1
|
Wu Y, Xu S, Ding F, Zhang W, Liu H. A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment. J Funct Biomater 2024; 15:185. [PMID: 39057306 PMCID: PMC11277842 DOI: 10.3390/jfb15070185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, a new type of FE-1 COF material is prepared by a reversible imine condensation reaction with diaminoferrocene and diaminodiformaldehyde as materials. The material is connected by imine bonds to form a COF skeleton, and the presence of plenty of nitrogen-containing groups gives the material good hydrophilicity; the presence of metal Fe ions provides the material application potential in the enrichment of phosphopeptides. According to the different binding abilities of N-glycopeptide and phosphopeptide on FE-1 COF, it can simultaneously enrich N-glycopeptide and phosphopeptide through different elution conditions to realize its controllable and selective enrichment. Using the above characteristics, 18 phosphopeptides were detected from α-casein hydrolysate, 8 phosphopeptides were detected from β-casein hydrolysate and 21 glycopeptides were detected from IgG hydrolysate. Finally, the gradual elution strategy was used; 16 phosphopeptides and 19 glycopeptides were detected from the α-casein hydrolysate and IgG hydrolysate. The corresponding glycopeptides and phosphopeptides were identified from the human serum. It proves that the FE-1 COF material has a good enrichment effect on phosphopeptides and glycopeptides.
Collapse
Affiliation(s)
- Yu Wu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Sen Xu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Fengjuan Ding
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chempistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibing Zhang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (S.X.)
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chempistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
3
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
4
|
Kim CL, Lim SB, Kim K, Jeong HS, Mo JS. Phosphorylation analysis of the Hippo-YAP pathway using Phos-tag. J Proteomics 2022; 261:104582. [DOI: 10.1016/j.jprot.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
5
|
Pedersoli WR, de Paula RG, Antoniêto ACC, Carraro CB, Taveira IC, Maués DB, Martins MP, Ribeiro LFC, Damasio ARDL, Silva-Rocha R, Filho AR, Silva RN. Analysis of the phosphorylome of trichoderma reesei cultivated on sugarcane bagasse suggests post-translational regulation of the secreted glycosyl hydrolase Cel7A. ACTA ACUST UNITED AC 2021; 31:e00652. [PMID: 34258241 PMCID: PMC8254082 DOI: 10.1016/j.btre.2021.e00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Phosphorylome of Trichoderma reesei reveals phosphosites in some glycosyl hydrolases. Phosphoserine and phosphothreonine is the major phosphosites identified. Protein Kinase C is the most frequently predicted kinase in phosphorylome. The cellulase Cel7A activity is affected by dephosphorylation.
Trichoderma reesei is one of the major producers of holocellulases. It is known that in T. reesei, protein production patterns can change in a carbon source-dependent manner. Here, we performed a phosphorylome analysis of T. reesei grown in the presence of sugarcane bagasse and glucose as carbon source. In presence of sugarcane bagasse, a total of 114 phosphorylated proteins were identified. Phosphoserine and phosphothreonine corresponded to 89.6% of the phosphosites and 10.4% were related to phosphotyrosine. Among the identified proteins, 65% were singly phosphorylated, 19% were doubly phosphorylated, 12% were triply phosphorylated, and 4% displayed even higher phosphorylation. Seventy-five kinases were predicted to phosphorylate the sites identified in this work, and the most frequently predicted serine/threonine kinase was PKC1. Among phosphorylated proteins, four glycosyl hydrolases were predicted to be secreted. Interestingly, Cel7A activity, the most secreted protein, was reduced to approximately 60% after in vitro dephosphorylation, suggesting that phosphorylation might alter Cel7A structure, substrate affinity, and targeting of the substrate to its carbohydrate-binding domain. These results suggest a novel post-translational regulation of Cel7A.
Collapse
Affiliation(s)
- Wellington Ramos Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES, 29047-105, Brazil
| | - Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Cláudia Batista Carraro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Iasmin Cartaxo Taveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Maíra Pompeu Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - André Ricardo de Lima Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Antônio Rossi Filho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
6
|
Thingholm TE, Rönnstrand L, Rosenberg PA. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol Life Sci 2020; 77:3085-3102. [PMID: 32076742 PMCID: PMC7391401 DOI: 10.1007/s00018-020-03473-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases resulting from changes in transporter expression and activity. However, despite numerous structural studies of the transporters revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.
Collapse
Affiliation(s)
- T E Thingholm
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, J.B. Winsløws Vej 25, 3, 5000, Odense C, Denmark.
| | - L Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Lund Stem Cell Center, Lund University, Medicon Village, Building 404, Scheelevägen 2, Lund, Sweden
- Division of Oncology, Skåne University Hospital, Lund, Sweden
| | - P A Rosenberg
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Department of Neurology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Ding F, Zhao Y, Liu H, Zhang W. Core–shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides. Analyst 2020; 145:4341-4351. [DOI: 10.1039/d0an00038h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We fabricated a core-shell magnetic Ti4+-functionalized covalent organic framework composite to selectively capture phosphopeptides in biosamples. This method is applicable to achieve rapid, selective and efficient phosphopeptide analysis.
