1
|
Wang Z. Mechanisms of the synergistic lung tumorigenic effect of arsenic and benzo(a)pyrene combined- exposure. Semin Cancer Biol 2021; 76:156-162. [PMID: 33971262 PMCID: PMC9000133 DOI: 10.1016/j.semcancer.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Humans are often exposed to mixtures of environmental pollutants especially environmental chemical carcinogens, representing a significant environmental health issue. However, our understanding on the carcinogenic effects and mechanisms of environmental carcinogen mixture exposures is limited and mostly relies on the findings from studying individual chemical carcinogens. Both arsenic and benzo(a)pyrene (BaP) are among the most common environmental carcinogens causing lung cancer and other types of cancer in humans. Millions of people are exposed to arsenic via consuming arsenic-contaminated drinking water and even more people are exposed to BaP via cigarette smoking and consuming BaP-contaminated food. Thus arsenic and BaP combined-exposure in humans is common. Previous epidemiology studies indicated that arsenic-exposed people who were cigarette smokers had significantly higher lung cancer risk than those who were non-smokers. Since BaP is one of the major carcinogens in cigarette smoke, it has been speculated that arsenic and BaP combined-exposure may play important roles in the increased lung cancer risk observed in arsenic-exposed cigarette smokers. In this review, we summarize important findings and inconsistencies about the co-carcinogenic effects and underlying mechanisms of arsenic and BaP combined-exposure and propose new areas for future studies. A clear understanding on the mechanism of co-carcinogenic effects of arsenic and BaP combined exposure may identify novel targets to more efficiently treat and prevent lung cancer resulting from arsenic and BaP combined-exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44109, USA.
| |
Collapse
|
2
|
El-Ghiaty MA, El-Kadi AO. Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI JOURNAL 2021; 20:1184-1242. [PMID: 34512225 PMCID: PMC8419240 DOI: 10.17179/excli2021-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate (iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different physiological organ systems, through understanding its behavior in the human body that leads to homeostatic derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the sophisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic species with a detailed description of the different environmental sources as well as the possible routes of human exposure to these species. We also summarize the reported findings of experimental investigations evaluating the influence of various arsenicals on different members of CYP superfamily using human-based models.
Collapse
Affiliation(s)
- Mahmoud A. El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Wang Y, Li L, Hao M, Fu D, Chen J, Zhou C, Fu J, Yao B, Chang B, Zhao P. Label-free quantitative proteomic analysis identifies the oncogenic role of FOXA1 in BaP-transformed 16HBE cells. Toxicol Appl Pharmacol 2020; 403:115160. [DOI: 10.1016/j.taap.2020.115160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 01/03/2023]
|
4
|
Chen H, Lee LS, Li G, Tsao SW, Chiu JF. Upregulation of glycolysis and oxidative phosphorylation in benzo[α]pyrene and arsenic-induced rat lung epithelial transformed cells. Oncotarget 2018; 7:40674-40689. [PMID: 27276679 PMCID: PMC5130035 DOI: 10.18632/oncotarget.9814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 12/26/2022] Open
Abstract
Arsenic and benzo[β]pyrene (B[a]P) are common contaminants in developing countries. Many studies have investigated the consequences of arsenic and/or B[a]P-induced cellular transformation, including altered metabolism. In the present study, we show that, in addition to elevated glycolysis, B[a]P/arsenic-induced transformation also stimulates oxidative phosphorylation (OXPHOS). Proteomic data and immunoblot studies demonstrated that enzymatic activities, involved in both glycolysis and OXPHOS, are upregulated in the primary transformed rat lung epithelial cell (TLEC) culture, as well as in subcloned TLEC cell lines (TMCs), indicating that OXPHOS was active and still contributed to energy production. LEC expression, of the glycolytic enzyme phosphoglycerate mutase (PGAM) and the TCA cycle enzyme alpha-ketoglutarate dehydrogenase (OGDH), revealed an alternating cyclic pattern of glycolysis and OXPHOS during cell transformation. We also found that the expression levels of hypoxia-inducible factor-1β were consistent with the pattern of glycolysis during the course of transformation. Low doses of an ATP synthase inhibitor depleted endogenous ATP levels to a greater extent in TLECs, compared to parental LECs, indicating greater sensitivity of B[a]P/arsenic-transformed cells to ATP depletion. However, TLEC cells exhibited better survival under hypoxia, possibly due to further induction of anaerobic glycolysis. Collectively, our data indicate that B[a]P/arsenic-transformed cells can maintain energy production through upregulation of both glycolysis and OXPHOS. Selective inhibition of metabolic pathways may serve as a therapeutic option for cancer therapy.
