1
|
Choi KM, Kim JW, Kong HJ, Kim YO, Kim KH, Park CI. Molecular characterization, expression profiling, and functional analysis of prohibitin 1 in red seabream, Pagrus major. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109770. [PMID: 39025166 DOI: 10.1016/j.fsi.2024.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Prohibitin 1 (PHB1) is ubiquitously expressed in multiple compartments within cells and is involved in the cell cycle, cell signaling, apoptosis, transcriptional regulation, and mitochondrial biogenesis at the cellular level and in the inflammation-associated and immunological functions of B and T lymphocytes. PHB1 is an important protein that performs antioxidant regulation and immune functions inside and outside cells but has not been sufficiently studied in teleost fish. Our study aimed to elucidate the functional properties and gain new insights into the biological processes and immune system of red seabream (Pagrus major), a commercially important fish cultured in South Korea and East Asia. PHB1 mRNA was most abundantly expressed in the head kidney of healthy red seabream, and significant changes in its expression were observed after artificial infection with bacteria and viruses. On analysis, reporter gene was also significantly upregulated by polyinosinic-polycytidylic acid, lipopolysaccharides, and hydrogen peroxide. Consequent to the functional characterization of PHB1 in cells via recombinant protein preparation, the activity of leukocytes was enhanced and the reactive oxygen species-induced stress in red blood cells was reduced. The results reveal the functional characteristics of PHB1 and provide new insights into the biological processes and immune system of P. major, with beneficial implications in the study of stress responses.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea; Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Kyung-Ho Kim
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
2
|
Domoto H, Iwaya K, Ikomi F, Matsuo H, Tadano Y, Fujii S, Tachi K, Itoh Y, Sato M, Inoue K, Shinomiya N. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia. PLoS One 2016; 11:e0163804. [PMID: 27741252 PMCID: PMC5065185 DOI: 10.1371/journal.pone.0163804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023] Open
Abstract
Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD.
Collapse
Affiliation(s)
- Hideharu Domoto
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Keiichi Iwaya
- Department of Pathology, SASAKI Institute, Kyoundo Hospital, Chiyoda, Tokyo, Japan
- * E-mail:
| | - Fumitaka Ikomi
- National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yutaka Tadano
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Shigenori Fujii
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Kazuyoshi Tachi
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | | | - Michiya Sato
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Kimitoshi Inoue
- Research Division, Maritime Self-Defense Force Undersea Medical Center, Yokosuka, Kanagawa, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
3
|
Abstract
Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.
Collapse
Affiliation(s)
- Ya-Ting Peng
- Department of Respiratory Medicine, Respiratory Disease Research Institute, Second XiangYa Hospital of Central South University, Changsha, 410011, People's Republic of China
| | | | | | | |
Collapse
|
4
|
|
5
|
The proteome of Hypobaric Induced Hypoxic Lung: Insights from Temporal Proteomic Profiling for Biomarker Discovery. Sci Rep 2015; 5:10681. [PMID: 26022216 PMCID: PMC4448130 DOI: 10.1038/srep10681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/17/2015] [Indexed: 11/08/2022] Open
Abstract
Exposure to high altitude induces physiological responses due to hypoxia. Lungs being at the first level to face the alterations in oxygen levels are critical to counter and balance these changes. Studies have been done analysing pulmonary proteome alterations in response to exposure to hypobaric hypoxia. However, such studies have reported the alterations at specific time points and do not reflect the gradual proteomic changes. These studies also identify the various biochemical pathways and responses induced after immediate exposure and the resolution of these effects in challenge to hypobaric hypoxia. In the present study, using 2-DE/MS approach, we attempt to resolve these shortcomings by analysing the proteome alterations in lungs in response to different durations of exposure to hypobaric hypoxia. Our study thus highlights the gradual and dynamic changes in pulmonary proteome following hypobaric hypoxia. For the first time, we also report the possible consideration of SULT1A1, as a biomarker for the diagnosis of high altitude pulmonary edema (HAPE). Higher SULT1A1 levels were observed in rats as well as in humans exposed to high altitude, when compared to sea-level controls. This study can thus form the basis for identifying biomarkers for diagnostic and prognostic purposes in responses to hypobaric hypoxia.
