the freezing and thawing process on the physicochemical, rheological, textural and bioadhesive properties of prepared cryogels was examined. Additionally, the antifungal activity against Candida albicans, Candida parapsilosis and Candida krusei of designed formulations was examined. It was shown that the freeze–thaw technique significantly improved viscosity, bioadhesiveness, textural properties and prolonged the in vitro posaconazole release. Moreover, alginate/chitosan glutamate cryogels exhibited higher values of inhibition zone in C. parapsilosis culture than traditional hydrogel formulations.
Collapse
|
15
|
Tsarevsky NV. Special Issue: Functional Polymers and Composites: From Synthesis to Applications (Dedicated to the 80th Anniversary of Professor George S. Georgiev). POLYM INT 2022. [DOI: 10.1002/pi.6425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nicolay V. Tsarevsky
- Department of Chemistry Southern Methodist University 3215 Daniel Avenue Dallas Texas 75275 USA
| |
Collapse
|