Collapse
Affiliation(s)
- Huachen Chen
- Department of Biochemistry/Open Laboratory of Tumor Molecular Biology, Shantou University College of Medicine, Shantou, Guangdong, China
| | - Lai-Sheung Lee
- School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Guanwu Li
- Department of Biochemistry/Open Laboratory of Tumor Molecular Biology, Shantou University College of Medicine, Shantou, Guangdong, China
| | - Sai-Wah Tsao
- School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jen-Fu Chiu
- Department of Biochemistry/Open Laboratory of Tumor Molecular Biology, Shantou University College of Medicine, Shantou, Guangdong, China.,School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Chen DJ, Xu YM, Zheng W, Huang DY, Wong WY, Tai WCS, Cho YY, Lau ATY. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity. Proteomics 2015; 15:3075-86. [PMID: 25950996 DOI: 10.1002/pmic.201400489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/20/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023]
Abstract
For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure.
Collapse
Affiliation(s)
- De-Ju Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Wei Zheng
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Dong-Yang Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Wing-Yan Wong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
| | - William Chi-Shing Tai
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
- Institute of Integrated Bioinfomedicine & Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, P. R. China
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P. R. China
| |
Collapse
|
6
|
Kalkhof S, Dautel F, Loguercio S, Baumann S, Trump S, Jungnickel H, Otto W, Rudzok S, Potratz S, Luch A, Lehmann I, Beyer A, von Bergen M. Pathway and time-resolved benzo[a]pyrene toxicity on Hepa1c1c7 cells at toxic and subtoxic exposure. J Proteome Res 2014; 14:164-82. [PMID: 25362887 DOI: 10.1021/pr500957t] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (B[a]P) is an environmental contaminant mainly studied for its toxic/carcinogenic effects. For a comprehensive and pathway orientated mechanistic understanding of the effects directly triggered by a toxic (5 μM) or a subtoxic (50 nM) concentration of B[a]P or indirectly by its metabolites, we conducted time series experiments for up to 24 h to study the effects in murine hepatocytes. These cells rapidly take up and actively metabolize B[a]P, which was followed by quantitative analysis of the concentration of intracellular B[a]P and seven representative degradation products. Exposure with 5 μM B[a]P led to a maximal intracellular concentration of 1604 pmol/5 × 10(4) cells, leveling at 55 pmol/5 × 10(4) cells by the end of the time course. Changes in the global proteome (>1000 protein profiles) and metabolome (163 metabolites) were assessed in combination with B[a]P degradation. Abundance profiles of 236 (both concentrations), 190 (only 5 μM), and 150 (only 50 nM) proteins were found to be regulated in response to B[a]P in a time-dependent manner. At the endogenous metabolite level amino acids, acylcarnitines and glycerophospholipids were particularly affected by B[a]P. The comprehensive chemical, proteome and metabolomic data enabled the identification of effects on the pathway level in a time-resolved manner. So in addition to known alterations, also protein synthesis, lipid metabolism, and membrane dysfunction were identified as B[a]P specific effects.
