1
|
Adhikari B, Gayral M, Herath V, Bedsole CO, Kumar S, Ball H, Atallah O, Shaw B, Pajerowska-Mukhtar KM, Verchot J. bZIP60 and Bax inhibitor 1 contribute IRE1-dependent and independent roles to potexvirus infection. THE NEW PHYTOLOGIST 2024; 243:1172-1189. [PMID: 38853429 DOI: 10.1111/nph.19882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Mathieu Gayral
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, 26, bd Docteur Petitjean-BP 87999, Dijon, Cedex, 21079, France
| | - Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Sandeep Kumar
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Haden Ball
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Osama Atallah
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Brian Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| |
Collapse
|
2
|
Kearly A, Nelson ADL, Skirycz A, Chodasiewicz M. Composition and function of stress granules and P-bodies in plants. Semin Cell Dev Biol 2024; 156:167-175. [PMID: 36464613 DOI: 10.1016/j.semcdb.2022.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Stress Granules (SGs) and Processing-bodies (P-bodies) are biomolecular condensates formed in the cell with the highly conserved purpose of maintaining balance between storage, translation, and degradation of mRNA. This balance is particularly important when cells are exposed to different environmental conditions and adjustments have to be made in order for plants to respond to and tolerate stressful conditions. While P-bodies are constitutively present in the cell, SG formation is a stress-induced event. Typically thought of as protein-RNA aggregates, SGs and P-bodies are formed by a process called liquid-liquid phase separation (LLPS), and both their function and composition are very dynamic. Both foci are known to contain proteins involved in translation, protein folding, and ATPase activity, alluding to their roles in regulating mRNA and protein expression levels. From an RNA perspective, SGs and P-bodies primarily consist of mRNAs, though long non-coding RNAs (lncRNAs) have also been observed, and more focus is now being placed on the specific RNAs associated with these aggregates. Recently, metabolites such as nucleotides and amino acids have been reported in purified plant SGs with implications for the energetic dynamics of these condensates. Thus, even though the field of plant SGs and P-bodies is relatively nascent, significant progress has been made in understanding their composition and biological role in stress responses. In this review, we discuss the most recent discoveries centered around SG and P-body function and composition in plants.
Collapse
Affiliation(s)
- Alyssa Kearly
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | | | | | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Sonia J, Kanodia P, Lozier Z, Miller WA. Ribosome Profiling of Plants. Methods Mol Biol 2024; 2724:139-163. [PMID: 37987904 PMCID: PMC11158114 DOI: 10.1007/978-1-0716-3485-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Translation is a key step in control of gene expression, yet most analyses of global responses to a stimulus focus on transcription and the transcriptome. For RNA viruses in particular, which have no DNA-templated transcriptional control, control of viral and host translation is crucial. Here, we describe the method of ribosome profiling (ribo-seq) in plants, applied to virus infection. Ribo-seq is a deep sequencing technique that reveals the translatome by presenting a snapshot of the positions and relative amounts of translating ribosomes on all mRNAs in the cell. In contrast to RNA-seq, a crude cell extract is first digested with ribonuclease to degrade all mRNA not protected by a translating 80S ribosome. The resulting ribosome-protected fragments (RPFs) are deep sequenced. The number of reads mapping to a specific mRNA compared to the standard RNA-seq reads reveals the translational efficiency of that mRNA. Moreover, the precise positions of ribosome pause sites, previously unknown translatable open reading frames, and noncanonical translation events can be characterized quantitatively using ribo-seq. As this technique requires meticulous technique, here we present detailed step-by-step instructions for cell lysate preparation by flash freezing of samples, nuclease digestion of cell lysate, monosome collection by sucrose cushion ultracentrifugation, size-selective RNA extraction and rRNA depletion, library preparation for sequencing and finally quality control of sequenced data. These experimental methods apply to many plant systems, with minor nuclease digestion modifications depending on the plant tissue and species. This protocol should be valuable for studies of plant virus gene expression, and the global translational response to virus infection, or any other biotic or abiotic stress, by the host plant.
Collapse
Affiliation(s)
- Jahanara Sonia
- Plant Pathology, Entomology & Microbiology Department, Iowa State University, Ames, IA, USA
- Molecular, Cellular & Developmental Biology, Iowa State University, Ames, IA, USA
| | - Pulkit Kanodia
- Plant Pathology, Entomology & Microbiology Department, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA, USA
- , Santa Clara, CA, USA
| | - Zachary Lozier
- Plant Pathology, Entomology & Microbiology Department, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA
| | - W Allen Miller
- Plant Pathology, Entomology & Microbiology Department, Iowa State University, Ames, IA, USA.
- Molecular, Cellular & Developmental Biology, Iowa State University, Ames, IA, USA.
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA, USA.
- Bioinformatics & Computational Biology, Iowa State University, Ames, IA, USA.