Collapse
Affiliation(s)
- Fengjuan Ding
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| |
Collapse
|
8
|
Zhao X, Bai X, Jiang C, Li Z. Phosphoproteomic Analysis of Two Contrasting Maize Inbred Lines Provides Insights into the Mechanism of Salt-Stress Tolerance. Int J Mol Sci 2019; 20:E1886. [PMID: 30995804 PMCID: PMC6515243 DOI: 10.3390/ijms20081886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023] Open
Abstract
Salinity is a major abiotic stress that limits maize yield and quality throughout the world. We investigated phosphoproteomics differences between a salt-tolerant inbred line (Zheng58) and a salt-sensitive inbred line (Chang7-2) in response to short-term salt stress using label-free quantitation. A total of 9448 unique phosphorylation sites from 4116 phosphoproteins in roots and shoots of Zheng58 and Chang7-2 were identified. A total of 209 and 243 differentially regulated phosphoproteins (DRPPs) in response to NaCl treatment were detected in roots and shoots, respectively. Functional analysis of these DRPPs showed that they were involved in carbon metabolism, glutathione metabolism, transport, and signal transduction. Among these phosphoproteins, the expression of 6-phosphogluconate dehydrogenase 2, pyruvate dehydrogenase, phosphoenolpyruvate carboxykinase, glutamate decarboxylase, glutamate synthase, l-gulonolactone oxidase-like, potassium channel AKT1, high-affinity potassium transporter, sodium/hydrogen exchanger, and calcium/proton exchanger CAX1-like protein were significantly regulated in roots, while phosphoenolpyruvate carboxylase 1, phosphoenolpyruvate carboxykinase, sodium/hydrogen exchanger, plasma membrane intrinsic protein 2, glutathione transferases, and abscisic acid-insensitive 5-like protein were significantly regulated in shoots. Zheng58 may activate carbon metabolism, glutathione and ascorbic acid metabolism, potassium and sodium transportation, and the accumulation of glutamate to enhance its salt tolerance. Our results help to elucidate the mechanisms of salt response in maize seedlings. They also provide a basis for further study of the mechanism underlying salt response and tolerance in maize and other crops.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Xue Bai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Romero MR, Pérez-Figueroa A, Carrera M, Swanson WJ, Skibinski DOF, Diz AP. RNA-seq coupled to proteomic analysis reveals high sperm proteome variation between two closely related marine mussel species. J Proteomics 2018; 192:169-187. [PMID: 30189323 DOI: 10.1016/j.jprot.2018.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Speciation mechanisms in marine organisms have attracted great interest because of the apparent lack of substantial barriers to genetic exchange in marine ecosystems. Marine mussels of the Mytilus edulis species complex provide a good model to study mechanisms underlying species formation. They hybridise extensively at many localities and both pre- and postzygotic isolating mechanisms may be operating. Mussels have external fertilisation and sperm cells should show specific adaptations for survival and successful fertilisation. Sperm thus represent key targets in investigations of the molecular mechanisms underlying reproductive isolation. We undertook a deep transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based proteome analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a common environment. We provide evidence of extensive expression differences between the two mussel species, and general agreement between the transcriptomic and proteomic results in the direction of expression differences between species. Differential expression is marked for mitochondrial genes and for those involved in spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, sperm capacitation, ATP reserves and ROS production. Proteins and their corresponding genes might thus be good targets in further genomic analysis of reproductive barriers between these closely related species. SIGNIFICANCE: Model systems for the study of fertilization include marine invertebrates with external fertilisation, such as abalones, sea urchins and mussels, because of the ease with which large quantities of gametes released into seawater can be collected after induced spawning. Unlike abalones and sea urchins, hybridisation has been reported between mussels of different Mytilus spp., which thus makes them very appealing for the study of reproductive isolation at both pre- and postzygotic levels. There is a lack of empirical proteomic studies on sperm samples comparing different Mytilus species, which could help to advance this study. A comparative analysis of sperm proteomes across different taxa may provide important insights into the fundamental molecular processes and mechanisms involved in reproductive isolation. It might also contribute to a better understanding of sperm function and of the adaptive evolution of sperm proteins in different taxa. There is now growing evidence from genomics studies that multiple protein complexes and many individual proteins might have important functions in sperm biology and the fertilisation process. From an applied perspective, the identification of sperm-specific proteins could also contribute to the improved understanding of fertility problems and as targets for fertility control.
Collapse
Affiliation(s)
- Mónica R Romero
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | | | - Willie J Swanson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, USA
| | - David O F Skibinski
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain; Marine Research Centre, University of Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Spain.
| |
Collapse
|
10
|
A Novel Method for Analysis of Tyrosine Phosphopeptides Based on a Centrifugal Enrichment Device. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Kurylo I, Hamdi A, Addad A, Boukherroub R, Coffinier Y. Comparison of Ti-Based Coatings on Silicon Nanowires for Phosphopeptide Enrichment and Their Laser Assisted Desorption/Ionization Mass Spectrometry Detection. NANOMATERIALS 2017; 7:nano7090272. [PMID: 28914806 PMCID: PMC5618383 DOI: 10.3390/nano7090272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 01/15/2023]
Abstract
We created different TiO2-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO2 based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum.
Collapse
Affiliation(s)
- Ievgen Kurylo
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | - Abderrahmane Hamdi
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
- Laboratory of Semi-Conductors, Nano-Structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia.
- Faculty of Science of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Ahmed Addad
- Unité Matériaux et Transformations (UMET), UMR CNRS 8207, Université Lille1, Cité Scientifique, 59655 Villeneuve d'Ascq, France.
