1
|
Aragaw TA, Bogale FM, Gessesse A. Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of dye Degradation From Textile Industry Wastewater. Front Physiol 2022; 13:908370. [PMID: 35795652 PMCID: PMC9251311 DOI: 10.3389/fphys.2022.908370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023] Open
Abstract
Release of dye-containing textile wastewater into the environment causes severe pollution with serious consequences on aquatic life. Bioremediation of dyes using thermophilic microorganisms has recently attracted attention over conventional treatment techniques. Thermophiles have the natural ability to survive under extreme environmental conditions, including high dye concentration, because they possess stress response adaptation and regulation mechanisms. Therefore, dye detoxification by thermophiles could offer enormous opportunities for bioremediation at elevated temperatures. In addition, the processes of degradation generate reactive oxygen species (ROS) and subject cells to oxidative stress. However, thermophiles exhibit better adaptation to resist the effects of oxidative stress. Some of the major adaptation mechanisms of thermophiles include macromolecule repair system; enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and non-enzymatic antioxidants like extracellular polymeric substance (EPSs), polyhydroxyalkanoates (PHAs), etc. In addition, different bacteria also possess enzymes that are directly involved in dye degradation such as azoreductase, laccase, and peroxidase. Therefore, through these processes, dyes are first degraded into smaller intermediate products finally releasing products that are non-toxic or of low toxicity. In this review, we discuss the sources of oxidative stress in thermophiles, the adaptive response of thermophiles to redox stress and their roles in dye removal, and the regulation and crosstalk between responses to oxidative stress.
Collapse
Affiliation(s)
- Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- *Correspondence: Tadele Assefa Aragaw,
| | - Fekadu Mazengiaw Bogale
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
2
|
Proteomic perspectives on thermotolerant microbes: an updated review. Mol Biol Rep 2021; 49:629-646. [PMID: 34671903 DOI: 10.1007/s11033-021-06805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Thermotolerant microbes are a group of microorganisms that survive in elevated temperatures. The thermotolerant microbes, which are found in geothermal heat zones, grow at temperatures of or above 45°C. The proteins present in such microbes are optimally active at these elevated temperatures. Hence, therefore, serves as an advantage in various biotechnological applications. In the last few years, scientists have tried to understand the molecular mechanisms behind the maintenance of the structural integrity of the cell and to study the stability of various thermotolerant proteins at extreme temperatures. Proteomic analysis is the solution for this search. Applying novel proteomic tools determines the proteins involved in the thermostability of microbes at elevated temperatures. METHODS Advanced proteomic techniques like Mass spectrometry, nano-LC-MS, protein microarray, ICAT, iTRAQ, and SILAC could enable the screening and identification of novel thermostable proteins. RESULTS This review provides up-to-date details on the protein signature of various thermotolerant microbes analyzed through advanced proteomic tools concerning relevant research articles. The protein complex composition from various thermotolerant microbes cultured at different temperatures, their structural arrangement, and functional efficiency of the protein was reviewed and reported. CONCLUSION This review provides an overview of thermotolerant microbes, their enzymes, and the proteomic tools implemented to characterize them. This article also reviewed a comprehensive view of the current proteomic approaches for protein profiling in thermotolerant microbes.
Collapse
|
3
|
Liang J, Xia L, Oyang L, Lin J, Tan S, Yi P, Han Y, Luo X, Wang H, Tang L, Pan Q, Tian Y, Rao S, Su M, Shi Y, Cao D, Zhou Y, Liao Q. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci 2020; 10:87. [PMID: 32699605 PMCID: PMC7370476 DOI: 10.1186/s13578-020-00446-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Xia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| |
Collapse
|
4
|
Mandelli F, Couger MB, Paixão DAA, Machado CB, Carnielli CM, Aricetti JA, Polikarpov I, Prade R, Caldana C, Paes Leme AF, Mercadante AZ, Riaño-Pachón DM, Squina FM. Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis. Extremophiles 2017; 21:775-788. [DOI: 10.1007/s00792-017-0942-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/29/2017] [Indexed: 12/25/2022]
|
5
|
Zhang B, Qin Y, Han Y, Dong C, Li P, Shang Q. Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1152-1159. [PMID: 27267622 DOI: 10.1016/j.bbapap.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/29/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L. The results show that 39 proteins were alternatively expressed within cells in response to this lipopeptide, which are involved in stress response, carbohydrate, amino acid and nucleotide metabolism, cellular component organization, calcium homeostasis, protein degradation, RNA processing, gene transcription, and others, suggesting that, in addition to inducing cell membrane permeabilization, iturin exhibits antibiotic activities by targeting intracellular molecules. Based on these results, a model of action of bacillomycin L against R. solani hyphal cells was proposed. Our study provides new insight into the antibiotic mechanisms of iturins.