- Biochemistry, Biophysics & Molecular Biology Department, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Walker DC, Lozier ZR, Bi R, Kanodia P, Miller WA, Liu P. Variational inference for detecting differential translation in ribosome profiling studies. Front Genet 2023; 14:1178508. [PMID: 37424732 PMCID: PMC10326721 DOI: 10.3389/fgene.2023.1178508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Translational efficiency change is an important mechanism for regulating protein synthesis. Experiments with paired ribosome profiling (Ribo-seq) and mRNA-sequencing (RNA-seq) allow the study of translational efficiency by simultaneously quantifying the abundances of total transcripts and those that are being actively translated. Existing methods for Ribo-seq data analysis either ignore the pairing structure in the experimental design or treat the paired samples as fixed effects instead of random effects. To address these issues, we propose a hierarchical Bayesian generalized linear mixed effects model which incorporates a random effect for the paired samples according to the experimental design. We provide an analytical software tool, "riboVI," that uses a novel variational Bayesian algorithm to fit our model in an efficient way. Simulation studies demonstrate that "riboVI" outperforms existing methods in terms of both ranking differentially translated genes and controlling false discovery rate. We also analyzed data from a real ribosome profiling experiment, which provided new biological insight into virus-host interactions by revealing changes in hormone signaling and regulation of signal transduction not detected by other Ribo-seq data analysis tools.
Collapse
Affiliation(s)
- David C. Walker
- Department of Statistics, Iowa State University, Ames, IA, United States
| | - Zachary R. Lozier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| | - Ran Bi
- Department of Statistics, Iowa State University, Ames, IA, United States
| | - Pulkit Kanodia
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| | - W. Allen Miller
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Herath V, Verchot J. Comprehensive Transcriptome Analysis Reveals Genome-Wide Changes Associated with Endoplasmic Reticulum (ER) Stress in Potato ( Solanum tuberosum L.). Int J Mol Sci 2022; 23:ijms232213795. [PMID: 36430273 PMCID: PMC9696714 DOI: 10.3390/ijms232213795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
We treated potato (Solanum tuberosum L.) plantlets with TM and performed gene expression studies to identify genome-wide changes associated with endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). An extensive network of responses was identified, including chromatin remodeling, transcriptional reprogramming, as well as changes in the structural components of the endomembrane network system. Limited genome-wide changes in alternative RNA splicing patterns of protein-coding transcripts were also discovered. Significant changes in RNA metabolism, components of the translation machinery, as well as factors involved in protein folding and maturation occurred, which included a broader set of genes than expected based on Arabidopsis research. Antioxidant defenses and oxygen metabolic enzymes are differentially regulated, which is expected of cells that may be experiencing oxidative stress or adapting to protect proteins from oxidation. Surges in protein kinase expression indicated early signal transduction events. This study shows early genomic responses including an array of differentially expressed genes that have not been reported in Arabidopsis. These data describe novel ER stress responses in a solanaceous host.
Collapse
Affiliation(s)
- Venura Herath
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA
- Correspondence: ; Tel.: +1-979-568-6369
| |
Collapse
|
6
|
Yang KZ, Zuo CR, Leng YJ, Yue JL, Liu HC, Fan ZB, Xue XY, Dong J, Chen LQ, Le J. The functional specificity of ERECTA-family receptors in Arabidopsis stomatal development is ensured by molecular chaperones in the endoplasmic reticulum. Development 2022; 149:dev200892. [PMID: 36052695 PMCID: PMC10655955 DOI: 10.1242/dev.200892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
Stomata are epidermal pores that control gas exchange between plants and the atmosphere. In Arabidopsis, the ERECTA family (ERECTAf) receptors, including ERECTA, ERECTA-LIKE 1 (ERL1) and ERL2, redundantly play pivotal roles in enforcing the 'one-cell-spacing' rule. Accumulating evidence has demonstrated that the functional specificities of receptors are likely associated with their differential subcellular dynamics. The endoplasmic reticulum (ER)-resident chaperone complex SDF2-ERdj3B-BiP functions in many aspects of plant development. We employed pharmacological treatments combined with cell biological and biochemical approaches to demonstrate that the abundance of ERECTA was reduced in the erdj3b-1 mutant, but the localization and dynamics of ERECTA were not noticeably affected. By contrast, the erdj3b mutation caused the retention of ERL1/ERL2 in the ER. Furthermore, we found that the function of SDF2-ERdj3B-BiP is implicated with the distinct roles of ERECTAf receptors. Our findings establish that the ERECTAf receptor-mediated signaling in stomatal development is ensured by the activities of the ER quality control system, which preferentially maintains the protein abundance of ERECTA and proper subcellular dynamics of ERL1/ERL2, prior to the receptors reaching their destination - the plasma membrane - to execute their functions.