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | - Yannick Coffinier
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|
12
|
Betts MJ, Wichmann O, Utz M, Andre T, Petsalaki E, Minguez P, Parca L, Roth FP, Gavin AC, Bork P, Russell RB. Systematic identification of phosphorylation-mediated protein interaction switches. PLoS Comput Biol 2017; 13:e1005462. [PMID: 28346509 PMCID: PMC5386296 DOI: 10.1371/journal.pcbi.1005462] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 11/18/2022] Open
Abstract
Proteomics techniques can identify thousands of phosphorylation sites in a single experiment, the majority of which are new and lack precise information about function or molecular mechanism. Here we present a fast method to predict potential phosphorylation switches by mapping phosphorylation sites to protein-protein interactions of known structure and analysing the properties of the protein interface. We predict 1024 sites that could potentially enable or disable particular interactions. We tested a selection of these switches and showed that phosphomimetic mutations indeed affect interactions. We estimate that there are likely thousands of phosphorylation mediated switches yet to be uncovered, even among existing phosphorylation datasets. The results suggest that phosphorylation sites on globular, as distinct from disordered, parts of the proteome frequently function as switches, which might be one of the ancient roles for kinase phosphorylation.
Collapse
Affiliation(s)
- Matthew J. Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Oliver Wichmann
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Mathias Utz
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Timon Andre
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Evangelia Petsalaki
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
| | - Pablo Minguez
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Luca Parca
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Frederick P. Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, Canada
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, One Jimmy Fund Way, Boston, Massachusetts, United States
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Robert B. Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
13
|
Biswas S, Sarkar A, Misra R. Iron affinity gel and gallium immobilized metal affinity chromatographic technique for phosphopeptide enrichment: a comparative study. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1293492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Sagarika Biswas
- Department of Genomics and Molecular Medicine, CSIR – Institute of Genomics and Integrative Biology, Delhi, India
- Department of Cellular Proteomics, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ashish Sarkar
- Department of Genomics and Molecular Medicine, CSIR – Institute of Genomics and Integrative Biology, Delhi, India
| | - Richa Misra
- Department of Genomics and Molecular Medicine, CSIR – Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
14
|
Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients. Schizophr Res 2016; 177:70-77. [PMID: 27094720 DOI: 10.1016/j.schres.2016.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a multifactorial disease in both clinical and molecular terms. Thus, depicting the molecular aspects of the disease will contribute to the understanding of its biochemical mechanisms and consequently may lead to the development of new treatment strategies. The protein phosphorylation/dephosphorylation switch acts as the main mechanism for regulating cellular signaling. Moreover, approximately onethird of human proteins are phosphorylable. Thus, identifying proteins differentially phosphorylated in schizophrenia postmortem brains may improve our understanding of the molecular basis of brain function in this disease. Hence, we quantified the phosphoproteome of corpus callosum samples collected post mortem from schizophrenia patients and healthy controls. We used state-of-the-art, bottom-up shotgun mass spectrometry in a two-dimensional liquid chromatography-tandem mass spectrometry setup in the MSE mode with label-free quantification. We identified 60,634 peptides, belonging to 3283 proteins. Of these, 68 proteins were differentially phosphorylated, and 56 were differentially expressed. These proteins are mostly involved in signaling pathways, such as ephrin B and ciliary neurotrophic factor signaling. The data presented here are novel because this was the very first phosphoproteome analysis of schizophrenia brains. They support the important role of glial cells, especially astrocytes, in schizophrenia and help to further the understanding of the molecular aspects of this disease. Our findings indicate a need for further studies on cell signaling, which might shape the development of treatment strategies.
Collapse
|
15
|
Identification of Phosphorylated Cyclin-Dependent Kinase 1 Associated with Colorectal Cancer Survival Using Label-Free Quantitative Analyses. PLoS One 2016; 11:e0158844. [PMID: 27383761 PMCID: PMC4934865 DOI: 10.1371/journal.pone.0158844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/22/2016] [Indexed: 01/16/2023] Open
Abstract
Colorectal cancer is the most common form of cancer in the world, and the five-year survival rate is estimated to be almost 90% in the early stages. Therefore, the identification of potential biomarkers to assess the prognosis of early stage colorectal cancer patients is critical for further clinical treatment. Dysregulated tyrosine phosphorylation has been found in several diseases that play a significant regulator of signaling in cellular pathways. In this study, this strategy was used to characterize the tyrosine phosphoproteome of colorectal cell lines with different progression abilities (SW480 and SW620). We identified a total of 280 phosphotyrosine (pTyr) peptides comprising 287 pTyr sites from 261 proteins. Label-free quantitative analysis revealed the differential level of a total of 103 pTyr peptides between SW480 and SW620 cells. We showed that cyclin-dependent kinase I (CDK1) pTyr15 level in SW480 cells was 3.3-fold greater than in SW620 cells, and these data corresponded with the label-free mass spectrometry-based proteomic quantification analysis. High level CDK1 pTyr15 was associated with prolonged disease-free survival for stage II colorectal cancer patients (n = 79). Taken together, our results suggest that the CDK1 pTyr15 protein is a potential indicator of the progression of colorectal cancer.