Collapse
Affiliation(s)
- Bao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxuan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100083, China
| | - Yuzhu Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chunjuan Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Qingmao Shang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
6
|
Hou Y, Zheng Z, Xu S, Chen C, Zhou M. Proteomic analysis of Fusarium graminearum treated by the fungicide JS399-19. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:86-92. [PMID: 25149240 DOI: 10.1016/j.pestbp.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/12/2013] [Accepted: 05/12/2013] [Indexed: 06/03/2023]
Abstract
JS399-19 (2-cyano-3-amino-3-phenylancryic acetate), a novel cyanoacrylate fungicide, has powerful inhibition against Fusarium species, especially to Fusarium graminearum. Treated with JS399-19, mycelium of F. graminearum was distorted and swelled. The embranchment increased. In order to investigate the effect of JS399-19 on protein expression of F. graminearum, total protein of F. graminearum cultured in normal condition and that treated with 0.5 μg/mL (EC90 value) JS399-19 were extracted respectively and proteomic analysis was performed using two-dimensional gel electrophoresis. The expression levels of 38 proteins varied quantitatively at least twofold. 33 proteins out of the 38 were successfully identified by MALDI-TOF-MS/MS and MASCOT. According to the classification of physiological functions from Conserved Domain Database analysis, 19, 5, 2, 3, 2 and 2 proteins were respectively associated with metabolism, regulation, motility, defense, signal transduction, and unknown function, which indicated that energy metabolism, the synthesis and transport of proteins and DNA of F. graminearum were inhibited by JS399-19 in different degrees. The expression levels of the genes were further confirmed by quantitative real-time PCR analyses. This study represents the first proteomic analysis of F. graminearum treated by JS399-19 and will provide some useful information to find the mode of action of the fungicide against F. graminearum.
Collapse
Affiliation(s)
- Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China; Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China.
| | - Zhitian Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China; Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Shu Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China; Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China; Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China; Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China.
| |
Collapse
|
7
|
Proteomics of early and late cold shock stress on thermophilic bacterium, Thermus sp. GH5. J Proteomics 2011; 74:2100-11. [DOI: 10.1016/j.jprot.2011.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022]
|
8
|
Tongsima W, Tongsima S, Palittapongarnpim P. Outlook on Thailand's genomics and computational biology research and development. PLoS Comput Biol 2008; 4:e1000115. [PMID: 18654621 PMCID: PMC2446437 DOI: 10.1371/journal.pcbi.1000115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wannipha Tongsima
- National Science and Technology Development Agency (NSTDA), Pathumtani, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, Thailand
| | - Prasit Palittapongarnpim
- National Science and Technology Development Agency (NSTDA), Pathumtani, Thailand
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
9
|
Okochi M, Kanie K, Kurimoto M, Yohda M, Honda H. Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance. Appl Microbiol Biotechnol 2008; 79:443-9. [PMID: 18443786 DOI: 10.1007/s00253-008-1450-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/06/2008] [Accepted: 03/08/2008] [Indexed: 11/26/2022]
Abstract
Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.