Collapse
|
6
|
Li T, Wang Y, Gao Y, Li Q. Identification and characterisation of the anti-oxidative stress properties of the lamprey prohibitin 2 gene. FISH & SHELLFISH IMMUNOLOGY 2015; 42:447-456. [PMID: 25463290 DOI: 10.1016/j.fsi.2014.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
The highly conserved protein prohibitin 2 (PHB2) has been implicated as a cell-surface receptor in the regulation of proliferation, apoptosis, transcription, and mitochondrial protein folding. In the present study, we identified a Lampetra morii homologue of PHB2, Lm-PHB2, showing greater than 61.8% sequence identity with its homologues. Phylogenetic analysis indicated that the position of Lm-PHB2 is consistent with lamprey phylogeny. Expression of the Lm-PHB2 protein was nearly equivalent in the heart, liver, kidneys, intestines, and muscles of normal lampreys. However, the Lm-PHB2 protein was down-regulated in the myocardia of lampreys challenged for 5 days with adriamycin (Adr), followed by a significant up-regulation 10 days after treatment. In vitro, recombinant Lm-PHB2 (rLm-PHB2) protein could significantly enhance the H2O2-induced oxidative stress tolerance in Chang liver (CHL) cells. Further mechanism studies indicated that the nucleus-to-mitochondria translocation of Lm-PHB2 was closely involved in the oxidative stress protection. Our results suggests that the strategies to modulate Lm-PHB2 levels may constitute a novel therapeutic approach for myocardial injury and liver inflammatory diseases, conditions in which oxidative stress plays a critical role in tissue injury and inflammation.
Collapse
Affiliation(s)
- Tiesong Li
- Life Science College of Liaoning Normal University, Dalian 116029, China; Lamprey Research Centre, Liaoning Normal University, Dalian 116029, China.
| | - Ying Wang
- Life Science College of Liaoning Normal University, Dalian 116029, China; Lamprey Research Centre, Liaoning Normal University, Dalian 116029, China
| | - Yang Gao
- Life Science College of Liaoning Normal University, Dalian 116029, China; Lamprey Research Centre, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- Life Science College of Liaoning Normal University, Dalian 116029, China; Lamprey Research Centre, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
7
|
Chowdhury I, Thompson WE, Thomas K. Prohibitins role in cellular survival through Ras-Raf-MEK-ERK pathway. J Cell Physiol 2014; 229:998-1004. [PMID: 24347342 DOI: 10.1002/jcp.24531] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/11/2013] [Indexed: 12/15/2022]
Abstract
Prohibitins are members of a highly conserved protein family containing the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain (also known as the prohibitin [PHB] domain) found in unicellular eukaryotes, fungi, plants, animals, and humans. Two highly homologous members of prohibitins expressed in eukaryotes are prohibitin (PHB; B-cell receptor associated protein-32, BAP-32) and prohibitin 2/repressor of estrogen receptor activity (PHB2, REA, BAP-37). Both PHB and REA/PHB2 are ubiquitously expressed and are present in multiple cellular compartments including the mitochondria, nucleus, and the plasma membrane. Multiple functions have been attributed to the mitochondrial and nuclear PHB and PHB2/REA including cellular differentiation, anti-proliferation, and morphogenesis. One of the major functions of the prohibitins are in maintaining the functional integrity of the mitochondria and protecting cells from various stresses. In the present review, we focus on the recent research developments indicating that PHB and PHB2/REA are involved in maintaining cellular survival through the Ras-Raf-MEK-Erk pathway. Understanding the molecular mechanisms by which the intracellular signaling pathways utilize prohibitins in governing cellular survival is likely to result in development of therapeutic strategies to overcome various human pathological disorders such as diabetes, obesity, neurological diseases, inflammatory bowel disease, and cancer.
Collapse
Affiliation(s)
- Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia; Reproductive Science Research Program, Morehouse School of Medicine, Atlanta, Georgia
| | | | | |
Collapse
|
8
|
Han J, Yu C, Souza RF, Theiss AL. Prohibitin 1 modulates mitochondrial function of Stat3. Cell Signal 2014; 26:2086-95. [PMID: 24975845 DOI: 10.1016/j.cellsig.2014.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/19/2014] [Indexed: 02/08/2023]
Abstract
Mitochondrial dysfunction in intestinal epithelial cells (IEC) is thought to precede the onset of inflammatory bowel diseases (IBD). Expression of Prohibitin 1 (PHB), a mitochondrial protein required for optimal electron transport chain (ETC) activity, is decreased in mucosal biopsies during active and inactive IBD. In addition to its activities as a transcription factor, Signal Transducer and Activator of Transcription 3 (Stat3) resides in the mitochondria of cells where phosphorylation at S727 is required for optimal ETC activity and protects against stress-induced mitochondrial dysfunction. Here, we show that PHB overexpression protects against mitochondrial stress and apoptosis of cultured IECs induced by TNFα, which is a pro-inflammatory cytokine involved in IBD pathogenesis. Expression of pS727-Stat3 dominant negative eliminates protection by PHB against TNFα-induced mitochondrial stress and apoptosis. PHB interacts with pS727-Stat3 in the mitochondria of cultured IECs and in colonic epithelium from wild-type mice. Our data suggest a protective role of PHB that is dependent on pS727-Stat3 to prevent mitochondrial dysfunction in IECs. Reduced levels of PHB during IBD may be an underlying factor promoting mitochondrial dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
- Jie Han
- Department of Internal Medicine, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Chunhua Yu
- Department of Medicine, Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rhonda F Souza
- Department of Medicine, Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Arianne L Theiss
- Department of Internal Medicine, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States.