Collapse
|
16
|
Affiliation(s)
| | - Peng Xu
- Department of Pathology, University of Virginia School of Medicine Charlottesville Virginia
| | | | | |
Collapse
|
17
|
Liu H, Zhou J, Huang H. Amine-functionalized TiO 2 nanoparticles for highly selective enrichment of phosphopeptides. Talanta 2015; 143:431-437. [DOI: 10.1016/j.talanta.2015.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 01/20/2023]
|
18
|
Maes E, Brusten W, Beutels F, Baggerman G, Mertens I, Valkenborg D, Landuyt B, Schoofs L, Tirez K. The benefits and limitations of reaction cell and sector field inductively coupled plasma mass spectrometry in the detection and quantification of phosphopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:35-44. [PMID: 25462361 DOI: 10.1002/rcm.7079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE The phosphorylation of proteins is one of the most important post-translational modifications in nature. Knowledge of the quantity or degree of protein phosphorylation in biological samples is extremely important. A combination of liquid chromatography (LC) and inductively coupled plasma mass spectrometry (ICP-MS) allows the absolute and relative quantification of the phosphorus signal. METHODS A comparison between dynamic reaction cell quadrupole ICP-MS (DRC-Q-ICP-MS) and high-resolution sector field ICP-MS (SF-ICP-MS) in detecting signals of phosphorus-containing species using identical capillary LC (reversed-phase technology) and nebulizer settings was performed. RESULTS A method to diminish the reversed-phase gradient-related signal instability in phosphorus detection with LC/ICP-MS applications was developed. Bis(4-nitrophenyl)phosphate (BNPP) was used as a standard to compare signal-to-noise ratios and limits of detection (LODs) between the two instrumental setups. The LOD reaches a value of 0.8 µg L(-1) when applying the DRC technology in Q-ICP-MS and an LOD of 0.09 µg L(-1) was found with the SF-ICP-MS setup. This BNPP standard was further used to compare the absolute quantification possibilities of phosphopeptides in these two setups. CONCLUSIONS This one-to-one comparison of two interference-reducing ICP-MS instruments demonstrates that absolute quantification of individual LC-separated phosphopeptides is possible. However, based on the LOD values, SF-ICP-MS has a higher sensitivity in detecting phosphorus signals and thus is preferred in phosphopeptide analysis.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium; KU Leuven, Research Group of Functional Genomics and Proteomics, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Steinberger B, Mayrhofer C. Principles and examples of gel-based approaches for phosphoprotein analysis. Methods Mol Biol 2015; 1295:305-21. [PMID: 25820731 DOI: 10.1007/978-1-4939-2550-6_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods for analyzing the phosphorylation status of proteins are essential to investigate in detail key cellular processes, including signal transduction and cell metabolism. The transience of this post-translational modification and the generally low abundance of phosphoproteins require specific enrichment and/or detection steps prior to analysis. Here, we describe three gel-based approaches for the analysis of differentially expressed phosphoproteins. These approaches comprise (1) the sequential fluorescence staining of two-dimensional (2-D) gels using Pro-Q(®) Diamond and SYPRO(®) Ruby dyes to visualize and quantify phosphoproteins in total cellular lysates as well as (2) affinity enrichment of phosphoproteins in conjunction with sequential fluorescence staining of the 2-D gels and (3) affinity enrichment of proteins prior to pre-electrophoretic fluorescence labeling and 2-D gel electrophoresis.
Collapse
Affiliation(s)
- Birgit Steinberger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
20
|
Wang MC, Lee YH, Liao PC. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2014; 407:1343-56. [PMID: 25486920 DOI: 10.1007/s00216-014-8352-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/25/2023]
Abstract
Tyrosine phosphorylation is an important regulator of signaling in cellular pathways, and dysregulated tyrosine phosphorylation causes several diseases. Mass spectrometry has revealed the importance of global phosphoproteomic characterization. Analysis of tyrosine phosphorylation by studying the mass-spectrometry (MS)-determined phosphoproteome remains difficult because of the relatively low abundance of tyrosine phosphoproteins. To effectively evaluate tyrosine-phosphopeptide enrichment and reduce ion suppression from non-phosphorylated peptides in MS analysis, three trypsin-digested BSA peptides and 14 standard phosphopeptides, including six tyrosine phosphopeptides, four serine phosphopeptides, and four threonine phosphopeptides, were subjected to titanium dioxide immunoaffinity-based enrichment and also to combined enrichment using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-mass spectrometry (LC-MS) analyses. The enrichment factors were evaluated to determine the efficiency of each enrichment procedure. Comparison of five optimized enrichment methods, including TiO2-based immunoaffinity purification in Tris and MOPS buffer systems, TiO2-immunoaffinity enrichment, and immunoaffinity-TiO2 enrichment for total tyrosine, serine and threonine phosphopeptides, revealed that the order of the enrichment factors for total tyrosine phosphopeptides is: (i) immunoaffinity-TiO2 (enrichment factor = 38,244), (ii) TiO2-immunoaffinity (enrichment factor = 24,987), (iii) TiO2 micro-column (enrichment factor = 10,305), (iv) immunoaffinity in Tris buffer system (enrichment factor = 1450), and (v) immunoaffinity in the MOPS buffer system (enrichment factor = 32). These results reveal that an alternative enrichment scheme before use of a TiO2 micro-column, using immunoaffinity 4G10 and PY99 antibody enrichment under optimized conditions, can provide greater selectivity for tyrosine-phosphopeptide enrichment.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan, Republic of China
| | | | | |
Collapse
|
21
|
Yu QW, Li XS, Xiao Y, Guo L, Zhang F, Cai Q, Feng YQ, Yuan BF, Wang Y. Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells. J Chromatogr A 2014; 1365:54-60. [PMID: 25262027 DOI: 10.1016/j.chroma.2014.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/12/2023]
Abstract
As one of the most important types of post-translational modifications, reversible phosphorylation of proteins plays crucial roles in a large number of biological processes. However, owing to the relatively low abundance and dynamic nature of phosphorylation and the presence of the unphosphorylated peptides in large excess, phosphopeptide enrichment is indispensable in large-scale phosphoproteomic analysis. Metal oxides including titanium dioxide have become prominent affinity materials to enrich phosphopeptides prior to their analysis using liquid chromatography-mass spectrometry (LC-MS). In the current study, we established a novel strategy, which encompassed strong cation exchange chromatography, sequential enrichment of phosphopeptides using titania-coated magnetic mesoporous hollow silica microspheres (TiO2/MHMSS) and zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe3O4@SiO2), and LC-MS/MS analysis, for the proteome-wide identification of phosphosites of proteins in HL60 cells. In total, we were able to identify 11,579 unique phosphorylation sites in 3432 unique proteins. Additionally, our results suggested that TiO2/MHMSS and ZrAs-Fe3O4@SiO2 are complementary in phosphopeptide enrichment, where the two types of materials displayed preferential binding of peptides carrying multiple and single phosphorylation sites, respectively.