Collapse
Affiliation(s)
- Ke-Zhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chao-Ran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Jun Leng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun-Ling Yue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Chao Liu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Bin Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Yi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Vitale A, Pedrazzini E. StresSeed: The Unfolded Protein Response During Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:869008. [PMID: 35432435 PMCID: PMC9008589 DOI: 10.3389/fpls.2022.869008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
During seed development, the endoplasmic reticulum (ER) takes care of the synthesis and structural maturation of very high amounts of storage proteins in a relatively short time. The ER must thus adjust its extension and machinery to optimize this process. The major signaling mechanism to maintain ER homeostasis is the unfolded protein response (UPR). Both storage proteins that assemble into ER-connected protein bodies and those that are delivered to protein storage vacuoles stimulate the UPR, but its extent and features are specific for the different storage protein classes and even for individual members of each class. Furthermore, evidence exists for anticipatory UPR directly connected to the development of storage seed cells and for selective degradation of certain storage proteins soon after their synthesis, whose signaling details are however still largely unknown. All these events are discussed, also in the light of known features of mammalian UPR.
Collapse
|
8
|
Yu CY, Cho Y, Sharma O, Kanehara K. What's unique? The unfolded protein response in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1268-1276. [PMID: 34849719 DOI: 10.1093/jxb/erab513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The investigation of a phenomenon called the unfolded protein response (UPR) started approximately three decades ago, and we now know that the UPR is involved in a number of cellular events among metazoans, higher plants, and algae. The relevance of the UPR in human diseases featuring protein folding defects, such as Alzheimer's and Huntington's diseases, has drawn much attention to the response in medical research to date. While metazoans and plants share similar molecular mechanisms of the UPR, recent studies shed light on the uniqueness of the plant UPR, with plant-specific protein families appearing to play pivotal roles. Given the considerable emphasis on the original discoveries of key factors in metazoans, this review highlights the uniqueness of the plant UPR based on current knowledge.
Collapse
Affiliation(s)
- Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Oshin Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Howell SH. Evolution of the unfolded protein response in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2625-2635. [PMID: 33840122 DOI: 10.1111/pce.14063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 05/23/2023]
Abstract
The unfolded protein response (UPR) in plants is elicited by endoplasmic reticulum stress, which can be brought about by adverse environmental conditions. The response is mediated by a conserved signalling network composed of two branches - one branch involving inositol requiring enzyme1- basic leucine zipper60 (IRE1-bZIP60) signalling pathway and another branch involving the membrane transcription factors, bZIP17 and -28. The UPR has been reported in Chlamydomonas reinhardtii, a unicellular green alga, which lacks some canonical UPR signalling components found in vascular plants, raising the question whether C. reinhardtii uses other means such as oxidative signalling or Regulated IRE1-Dependent Decay to activate the UPR. In vascular plants, IRE1 splices bZIP60 mRNA in response to endoplasmic reticulum stress by cutting at a site in the RNA that is highly conserved in structure and sequence. Monocots have a single IRE1 gene required for viability in rice, while dicots have two IRE1 genes, IRE1a and -b. Brassicas have a third IRE1 gene, IRE1c, which lacks a lumenal domain, but is required in combination with IRE1b for gametogenesis. Vascular and non-vascular plants upregulate a similar set of genes in response to endoplasmic reticulum stress despite differences in the complexity of their UPR signalling networks.
Collapse
Affiliation(s)
- Stephen H Howell
- Genetics, Development and Cell Biology Department, Plant Sciences Institute, Iowa State University, 1111 WOI Road, Ames, Iowa, USA
| |
Collapse
|
10
|
Li Z, Howell SH. Review: The two faces of IRE1 and their role in protecting plants from stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110758. [PMID: 33487343 DOI: 10.1016/j.plantsci.2020.110758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 05/23/2023]
Abstract
IRE1 is a key factor in the Unfolded Protein Response (UPR) in plants. IRE1 is a single-pass transmembrane protein that has a lumenal domain (LD) and cytoplasmic domain (CD), which perform quite different tasks on different sides of the ER membrane. The LD recognizes the presence of misfolded proteins in the ER lumen. The LDs of IRE1 in different plant species are predicted to fold into β-propeller structures with surfaces for protein-protein interactions. Likewise, the CDs of plant IRE1s have predicted structural interfaces that promote the face-to-face arrangements of IRE1 for transphosphorylation and back-to-back arrangements for RNA splicing. Hence, the structures on the different faces of plant IRE1s have unique features for recognizing problems of protein folding in the ER and transducing that signal to activate the UPR.
Collapse
Affiliation(s)
- Zhaoxia Li
- Plant Sciences Institute, Iowa State University, Ames, Iowa, USA
| | - Stephen H Howell
- Plant Sciences Institute, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
11
|
Ko DK, Brandizzi F. A temporal hierarchy underpins the transcription factor-DNA interactome of the maize UPR. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:254-270. [PMID: 33098715 PMCID: PMC7942231 DOI: 10.1111/tpj.15044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large-scale systems-level analysis of the protein-DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high-throughput enhanced yeast one-hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety of cis-regulatory elements (CREs) in ER stress-responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription-regulatory mechanisms in the stress responses and crop improvement.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Correspondence:
| |
Collapse
|