| |
Collapse
|
9
|
Thuaud F, Ribeiro N, Nebigil CG, Désaubry L. Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. ACTA ACUST UNITED AC 2013; 20:316-31. [PMID: 23521790 PMCID: PMC7111013 DOI: 10.1016/j.chembiol.2013.02.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Prohibitins (PHBs) are scaffold proteins that modulate many signaling pathways controlling cell survival, metabolism, and inflammation. Several drugs that target PHBs have been identified and evaluated for various clinical applications. Preclinical and clinical studies indicate that these PHB ligands may be useful in oncology, cardiology, and neurology, as well as against obesity. This review covers the physiological role of PHBs in health and diseases and current developments concerning PHB ligands.
Collapse
Affiliation(s)
- Frédéric Thuaud
- Therapeutic Innovation Laboratory UMR 7200, CNRS/Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch Cedex, France
| | | | | | | |
Collapse
|
10
|
Tanaka T, Kuramitsu Y, Wang Y, Baron B, Kitagawa T, Tokuda K, Hirakawa K, Yashiro M, Naito S, Nakamura K. Glyoxalase 1 as a candidate for indicating the metastatic potential of SN12C human renal cell carcinoma cell clones. Oncol Rep 2013; 30:2365-70. [PMID: 23982595 DOI: 10.3892/or.2013.2699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/16/2013] [Indexed: 11/06/2022] Open
Abstract
Three clones with differential metastatic potential were established from the parental SN12C human renal cell carcinoma (HRCC). We previously reported that in the two high metastatic SN12C clones, two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH‑L1) showed decreased expression by using two-dimensional electrophoresis (2‑DE) covering a pH range (pH 3.0‑10.0) followed by liquid chromatography‑tandem mass spectrometry. However, in the case of the low metastatic clone, the spot volume for UCH‑L1 was almost the same as for the parental SN12C. In the present study, we found one protein spot which was correlated with the metastatic potential of SN12C clones by using 2‑DE over a narrow pH range (pH 4.0‑7.0). The protein glyoxalase 1 (GLO1) appeared to be directly proportional to the metastatic potential of the SN12C clones. GLO1 was the only protein which consistently varied according to the metastatic potentials of SN12C clones. GLO1 was increased in high metastatic cell lines by western blot analysis. These findings suggest that GLO1 is associated with the metastatic potential of SN12C HRCC clones. We expanded our experimental range to include clones of scirrhous gastric cancer cell lines (OCUM‑2M, OCUM‑2D and OCUM‑2MLN) and similar results were obtained, thereby further strengthening our original findings.