Collapse
Affiliation(s)
- Qiong-Wei Yu
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA; Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiao-Shui Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yongsheng Xiao
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Lei Guo
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Fan Zhang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Qian Cai
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA.
| |
Collapse
|
22
|
Iida N, Fujita M, Miyazawa K, Kobayashi M, Hattori S. Proteomic identification of p38 MAP kinase substrates using in vitro phosphorylation. Electrophoresis 2013; 35:554-62. [PMID: 24288278 DOI: 10.1002/elps.201300392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 01/19/2023]
Abstract
Protein phosphorylation is a major mechanism that regulates many basic cellular processes. Identification and characterization of substrates for a given protein kinase can lead to a better understanding of signal transduction pathways. However, it is still difficult to efficiently identify substrates for protein kinases. Here, we propose an integrated proteomic approach consisting of in vitro dephosphorylation and phosphorylation, phosphoprotein enrichment, and 2D-DIGE. Phosphatase treatment significantly reduced the complexity of the phosphoproteome, which enabled us to efficiently identify the substrates. We employed p38 mitogen-activated protein kinase (p38 MAP kinase) as a model kinase and identified 23 novel candidate substrates for this kinase. Seven selected candidates were phosphorylated by p38 MAP kinase in vitro and in p38 MAP kinase-activated cells. This proteomic approach can be applied to any protein kinase, allowing global identification of novel substrates.
Collapse
Affiliation(s)
- Naoyuki Iida
- Division of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
23
|
Zakharchenko O, Cojoc M, Dubrovska A, Souchelnytskyi S. A role of TGFß1 dependent 14-3-3σ phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness and radioresistance. PLoS One 2013; 8:e65163. [PMID: 23741479 PMCID: PMC3669286 DOI: 10.1371/journal.pone.0065163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/23/2013] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor-β (TGFβ) is a potent regulator of tumorigenesis, although mechanisms defining its tumor suppressing and tumor promoting activities are not understood. Here we describe phosphoproteome profiling of TGFβ signaling in mammary epithelial cells, and show that 60 identified TGFβ-regulated phosphoproteins form a network with scale-free characteristics. The network highlighted interactions, which may distribute signaling inputs to regulation of cell proliferation, metabolism, differentiation and cell organization. In this report, we identified two novel and TGFβ-dependent phosphorylation sites of 14-3-3σ, i.e. Ser69 and Ser74. We observed that 14-3-3σ phosphorylation is a feed-forward mechanism in TGFβ/Smad3-dependent transcription. TGFβ-dependent 14-3-3σ phosphorylation may provide a scaffold for the formation of the protein complexes which include Smad3 and p53 at the Smad3-specific CAGA element. Furthermore, breast tumor xenograft studies in mice and radiobiological assays showed that phosphorylation of 14-3-3σ at Ser69 and Ser74 is involved in regulation of cancer progenitor population and radioresistance in breast cancer MCF7 cells. Our data suggest that TGFβ-dependent phosphorylation of 14-3-3σ orchestrates a functional interaction of TGFβ/Smad3 with p53, plays a role in the maintenance of cancer stem cells and could provide a new potential target for intervention in breast cancer.
Collapse
Affiliation(s)
- Olena Zakharchenko
- Karolinska Biomics Center, Dept. of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, Solna, Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Kanshin E, Michnick SW, Thibault P. Displacement of N/Q-rich Peptides on TiO2 Beads Enhances the Depth and Coverage of Yeast Phosphoproteome Analyses. J Proteome Res 2013; 12:2905-13. [DOI: 10.1021/pr400198e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Evgeny Kanshin
- Department
of Biochemistry and ‡Institute for Research in Immunology and Cancer, and §Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Stephen W. Michnick
- Department
of Biochemistry and ‡Institute for Research in Immunology and Cancer, and §Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Pierre Thibault
- Department
of Biochemistry and ‡Institute for Research in Immunology and Cancer, and §Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
25
|
Parker LL, Kron SJ. Kinase activation in circulating cells: opportunities for biomarkers for diagnosis and therapeutic monitoring. ACTA ACUST UNITED AC 2013; 2:33-46. [PMID: 23485115 DOI: 10.1517/17530059.2.1.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A clinically useful tool to assay phosphorylation-dependent signaling in circulating cells has the potential to provide a wealth of information about a patient's health, including information unavailable by any other method. Patterns of kinase activation, such as the abnormal signaling characteristic of myeloproliferative disorders, may offer highly specific biomarkers for diagnosis or monitoring the efficacy of therapeutics. For assays of kinase activity in circulating leukocytes to be standardized, let alone made practical for the clinic, numerous technical hurdles must be overcome. In this review the current status of analysis of kinase signaling in circulating cells and recent progress in biomarker discovery and validation is discussed. Looking forward, the potential value of signaling patterns as complex biomarkers and the resulting need for future development of robust, multiplexed assays of kinase activation is addressed.