Collapse
Affiliation(s)
- Stefan Kalkhof
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research , Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ling S, Feng T, Jia K, Tian Y, Li Y. Inflammation to cancer: The molecular biology in the pancreas (Review). Oncol Lett 2014; 7:1747-1754. [PMID: 24932227 PMCID: PMC4049733 DOI: 10.3892/ol.2014.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 03/11/2014] [Indexed: 02/07/2023] Open
Abstract
Inflammatory responses are known to be correlated with cancer initiation and progression, and exploration of the route from inflammation to cancer makes a great contribution in elucidating the mechanisms underlying cancer development. Pancreatic cancer (PC) is a lethal disease with a low radical-resection rate and a poor prognosis. As chronic pancreatitis is considered to be a significant etiological factor for PC development, the current review aims to describe the molecular pathways from inflammation to pancreatic carcinogenesis, in support of the strategies for the prevention, diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Sunbin Ling
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Tingting Feng
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Kaiqi Jia
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yu Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yan Li
- Institute of Cancer Stem Cells, Dalian Medical University, Dalian, Liaoning 116044, P.R. China ; College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
8
|
Maria VL, Gomes T, Barreira L, Bebianno MJ. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:284-295. [PMID: 24211336 DOI: 10.1016/j.aquatox.2013.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
In natural waters, chemical interactions between mixtures of contaminants can result in potential synergistic and/or antagonic effects in aquatic animals. Benzo(a)pyrene (BaP) and copper (Cu) are two widespread environmental contaminants with known toxicity towards mussels Mytilus spp. The effects of the individual and the interaction of BaP and Cu exposures were assessed in mussels Mytilus galloprovincialis using proteomic analysis. Mussels were exposed to BaP [10 μg L(-1) (0.396 μM)], and Cu [10 μg L(-1) (0.16 μM)], as well as to their binary mixture (mixture) for a period of 7 days. Proteomic analysis showed different protein expression profiles associated to each selected contaminant condition. A non-additive combined effect was observed in mixture in terms of new and suppressed proteins. Proteins more drastically altered (new, suppressed and 2-fold differentially expressed) were excised and analyzed by mass spectrometry, and eighteen putatively identified. Protein identification demonstrated the different accumulation, metabolism and chemical interactions of BaP, Cu and their mixture, resulting in different modes of action. Proteins associated with adhesion and motility (catchin, twitchin and twitchin-like protein), cytoskeleton and cell structure (α-tubulin and actin), stress response (heat shock cognate 71, heat shock protein 70, putative C1q domain containing protein), transcription regulation (zinc-finger BED domain-containing and nuclear receptor subfamily 1G) and energy metabolism (ATP synthase F0 subunit 6 protein and mannose-6-phosphate isomerase) were assigned to all three conditions. Cu exposure alone altered proteins associated with oxidative stress (glutathione-S-transferase) and digestion, growth and remodelling processes (chitin synthase), while the mixture affected only one protein (major vault protein) possibly related to multi drug resistance. Overall, new candidate biomarkers, namely zinc-finger BED domain-containing protein, chitin synthase and major vault protein, were also identified for BaP, Cu and mixture, respectively.
Collapse
Affiliation(s)
- V L Maria
- CIMA, Faculty of Sciences and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
9
|
Zhao X, Yang N, Wang T. Comparative proteomic analysis of generative and sperm cells reveals molecular characteristics associated with sperm development and function specialization. J Proteome Res 2013; 12:5058-71. [PMID: 23879389 DOI: 10.1021/pr400291p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In flowering plants, two sperm cells (SCs) are generated from a generative cell (GC) in the developing pollen grain or growing pollen tube and are then delivered to the embryo sac to initiate double fertilization. SC development and function specialization involve the strict control of the protein (gene) expression program and coordination of diverse cellular processes. However, because methods for collecting a large amount of highly purified GCs