Collapse
Affiliation(s)
- Toshiyuki Tanaka
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang Q, Zhang J, Peng S, Tian M, Chen J, Shen H. Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): A proteomic study. J Appl Toxicol 2013; 34:675-87. [DOI: 10.1002/jat.2910] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/21/2013] [Accepted: 06/12/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen 361021 People's Republic of China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen 361021 People's Republic of China
| | - Siyuan Peng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen 361021 People's Republic of China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen 361021 People's Republic of China
| | - Jinsheng Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen 361021 People's Republic of China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen 361021 People's Republic of China
| |
Collapse
|
12
|
Kathiria AS, Butcher MA, Hansen JM, Theiss AL. Nrf2 is not required for epithelial prohibitin-dependent attenuation of experimental colitis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G885-96. [PMID: 23494124 PMCID: PMC3652068 DOI: 10.1152/ajpgi.00327.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease is associated with increased reactive oxygen species (ROS) and decreased antioxidant response in the intestinal mucosa. Expression of the mitochondrial protein prohibitin (PHB) is also decreased during intestinal inflammation. Our previous study showed that genetic restoration of colonic epithelial PHB expression [villin-PHB transgenic (PHB Tg) mice] attenuated dextran sodium sulfate (DSS)-induced colitis/oxidative stress and sustained expression of colonic nuclear factor erythroid 2-related factor 2 (Nrf2), a cytoprotective transcription factor. This study investigated the role of Nrf2 in mediating PHB-induced protection against colitis and expression of the antioxidant response element (ARE)-regulated antioxidant genes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1). PHB-transfected Caco-2-BBE human intestinal epithelial cells maintained increased ARE activation and decreased intracellular ROS levels compared with control vector-transfected cells during Nrf2 knockdown by small interfering RNA. Treatment with the ERK inhibitor PD-98059 decreased PHB-induced ARE activation, suggesting that ERK constitutes a significant portion of PHB-mediated ARE activation in Caco-2-BBE cells. PHB Tg, Nrf2(-/-), and PHB Tg/Nrf2(-/-) mice were treated with DSS or 2,4,6-trinitrobenzene sulfonic acid (TNBS), and inflammation and expression of HO-1 and NQO-1 were assessed. PHB Tg/Nrf2(-/-) mice mimicked PHB Tg mice, with attenuated DSS- or TNBS-induced colitis and induction of colonic HO-1 and NQO-1 expression, despite deletion of Nrf2. PHB Tg/Nrf2(-/-) mice exhibited increased activation of ERK during colitis. Our results suggest that maintaining expression of intestinal epithelial cell PHB, which is decreased during colitis, reduces the severity of inflammation and increases colonic levels of the antioxidants HO-1 and NQO-1 via a mechanism independent of Nrf2.
Collapse
Affiliation(s)
- Arwa S. Kathiria
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| | - Mackenzie A. Butcher
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| | - Jason M. Hansen
- 2Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory School of Medicine, Emory University, Atlanta, Georgia; and ,3Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Arianne L. Theiss
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| |
Collapse
|
13
|
Konsavage WM, Umstead TM, Wu Y, Phelps DS, Shenberger JS. Hyperoxia-induced alterations in the pulmonary proteome of juvenile rats. Exp Lung Res 2013; 39:107-17. [DOI: 10.3109/01902148.2013.763871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Downregulation of lung mitochondrial prohibitin in COPD. Respir Med 2012; 106:954-61. [DOI: 10.1016/j.rmed.2012.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/20/2022]
|
15
|
Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS One 2012; 7:e31231. [PMID: 22363587 PMCID: PMC3281932 DOI: 10.1371/journal.pone.0031231] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023] Open
Abstract
Introduction Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα), both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB), which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells. Methods We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine. Results TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability. Conclusions Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells susceptible to mitochondrial damage and cytotoxicity. Repletion of PHB may represent a therapeutic approach to combat oxidant and cytokine-induced mitochondrial damage in diseases such as inflammatory bowel disease.
Collapse
|
16
|
Theiss AL, Sitaraman SV. The role and therapeutic potential of prohibitin in disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1137-43. [PMID: 21296110 DOI: 10.1016/j.bbamcr.2011.01.033] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 12/12/2022]
Abstract
Prohibitin 1 (PHB1), a pleiotropic protein in the cell, has been implicated in the regulation of proliferation, apoptosis, transcription, mitochondrial protein folding, and as a cell-surface receptor. This diverse array of functions of PHB1 is attributed to the cell type studied and its subcellular localization. This review discusses recent data that indicate a diverse role of PHB1 in disease pathogenesis and suggest that targeting PHB1 may be a potential therapeutic option for treatment of diseases including cancer, inflammatory bowel disease, insulin resistance/type 2 diabetes, and obesity. These diseases are associated with increased oxidative stress and mitochondrial dysfunction and therefore, the role of PHB1 in both responses will also be discussed.
Collapse
Affiliation(s)
- Arianne L Theiss
- Department of Internal Medicine, Baylor University Medical Center, Dallas, TX 75246, USA.
| | | |
Collapse
|
17
|
Lee H, Arnouk H, Sripathi S, Chen P, Zhang R, Bartoli M, Hunt RC, Hrushesky WJM, Chung H, Lee SH, Jahng WJ. Prohibitin as an oxidative stress biomarker in the eye. Int J Biol Macromol 2010; 47:685-90. [PMID: 20832420 DOI: 10.1016/j.ijbiomac.2010.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/29/2010] [Accepted: 08/30/2010] [Indexed: 02/06/2023]
Abstract
Identification of biomarker proteins in the retina and retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes.