Collapse
Affiliation(s)
- Laurie L Parker
- University of Chicago, Ludwig Center for Metastasis Research, Knapp R322, 924 E. 57th Street, Chicago, IL 6063, USA
| | | |
Collapse
|
26
|
Gyenis L, Turowec JP, Bretner M, Litchfield DW. Chemical proteomics and functional proteomics strategies for protein kinase inhibitor validation and protein kinase substrate identification: applications to protein kinase CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1352-8. [PMID: 23416530 DOI: 10.1016/j.bbapap.2013.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 02/01/2023]
Abstract
Since protein kinases have been implicated in numerous human diseases, kinase inhibitors have emerged as promising therapeutic agents. Despite this promise, there has been a relative lag in the development of unbiased strategies to validate both inhibitor specificity and the ability to inhibit target activity within living cells. To overcome these limitations, our efforts have been focused on the development of systematic strategies that employ chemical and functional proteomics. We utilized these strategies to evaluate small molecule inhibitors of protein kinase CK2, a constitutively active kinase that has recently emerged as target for anti-cancer therapy in clinical trials. Our chemical proteomics strategies used ATP or CK2 inhibitors immobilized on sepharose beads together with mass spectrometry to capture and identify binding partners from cell extracts. These studies have verified that interactions between CK2 and its inhibitors occur in complex mixtures. However, in the case of CK2 inhibitors related to 4,5,6,7-tetrabromo-1H-benzotriazole (TBB), our work has also revealed off-targets for the inhibitors. To complement these studies, we devised functional proteomics approaches to identify proteins that exhibit decreases in phosphorylation when cells are treated with CK2 inhibitors. To identify and validate those proteins that are direct substrates for CK2, we have also employed mutants of CK2 with decreased inhibitor sensitivity. Overall, our studies have yielded systematic platforms for studying CK2 inhibitors which we believe will foster efforts to define the biological functions of CK2 and to rigorously investigate its potential as a candidate for molecular-targeted therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
27
|
Zhu L, Liu D, Li Y, Li N. Functional phosphoproteomic analysis reveals that a serine-62-phosphorylated isoform of ethylene response factor110 is involved in Arabidopsis bolting. PLANT PHYSIOLOGY 2013; 161:904-17. [PMID: 23188807 PMCID: PMC3561028 DOI: 10.1104/pp.112.204487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 11/22/2012] [Indexed: 05/22/2023]
Abstract
Ethylene is a major plant hormone that plays an important role in regulating bolting, although the underlying molecular mechanism is not well understood. In this study, we report the novel finding that the serine-62 (Ser-62) phosphorylation of Ethylene Response Factor110 (ERF110) is involved in the regulation of bolting time. The gene expression and posttranslational modification (phosphorylation) of ERF110 were analyzed among ethylene-response mutants and ERF110 RNA-interfering knockout lines of Arabidopsis (Arabidopsis thaliana). Physiological and biochemical studies revealed that the Ser-62 phosphorylation of ERF110 was closely related to bolting time, that is, the ethylene-enhanced gene expression of ERF110 and the decreased Ser-62 phosphorylation of the ERF110 protein in Arabidopsis. The expression of a flowering homeotic APETALA1 gene was up-regulated by the Ser-62-phosphorylated isoform of the ERF110 transcription factor, which was necessary but not sufficient for normal bolting. The gene expression and phosphorylation of ERF110 were regulated by ethylene via both Ethylene-Insensitive2-dependent and -independent pathways, which constitute a dual-and-opposing mechanism of action for ethylene in the regulation of Arabidopsis bolting.
Collapse
Affiliation(s)
- Lin Zhu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Dandan Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Yaojun Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Ning Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| |
Collapse
|
28
|
Guo M, Huang BX. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation. Proteomics 2013; 13:424-37. [PMID: 23125184 DOI: 10.1002/pmic.201200274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 12/20/2022]
Abstract
Reversible phosphorylation, tightly controlled by protein kinases and phosphatases, plays a central role in mediating biological processes, such as protein-protein interactions, subcellular translocation, and activation of cellular enzymes. MS-based phosphoproteomics has now allowed the detection and quantification of tens of thousands of phosphorylation sites from a typical biological sample in a single experiment, which has posed new challenges in functional analysis of each and every phosphorylation site on specific signaling phosphoproteins of interest. In this article, we review recent advances in the functional analysis of targeted phosphorylation carried out by various chemical and biological approaches in combination with the MS-based phosphoproteomics. This review focuses on three types of strategies, including forward functional analysis, defined for the result-driven phosphoproteomics efforts in determining the substrates of a specific protein kinase; reverse functional analysis, defined for tracking the kinase(s) for specific phosphosite(s) derived from the discovery-driven phosphoproteomics efforts; and MS-based analysis on the structure-function relationship of phosphoproteins. It is expected that this review will provide a state-of-the-art overview of functional analysis of site-specific phosphorylation and explore new perspectives and outline future challenges.