Collapse
Affiliation(s)
- Mina Okochi
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
10
|
Baweja RB, Zaman MS, Mattoo AR, Sharma K, Tripathi V, Aggarwal A, Dubey GP, Kurupati RK, Ganguli M, Chaudhury NK, Sen S, Das TK, Gade WN, Singh Y. Properties of Bacillus anthracis spores prepared under various environmental conditions. Arch Microbiol 2007; 189:71-9. [PMID: 17713759 DOI: 10.1007/s00203-007-0295-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 07/28/2007] [Accepted: 08/04/2007] [Indexed: 01/23/2023]
Abstract
Bacillus anthracis makes highly stable, heat-resistant spores which remain viable for decades. Effect of various stress conditions on sporulation in B. anthracis was studied in nutrient-deprived and sporulation medium adjusted to various pH and temperatures. The results revealed that sporulation efficiency was dependent on conditions prevailing during sporulation. Sporulation occurred earlier in culture sporulating at alkaline pH or in PBS than control. Spores formed in PBS were highly sensitive towards spore denaturants whereas, those formed at 45 degrees C were highly resistant. The decimal reduction time (D-10 time) of the spores formed at 45 degrees C by wet heat, 2 M HCl, 2 M NaOH and 2 M H(2)O(2) was higher than the respective D-10 time for the spores formed in PBS. The dipicolinic acid (DPA) content and germination efficiency was highest in spores formed at 45 degrees C. Since DPA is related to spore sensitivity towards heat and chemicals, the increased DPA content of spores prepared at 45 degrees C may be responsible for increased resistance to wet heat and other denaturants. The size of spores formed at 45 degrees C was smallest amongst all. The study reveals that temperature, pH and nutrient availability during sporulation affect properties of B. anthracis spores.
Collapse
Affiliation(s)
- Renu B Baweja
- Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kang HJ, Heo DH, Choi SW, Kim KN, Shim J, Kim CW, Sung HC, Yun CW. Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress. Biochem Biophys Res Commun 2007; 358:743-50. [PMID: 17512907 DOI: 10.1016/j.bbrc.2007.04.184] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 11/15/2022]
Abstract
Psychrophiles have been known as efficient organism to degrade organic solvent. To investigate the mechanism of solvent stress and identify the factors that affect the solvent stress in psychrophiles, we selected Bacillus psychrosaccharolyticus one of the psychrophiles and two-dimensional gel electrophoresis was performed. Among the protein spots analyzed by 2-DE, five spots induced in 3% IPA stress conditions were identified by MS/MS, and one of these spots was identified as a Hsp33 family. The Hsp33 protein sequence of B. psychrosaccharolyticus exhibited a high similarity with the corresponding proteins of other bacteria. The Hsp33 protein of B. psychrosaccharolyticus has a highly conserved zinc-binding domain (CXCX, CXXC) that includes four cysteine residues in the C-terminus. In addition, the transcriptional induction of the HSP33 of B. psychrosaccharolyticus was confirmed by Northern blot analysis, and formation of free thiol linkage was induced under stress conditions such as exposure to solvents, heat-shock, and oxidative stress. Furthermore, over-expressed strains of HSP33 of B. psychrosaccharolyticus in Escherichia coli improved stress tolerance to the organic solvent when compared with the wild-type. These data suggest that the solvent stress condition was similar to heat-shock or oxidative stress, especially through the triggering of induction and activation of a redox-regulatory chaperone, Hsp33, and Hsp33 plays a critical role in the tolerance to stress.