Collapse
Affiliation(s)
- Hyunju Lee
- Department of Ophthalmology, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sarkar P, Hayes BE. Proteomic profiling of rat lung epithelial cells induced by acrolein. Life Sci 2009; 85:188-95. [PMID: 19490921 DOI: 10.1016/j.lfs.2009.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/09/2009] [Accepted: 05/14/2009] [Indexed: 01/11/2023]
Abstract
AIMS Acrolein is a highly toxic unsaturated aldehyde and is also an endogenous byproduct produced from lipid peroxidation. It can be formed from the breakdown of certain pollutants in outdoor air or from burning tobacco or gasoline. Inhalation and dermal exposure to acrolein are extremely toxic to human tissue. Although it is known that acrolein is toxic to lung tissue, no studies have attempted to address the changes induced by acrolein on a global scale. MAIN METHODS In the present study we have attempted to address the changes in global protein expression induced by acrolein using proteomics analysis in rat lung epithelial cells. KEY FINDINGS Our analysis reveals a comprehensive profiling of the proteins that includes a heterogeneous class of proteins and this compels one to consider that the toxic response to acrolein is very complex. There were 34 proteins that showed changes between the control cells and after acrolein treatment. The expression of 18 proteins was increased and the expression of 16 proteins was decreased following exposure to acrolein. We have further validated two differentially expressed proteins namely annexin II (ANXII) and prohibitin (PHB) in lung epithelial cells treated with acrolein. SIGNIFICANCE Based on the results of the overall proteomic analysis, acrolein appears to induce changes in a diverse range of proteins suggesting a complex mechanism of acrolein-induced toxicity in lung epithelial cells.
Collapse
Affiliation(s)
- Poonam Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | | |
Collapse
|
19
|
Tanaka T, Kuramitsu Y, Fujimoto M, Naito S, Oka M, Nakamura K. Downregulation of two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 correlates with high metastatic potentials of human SN12C renal cell carcinoma cell clones. Electrophoresis 2008; 29:2651-9. [PMID: 18494032 DOI: 10.1002/elps.200700847] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proteomic differential display analysis was performed on human renal cell carcinoma cell SN12C clones having different metastatic potentials by using 2-DE and LC-MS/MS. The SN12C cell clones were SN12C parent cell line, SN12C-clone 2, SN12C-clone 4, and SN12C-PM6. The SN12C parent cell line was established from an HRCC surgical specimen. SN12C-clone 4 has lower, and SN12C-clone 2 and SN12C-PM6 have higher metastatic potential than SN12C parent cells. We found eight protein spots whose expression level was different between low metastatic clones and high metastatic clones. The protein expression of three appeared to be higher in high metastatic clones than low metastatic clones, and that of other five protein spots appeared to be lower in high metastatic clones than low metastatic clones. These spots were selected, digested and analyzed by LC-MS/MS analysis, and they were identified by peptide sequencing tag. In high metastatic potential clones, two isoforms of ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1) were downregulated. These results suggest that UCH-L1 expression seems to be associated with the metastatic potential of HRCC SN12C cell clones.
Collapse
Affiliation(s)
- Toshiyuki Tanaka
- Department of Digestive Surgery and Surgical Oncology Department of Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Theiss AL, Idell RD, Srinivasan S, Klapproth JM, Jones DP, Merlin D, Sitaraman SV. Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J 2006; 21:197-206. [PMID: 17135366 DOI: 10.1096/fj.06-6801com] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Prohibitin (PHB) is an evolutionarily conserved and ubiquitously expressed protein whose expression or function in intestinal diseases is not known. In this study, we examined the expression and role of PHB in oxidative stress associated with inflammatory bowel disease. Our results show that PHB primarily localizes to the mitochondria in intestinal epithelial cells. Its expression is down-regulated during active human Crohn's disease, experimental colitis in vivo, and oxidative stress in vitro. PHB overexpression increases the expression of glutathione-S-transferase pi and protects from oxidant-induced depletion of glutathione. Finally, PHB overexpression decreases accumulation of reactive oxygen metabolites, as well as increased permeability induced by oxidative stress in intestinal epithelial cells. Together, these results suggest that PHB constitutes a previously unrecognized cellular defense against oxidant injury. Thus, strategies to modulate PHB levels may constitute a novel therapeutic approach for intestinal inflammatory diseases, wherein oxidative stress plays a critical role in tissue injury and inflammation.
Collapse
Affiliation(s)
- Arianne L Theiss
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|