Collapse
Affiliation(s)
- Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| | | |
Collapse
|
29
|
Cerqueira FR, Ferreira RS, Oliveira AP, Gomes AP, Ramos HJO, Graber A, Baumgartner C. MUMAL: multivariate analysis in shotgun proteomics using machine learning techniques. BMC Genomics 2012; 13 Suppl 5:S4. [PMID: 23095859 PMCID: PMC3477001 DOI: 10.1186/1471-2164-13-s5-s4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The shotgun strategy (liquid chromatography coupled with tandem mass spectrometry) is widely applied for identification of proteins in complex mixtures. This method gives rise to thousands of spectra in a single run, which are interpreted by computational tools. Such tools normally use a protein database from which peptide sequences are extracted for matching with experimentally derived mass spectral data. After the database search, the correctness of obtained peptide-spectrum matches (PSMs) needs to be evaluated also by algorithms, as a manual curation of these huge datasets would be impractical. The target-decoy database strategy is largely used to perform spectrum evaluation. Nonetheless, this method has been applied without considering sensitivity, i.e., only error estimation is taken into account. A recently proposed method termed MUDE treats the target-decoy analysis as an optimization problem, where sensitivity is maximized. This method demonstrates a significant increase in the retrieved number of PSMs for a fixed error rate. However, the MUDE model is constructed in such a way that linear decision boundaries are established to separate correct from incorrect PSMs. Besides, the described heuristic for solving the optimization problem has to be executed many times to achieve a significant augmentation in sensitivity. Results Here, we propose a new method, termed MUMAL, for PSM assessment that is based on machine learning techniques. Our method can establish nonlinear decision boundaries, leading to a higher chance to retrieve more true positives. Furthermore, we need few iterations to achieve high sensitivities, strikingly shortening the running time of the whole process. Experiments show that our method achieves a considerably higher number of PSMs compared with standard tools such as MUDE, PeptideProphet, and typical target-decoy approaches. Conclusion Our approach not only enhances the computational performance, and thus the turn around time of MS-based experiments in proteomics, but also improves the information content with benefits of a higher proteome coverage. This improvement, for instance, increases the chance to identify important drug targets or biomarkers for drug development or molecular diagnostics.
Collapse
Affiliation(s)
- Fabio R Cerqueira
- Department of Informatics, Federal University of Viçosa, 36570-000 Minas Geras, Brazil.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Semin Cell Dev Biol 2012; 23:843-53. [DOI: 10.1016/j.semcdb.2012.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 05/29/2012] [Indexed: 12/28/2022]
|
31
|
Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. J Mol Cell Cardiol 2012; 53:354-68. [DOI: 10.1016/j.yjmcc.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
|
32
|
Navlakha S, Gitter A, Bar-Joseph Z. A network-based approach for predicting missing pathway interactions. PLoS Comput Biol 2012; 8:e1002640. [PMID: 22916002 PMCID: PMC3420932 DOI: 10.1371/journal.pcbi.1002640] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/26/2012] [Indexed: 02/03/2023] Open
Abstract
Embedded within large-scale protein interaction networks are signaling pathways that encode response cascades in the cell. Unfortunately, even for well-studied species like S. cerevisiae, only a fraction of all true protein interactions are known, which makes it difficult to reason about the exact flow of signals and the corresponding causal relations in the network. To help address this problem, we introduce a framework for predicting new interactions that aid connectivity between upstream proteins (sources) and downstream transcription factors (targets) of a particular pathway. Our algorithms attempt to globally minimize the distance between sources and targets by finding a small set of shortcut edges to add to the network. Unlike existing algorithms for predicting general protein interactions, by focusing on proteins involved in specific responses our approach homes-in on pathway-consistent interactions. We applied our method to extend pathways in osmotic stress response in yeast and identified several missing interactions, some of which are supported by published reports. We also performed experiments that support a novel interaction not previously reported. Our framework is general and may be applicable to edge prediction problems in other domains.
Collapse
Affiliation(s)
- Saket Navlakha
- School of Computer Science and Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Gitter
- School of Computer Science and Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ziv Bar-Joseph
- School of Computer Science and Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Sikkema AH, den Dunnen WFA, Diks SH, Peppelenbosch MP, de Bont ESJM. Optimizing targeted cancer therapy: towards clinical application of systems biology approaches. Crit Rev Oncol Hematol 2012; 82:171-86. [PMID: 21641230 DOI: 10.1016/j.critrevonc.2011.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/28/2011] [Accepted: 05/04/2011] [Indexed: 12/13/2022] Open
Abstract
In cancer, genetic and epigenetic alterations ultimately culminate in discordant activation of signal transduction pathways driving the malignant process. Pharmacological or biological inhibition of such pathways holds significant promise with respect to devising rational therapy for cancer. Thus, technical concepts pursuing robust characterization of kinase activity in tissue samples from cancer patients have been subject of investigation. In the present review we provide a comprehensive overview of these techniques and discuss their advantages and disadvantages for systems biology approaches to identify kinase targets in oncological disease. Recent advances in the development and application of array-based peptide-substrate kinase activity screens show great promise in overcoming the discrepancy between the evaluation of aberrant cell signaling in specific malignancies or even individual patients and the currently available ensemble of highly specific targeted treatment strategies. These developments have the potential to result in a more effective selection of kinase inhibitors and thus optimize mechanism-based patient-specific therapeutic strategies. Given the results from current research on the tumor kinome, generating network views on aberrant tumor cell signaling is critical to meet this challenge.