Collapse
Affiliation(s)
- Hyun-Jun Kang
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chaudhary A, Pechan T, Willett KL. Differential protein expression of peroxiredoxin I and II by benzo(a)pyrene and quercetin treatment in 22Rv1 and PrEC prostate cell lines. Toxicol Appl Pharmacol 2007; 220:197-210. [PMID: 17292933 DOI: 10.1016/j.taap.2006.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 12/21/2006] [Accepted: 12/27/2006] [Indexed: 11/21/2022]
Abstract
Mechanisms of benzo(a)pyrene (BaP)-mediated toxicity and chemopreventative potential of quercetin in prostate cancer are poorly understood. Two-dimensional gel electrophoresis was used to map the differences in protein expression in BaP (1 microM)- and quercetin (5 microM)-treated 22Rv1 human prostate cancer cells. As compared to DMSO, 26 proteins in BaP and 41 proteins in quercetin were found to be differentially expressed (+/-2-fold). Western blots confirmed that BaP increased peroxiredoxin (Prx) Prx I and decreased Prx II in 22Rv1 cells. Similar results were found in PrEC normal prostate epithelial cells. Quercetin (up to 10 microM) upregulated Prx II without altering Prx I levels in 22Rv1 cells whereas in PrEC cells, it did not alter the constitutive protein expression of Prx I or II. The lack of quercetin-mediated changes in Prx expression suggests that quercetin does not interfere with H(2)O(2) levels, and thus may have no deleterious effect in normal prostate cells. Quercetin inhibited both BaP-mediated effects on Prx I and II in 22Rv1 cells. In PrEC cells, quercetin inhibited BaP-mediated upregulation of Prx I and had tendency to neutralize BaP-mediated downregulation of Prx II. Quercetin also inhibited BaP-induced concentrations of reactive oxygen species in both 22Rv1 and PrEC cells. These results suggest that Prx I and II may be involved in BaP-mediated toxicity and the potential chemopreventative mechanisms of quercetin.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, The University of Mississippi, 315 Faser Hall, Box 1848, University, MS 38677, USA
| | | | | |
Collapse
|
13
|
Hsieh JF, Chen ST. Comparative studies on the analysis of glycoproteins and lipopolysaccharides by the gel-based microchip and SDS-PAGE. BIOMICROFLUIDICS 2007; 1:14102. [PMID: 19693351 PMCID: PMC2709951 DOI: 10.1063/1.2399892] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 10/26/2006] [Indexed: 05/28/2023]
Abstract
In order to determine time efficiency between the gel-based microchip (LabChip) and traditional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), glycoproteins and lipopolysaccharides were analyzed in this study. After 90 min of gel electrophoresis, glycoproteins (bovine serum albumin, lysozyme, ovalbumin, and apo-transferrin) and fluorescent lipopolysaccharides (LPS-O and LPS-S) under reducing conditions could be analyzed by SDS-PAGE, and it would take (including imaging and analyzing) more than 3 h. The same sample could also be assayed on a Bioanalyzer in combination with the LabChip, and it would only need 30 min from start to finish. The assay software automatically calculated the size and concentration of each separated peak and displayed the results in real time, thus eliminating time-consuming procedures such as imaging and analyzing. Compared to the traditional reducing SDS-PAGE, LabChip has a faster turnaround time.
Collapse
Affiliation(s)
- Jung-Feng Hsieh
- Institute of Biological Chemistry and the Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | |
Collapse
|
14
|
Qin G, Tian S, Chan Z, Li B. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: analysis based on proteomics approach. Mol Cell Proteomics 2006; 6:425-38. [PMID: 17194899 DOI: 10.1074/mcp.m600179-mcp200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillium expansum, a widespread filamentous fungus, is a major causative agent of fruit decay and may lead to the production of mycotoxin that causes harmful effects on human health. In this study, we compared the cellular and extracellular proteomes of P. expansum in the absence and presence of borate, which affects the virulence of the fungal pathogen. The differentially expressed proteins were identified using ESI-Q-TOF-MS/MS. Several proteins related to stress response (glutathione S-transferase, catalase, and heat shock protein 60) and basic metabolism (glyceraldehyde-3-phosphate dehydrogenase, dihydroxy-acid dehydratase, and arginase) were identified in the cellular proteome. Catalase and glutathione S-transferase, the two antioxidant enzymes, exhibited reduced levels of expression upon exposure to borate. Because catalase and glutathione S-transferase are related to oxidative stress response, we further investigated the reactive oxygen species (ROS) levels and oxidative protein carbonylation (damaged proteins) in P. expansum. Higher amounts of ROS and carbonylated proteins were observed after borate treatment, indicating that catalase and glutathione S-transferase are important in scavenging ROS and protecting cellular proteins from oxidative damage. Additionally to find secretory proteins that contribute to the virulence, we studied the extracellular proteome of P. expansum under stress condition with reduced virulence. The expression of three protein spots were repressed in the presence of borate and identified as the same hydrolytic enzyme, polygalacturonase.
Collapse
Affiliation(s)
- Guozheng Qin
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|