and SCs for proteomic and transcriptomic studies from a plant are not available, molecular information about the program and the interconnections is lacking. Here, we describe a method for obtaining a large quantity of highly purified GCs and SCs from just-germinated lily pollen grains and growing pollen tubes for proteomic analysis. Our observation showed that SCs had less condensed chromatin and more vacuole-like structures than GCs and that mature SCs were arrested at the G2 phase. Comparison of SC and GC proteomes revealed 101 proteins differentially expressed in the two proteomes. These proteins are involved in diverse cellular and metabolic processes, with preferential involvement in metabolism, the cell cycle, signaling, the ubiquitin/proteasome pathway, and chromatin remodeling. Impressively, almost all proteins in SCF complex-mediated proteolysis and the cell cycle were up-regulated in SCs, whereas those in chromatin remodeling and stress response were down-regulated. Our data also reveal the coordination of SCF complex-mediated proteolysis, cell cycle progression, and DNA repair in SC development and function specialization. This study revealed for the first time a difference in protein profiles between GCs and SCs.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences and National Center for Plant Gene Research , Beijing 100093, China
| | | | | |
Collapse
|
10
|
Sun GG, Hu WN, Wang YD, Yang CR, Lu YF. Bidirectional regulation of manganese superoxide dismutase (MnSOD) on the radiosensitivity of esophageal cancer cells. Asian Pac J Cancer Prev 2013; 13:3015-23. [PMID: 22994704 DOI: 10.7314/apjcp.2012.13.7.3015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) may represent a new type of tumor suppressor protein. Overexpression of the cDNA of this gene by plasmid or recombinant lentiviral transfection in various types of cancer leads to growth suppression both in vitro and in vivo. We previously determined that changes in MnSOD expression had bidirectional effects on adriamycin (ADR) when combined with nitric oxide (NO). Radiation induces free radicals in a manner similar to ADR, so we speculated that MnSOD combined with NO would also have a bidirectional effect on cellular radiosensitivity. To examine this hypothesis, TE-1 human esophageal squamous carcinoma cells were stably transfected using lipofectamine with a pLenti6-DEST plasmid containing human MnSOD cDNA at moderate to high overexpression levels or with no MnSOD insert. Blastidicin-resistant colonies were isolated, grown, and maintained in culture. We found that moderate overexpression of MnSOD decreased growth rates, plating efficiency, and increased apoptosis. However, high overexpression increased growth rates, plating efficiency, and decreased apoptosis. When combined with NO, moderate overexpression of MnSOD increased the radiosensitivity of esophageal cancer cells, whereas high MnSOD overexpression had the opposite effect. This finding suggests a potential new method to kill certain radioresistant tumors and to provide radioresistance to normal cells.
Collapse
Affiliation(s)
- Guo-Gui Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, China
| | | | | | | | | |
Collapse
|
11
|
Sun G, Wang Y, Hu W, Li C. Effects of manganese superoxide dismutase (MnSOD) expression on regulation of esophageal cancer cell growth and apoptosis in vitro and in nude mice. Tumour Biol 2013; 34:1409-19. [PMID: 23649652 DOI: 10.1007/s13277-012-0622-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/09/2012] [Indexed: 02/06/2023] Open
Abstract
Manganese superoxide dismutase (MnSOD) catalyzes superoxide radical (O2 (-)) into hydrogen peroxide (H2O2), which is further catalyzed by the combined action of glutathione peroxidase (GPx) and catalase (CAT) into water and oxygen. MnSOD plays a role in cell protection from superoxide damage. This study aimed to investigate the effects of MnSOD on regulation of esophageal squamous cell carcinoma cell growth, apoptosis, and cell cycle distribution in vitro and tumor formation and growth in nude mouse xenografts. The data showed that differential levels of MnSOD expression had different effects on tumor cell proliferation, apoptosis, plating efficiency (PE), and cell cycle distribution in vitro and tumor formation and growth in nude mice. In particular, high levels of MnSOD expression promoted TE-1 cell growth and PE rate in vitro and in nude mice, whereas moderate MnSOD expression suppressed tumor cell growth and PE rate but induced more cell apoptosis. Thus, these data demonstrated the dual effects of MnSOD protein in esophageal squamous cell carcinoma and further study will confirm these current data.
