1
|
Chen L, Chen K, Xi X, Du X, Zou X, Ma Y, Song Y, Luo C, Weining S. The Evolution, Expression Patterns, and Domestication Selection Analysis of the Annexin Gene Family in the Barley Pan-Genome. Int J Mol Sci 2024; 25:3883. [PMID: 38612691 PMCID: PMC11011394 DOI: 10.3390/ijms25073883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Plant annexins constitute a conserved protein family that plays crucial roles in regulating plant growth and development, as well as in responses to both biotic and abiotic stresses. In this study, a total of 144 annexin genes were identified in the barley pan-genome, comprising 12 reference genomes, including cultivated barley, landraces, and wild barley. Their chromosomal locations, physical-chemical characteristics, gene structures, conserved domains, and subcellular localizations were systematically analyzed to reveal the certain differences between wild and cultivated populations. Through a cis-acting element analysis, co-expression network, and large-scale transcriptome analysis, their involvement in growth, development, and responses to various stressors was highlighted. It is worth noting that HvMOREXann5 is only expressed in pistils and anthers, indicating its crucial role in reproductive development. Based on the resequencing data from 282 barley accessions worldwide, genetic variations in thefamily were investigated, and the results showed that 5 out of the 12 identified HvMOREXanns were affected by selection pressure. Genetic diversity and haplotype frequency showed notable reductions between wild and domesticated barley, suggesting that a genetic bottleneck occurred on the annexin family during the barley domestication process. Finally, qRT-PCR analysis confirmed the up-regulation of HvMOREXann7 under drought stress, along with significant differences between wild accessions and varieties. This study provides some insights into the genome organization and genetic characteristics of the annexin gene family in barley at the pan-genome level, which will contribute to better understanding its evolution and function in barley and other crops.
Collapse
Affiliation(s)
- Liqin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F Univesity, Xianyang 712100, China; (L.C.); (K.C.); (X.X.)
| | - Kunxiang Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F Univesity, Xianyang 712100, China; (L.C.); (K.C.); (X.X.)
| | - Xi Xi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F Univesity, Xianyang 712100, China; (L.C.); (K.C.); (X.X.)
| | - Xianghong Du
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.D.); (X.Z.)
| | - Xinyi Zou
- College of Agronomy, Northwest A&F University, Xianyang 712100, China; (X.D.); (X.Z.)
| | - Yujia Ma
- College of Landscape Architecture and Art, Northwest A&F University, Xianyang 712100, China;
| | - Yingying Song
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| | - Changquan Luo
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China;
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F Univesity, Xianyang 712100, China; (L.C.); (K.C.); (X.X.)
| |
Collapse
|
2
|
Mishra A, Pandey VP. CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnol J 2024; 19:e2300298. [PMID: 38403466 DOI: 10.1002/biot.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
World's population is elevating at an alarming rate thus, the rising demands of producing crops with better adaptability to biotic and abiotic stresses, superior nutritional as well as morphological qualities, and generation of high-yielding varieties have led to encourage the development of new plant breeding technologies. The availability and easy accessibility of genome sequences for a number of crop plants as well as the development of various genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has opened up possibilities to develop new varieties of crop plants with superior desirable traits. However, these approaches has limitation of being more expensive as well as having complex steps and time-consuming. The CRISPR/Cas genome editing system has been intensively studied for allowing versatile target-specific modifications of crop genome that fruitfully aid in the generation of novel varieties. It is an advanced and promising technology with the potential to meet hunger needs and contribute to food production for the ever-growing human population. This review summarizes the usage of novel CRISPR/Cas genome editing tool for targeted crop improvement in stress resistance, yield, quality and nutritional traits in the desired crop plants.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
3
|
Jia Y, Gu X, Chai J, Yao X, Cheng S, Liu L, He S, Peng Y, Zhang Q, Zhu Z. Rice OsANN9 Enhances Drought Tolerance through Modulating ROS Scavenging Systems. Int J Mol Sci 2023; 24:17495. [PMID: 38139326 PMCID: PMC10743917 DOI: 10.3390/ijms242417495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Drought is a critical abiotic stress which leads to crop yield and a decrease in quality. Annexins belong to a multi-gene family of calcium- and lipid-binding proteins and play diverse roles in plant growth and development. Herein, we report a rice annexin protein, OsANN9, which in addition to regular annexin repeats and type-II Ca2+ binding sites, also consists of a C2H2-type zinc-finger domain. We found that the expression of OsANN9 was upregulated by polyethylene glycol (PEG) or water-deficient treatment. Moreover, plants that overexpressed OsANN9 had increased survival rates under drought stress, while both OsANN9-RNAi and osann9 mutants showed sensitivity to drought. In addition, the overexpression of OsANN9 increased superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, which regulate reactive oxygen species homeostasis. Collectively, these findings indicate that OsANN9 may function as a positive regulator in response to drought stress by modulating antioxidant accumulation. Interestingly, the setting rates of osann9 mutant rice plants significantly decreased in comparison to wild-type plants, suggesting that OsANN9 might be involved in other molecular mechanisms in the rice seed development stage.
Collapse
Affiliation(s)
- Yangyang Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Jiaxin Chai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Xiaohong Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Shoutao Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Lirui Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Saiya He
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Yizhuo Peng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.J.); (X.G.); (J.C.); (X.Y.); (S.C.); (L.L.); (S.H.); (Y.P.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, Shijiazhuang 050024, China
| |
Collapse
|