Collapse
Affiliation(s)
- Guogui Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, 06300, China
| | | | | | | |
Collapse
|
12
|
Nováková K, Bláha L, Babica P. Tumor promoting effects of cyanobacterial extracts are potentiated by anthropogenic contaminants--evidence from in vitro study. CHEMOSPHERE 2012; 89:30-37. [PMID: 22572165 DOI: 10.1016/j.chemosphere.2012.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/22/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Inhibition of gap junctional intercellular communication (GJIC) is affiliated with tumor promotion process and it has been employed as an in vitro biomarker for evaluation of tumor promoting effects of chemicals. In the present study we investigated combined effects of anthropogenic environmental contaminants 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) and fluoranthene, cyanotoxins microcystin-LR and cylindrospermopsin, and extracts of laboratory cultures of cyanobacteria Aphanizomenon gracile and Cylindrospermopsis raciborskii, on GJIC in the rat liver epithelial cell line WB-F344. Binary mixtures of PCB 153 with fluoranthene and the mixtures of the two cyanobacterial strains elicited simple additive effects on GJIC after 30 min exposure, whereas microcystin-LR and cylindrospermopsin neither inhibited GJIC nor altered effects of PCB 153 or fluoranthene. However, synergistic effects were observed in the cells exposed to binary mixtures of anthropogenic contaminants (PCB 153 or fluoranthene) and cyanobacterial extracts. The synergistic effects were especially pronounced after prolonged (6-24h) co-exposure to fluoranthene and A. gracile extract, when mixture caused nearly complete GJIC inhibition, while none of the individual components caused any downregulation of GJIC at the same concentration and exposure time. The effects of cyanobacterial extracts were independent of microcystin-LR or cylindrospermopsin, which were not detected in cyanobacterial biomass. It provides further evidence on the presence of unknown tumor promoting metabolites in cyanobacteria. Clear potentiation of the GJIC inhibition observed in the mixtures of two anthropogenic contaminants and cyanobacteria highlight the importance of combined toxic effects of chemicals in complex environmental mixtures.
Collapse
Affiliation(s)
- Kateřina Nováková
- Research Centre for Toxic Compounds in the Environment, RECETOX, Faculty of Science, Masaryk University, Kamenice 3, Brno CZ62500, Czech Republic.
| | | | | |
Collapse
|
13
|
Verma N, Pink M, Rettenmeier AW, Schmitz-Spanke S. Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics 2012; 12:1731-55. [DOI: 10.1002/pmic.201100466] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nisha Verma
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Mario Pink
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Albert W. Rettenmeier
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Simone Schmitz-Spanke
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| |
Collapse
|
14
|
Li G, Lee LS, Li M, Tsao SW, Chiu JF. Molecular changes during arsenic-induced cell transformation. J Cell Physiol 2011; 226:3225-32. [PMID: 21344382 DOI: 10.1002/jcp.22683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arsenic and its derivatives are naturally occurring metalloid compounds widely distributed in the environment. Arsenics are known to cause cancers of the skin, liver, lung, kidney, and bladder. Although numerous carcinogenic pathways have been proposed, the exact molecular mechanisms remain to be delineated. To further characterize the role of oxidative stress in arsenite-induced cell transformation via the reactive oxygen species (ROS)-mediated Ras/Erk pathway, here we demonstrated arsenite-induced rat lung epithelial cell (LEC) transformation, epithelial-mesenchymal transition, stimulation of the extracellular signal-regulated kinase signaling pathway, and enhancement of cell proliferation. However, there was no evidence of activation of the phosphoinositide 3-kinase/protein kinase B pathway in arsenite-induced transformed LECs. Since ROS is involved in arsenite-induced LEC cell transformation, Redox-status regulatory proteins (Cu/Zn SOD and thioredoxin) and arsenite-induced LEC cell transformation were significantly inhibited by concurrent treatment with the antioxidants. Our experimental results clearly demonstrated that induction of p-ERK and cell proliferation by arsenite is mediated via oxidative stress, since antioxidants can inhibit arsenite-induced cell transformation.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Biochemistry/Open Laboratory for Tumor Molecular Biology, Shantou University Medical College, Shantou, China
| | | | | | | | | |
Collapse
|
15
|
Schmitz-Spanke S, Rettenmeier AW. Protein expression profiling in chemical carcinogenesis: A proteomic-based approach. Proteomics 2011; 11:644-56. [DOI: 10.1002/pmic.201000403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 11/11/2022]
|
16
|
Dautel F, Kalkhof S, Trump S, Michaelson J, Beyer A, Lehmann I, von Bergen M. DIGE-based protein expression analysis of B[a]P-exposed hepatoma cells reveals a complex stress response including alterations in oxidative stress, cell cycle control, and cytoskeleton motility at toxic and subacute concentrations. J Proteome Res 2010; 10:379-93. [PMID: 21171653 DOI: 10.1021/pr100723d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the effects of high concentrations of the carcinogen benzo[a]pyrene (B[a]P) have been studied extensively, little is known about its effects at subacute toxic concentrations, which are typical for environmental pollutants. We exposed murine Hepa1c1c7 cells to a toxic concentration (5 μM) and a subacute concentration (50 nM) of B[a]P over a period of 2-24 h to differentiate between acute and pseudochronic effects and conducted a time-course analysis of B[a]P-influenced protein expression by DIGE. In total, a set of 120 spots were found to be significantly altered due to B[a]P exposure of which 112 were subsequently identified by mass spectrometry. Clustering and principal component analysis were conducted to identify sets of proteins responding in a concerted manner to the exposure. Our results indicate an immediate response to the contaminant at the protein level and demonstrate that B[a]P exposure alters the cellular response by disturbing proteins involved in oxidative stress, cell cycle regulation, apoptosis, and cytoskeleton organization. Furthermore, network analysis of protein-protein interactions revealed a complex network of interacting, B[a]P-regulated proteins mostly belonging to the cytoskeleton organization and several signal transduction pathways.
Collapse
Affiliation(s)
- Franziska Dautel
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Li XQ, Zhang SL, Cai Z, Zhou Y, Ye TM, Chiu JF. Proteomic identification of tumor-associated protein in ovarian serous cystadenocarinoma. Cancer Lett 2009; 275:109-16. [DOI: 10.1016/j.canlet.2008.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/19/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
18
|
Major histopathological patterns of lung cancer related to arsenic exposure in German uranium miners. Int Arch Occup Environ Health 2008; 82:867-75. [PMID: 19020892 DOI: 10.1007/s00420-008-0386-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The mechanisms of action of arsenic in the development of lung cancer are still not yet elucidated. Considering the relationship between arsenic and squamous cell carcinomas of the skin, we hypothesized that arsenic exposure may be more closely associated with squamous cell carcinoma of the lung. METHODS A comprehensive histopathological database and a detailed job-exposure matrix developed for former German uranium miners with exposure to arsenic, radon, and quartz were analyzed to quantitatively assess the effect of arsenic regarding cell type of lung cancer. The distributions of major lung cancer cell types in 1,786 German uranium miners were associated with levels of arsenic exposure under control for the other lung carcinogens. To evaluate the arsenic effects in association with a frequent occupational lung disease in miners stratification by silicosis was performed. RESULTS There was an arsenic-related increase of the proportion of squamous cell carcinoma of the lung but restricted to miners without silicosis. The increase was found at all levels of co-exposure to radon and quartz dust. In miners with silicosis, the proportion of adenocarcinoma increased with rising arsenic exposure. Arsenic exposure was associated with non-small cell lung cancer. Silicosis turned out as major determinant of the cell type related with arsenic. CONCLUSION These results indicate a cell type characteristic effect of arsenic in the development of lung cancer.
Collapse
|
19
|
Lau ATY, Wang Y, Chiu JF. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem 2008; 104:657-67. [PMID: 18172854 DOI: 10.1002/jcb.21655] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reactive oxygen species (ROS) are natural products inevitably generated along cellular metabolism. Due to their highly reactive nature, which can damage DNA, proteins and lipids, cells utilize antioxidative or defense systems to balance these toxic products to keep the cells in a state of redox homeostasis. However, under the situation of imbalance in redox status, depending on the magnitude of ROS encountered, high levels of ROS can induce apoptosis, whereas chronic low levels of ROS promote vascular diseases such as arteriosclerosis. Although ROS seem to be catastrophic to life, accumulating evidence points to the beneficial roles of ROS by virtue of the ability as chemotherapeutic agents to cure human diseases. Many anti-cancer drugs have been developed in this way which can generate ROS and cause oxidative stress-induced apoptosis in cancer cells. The effects of ROS are paradoxical because they can act as both disease culprits and chemotherapeutic agents. In this review, the current knowledge of ROS and the potential applications of ROS in cancer therapeutic will be discussed.
Collapse
Affiliation(s)
- Andy T Y Lau
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|