Collapse
Affiliation(s)
- Arend H Sikkema
- Beatrix Children's Hospital, Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Assiddiq BF, Tan KY, Toy W, Chan SP, Chong PK, Lim YP. EGFR S1166 phosphorylation induced by a combination of EGF and gefitinib has a potentially negative impact on lung cancer cell growth. J Proteome Res 2012; 11:4110-9. [PMID: 22703031 DOI: 10.1021/pr3002029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphorylation of protein plays a key role in the regulation of cellular signal transduction and gene expression. In recent years, targeted mass spectrometry facilitates functional phosphoproteomics by allowing specific protein modifications of target proteins in complex samples to be characterized. In this study, we employed multiple reaction monitoring (MRM) to examine the influence of gefitinib (also known as Iressa) on the phosphorylation sites of EGFR protein before and after EGF treatment. By coupling MRM to MS/MS, 5 phosphotyrosine (Y1110, Y1172, Y1197, Y1069, and Y1092) and 1 S/T (T693) sites were identified on EGFR. Y1197 and T693 were constitutively phosphorylated. All phosphorylation sites were sensitive to gefitinib treatment except T693. Interestingly, gefitinib treatment induced phosphorylation of S1166 only in the presence of EGF. We further showed that lung cancer cells overexpressing phosphomimic S1166D EGFR mutant possessed significantly lower growth and proliferation property compared to wildtype EGFR-expressing cells. While the function and mode of regulation of S1166 remain unclear, our data supports the notion that S1166 represents a regulatory site that exerts a negative regulation on growth and proliferation of cancer cells. The data presented has implication in our understanding of dynamic drug (gefitinib)-target (EGFR) interaction and in improving the efficacy of target-directed therapeutics.
Collapse
Affiliation(s)
- Bobby Fachrizal Assiddiq
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
35
|
Chandramouli KH, Reish D, Qian PY. Gel-based and gel-free identification of proteins and phosphopeptides during egg-to-larva transition in polychaete Neanthes arenaceodentata. PLoS One 2012; 7:e38814. [PMID: 22719953 PMCID: PMC3376139 DOI: 10.1371/journal.pone.0038814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
The polychaete Neanthes arenaceodentata- is cosmopolitan in distribution-, has been used as a laboratory test animal. Life history of this species has several unique features; the female dies after spawning and the male incubates the fertilized eggs through the 21-segmented stage. The larvae leave the tube and commence feeding. Changes in protein abundance and phosphorylation were examined during early development of N. arenaceodentata. A gel-based approach and gel-free enrichment of phosphopeptides coupled with mass spectrometry were used to identify proteins and phosphopeptides in fertilized ova and larval stages. Patterns of proteins and phosphoproteins changed from fertilized ova to larval stages. Twelve proteins occurred in phosphorylated form and nine as stage specific proteins. Cytoskeletal proteins have exhibited differential phosphorylation from ova to larval stages; whereas, other proteins exhibited stage-specific phosphorylation patterns. Ten phosphopeptides were identified that showed phosphorylation sites on serine or threonine residues. Sixty percent of the identified proteins were related to structural reorganization and others with protein synthesis, stress response and attachment. The abundance and distribution of two cytoskeleton proteins were examined further by 2-DE Western blot analysis. This is the first report on changes in protein expression and phosphorylation sites at Thr/Ser in early development of N. arenaceodentata. The 2-DE proteome maps and identified phosphoproteins contributes toward understanding the state of fertilized ova and early larval stages and serves as a basis for further studies on proteomics changes under different developmental conditions in this and other polychaete species.
Collapse
Affiliation(s)
| | - Donald Reish
- Department of Biological Sciences, California State University, Long Beach, California, United States of America
- * E-mail: (DR); (PYQ)
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- * E-mail: (DR); (PYQ)
| |
Collapse
|
36
|
George Priya Doss C, Rajith B. Computational refinement of functional single nucleotide polymorphisms associated with ATM gene. PLoS One 2012; 7:e34573. [PMID: 22529920 PMCID: PMC3326031 DOI: 10.1371/journal.pone.0034573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/07/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Understanding and predicting molecular basis of disease is one of the major challenges in modern biology and medicine. SNPs associated with complex disorders can create, destroy, or modify protein coding sites. Single amino acid substitutions in the ATM gene are the most common forms of genetic variations that account for various forms of cancer. However, the extent to which SNPs interferes with the gene regulation and affects cancer susceptibility remains largely unknown. PRINCIPAL FINDINGS We analyzed the deleterious nsSNPs associated with ATM gene based on different computational methods. An integrative scoring system and sequence conservation of amino acid residues was adapted for a priori nsSNP analysis of variants associated with cancer. We further extended our approach on SNPs that could potentially influence protein Post Translational Modifications in ATM gene. SIGNIFICANCE In the lack of adequate prior reports on the possible deleterious effects of nsSNPs, we have systematically analyzed and characterized the functional variants in both coding and non coding region that can alter the expression and function of ATM gene. In silico characterization of nsSNPs affecting ATM gene function can aid in better understanding of genetic differences in disease susceptibility.
Collapse
Affiliation(s)
- C George Priya Doss
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India.
| | | |
Collapse
|
37
|
Stasyk T, Huber LA. Mapping in vivo signal transduction defects by phosphoproteomics. Trends Mol Med 2012; 18:43-51. [DOI: 10.1016/j.molmed.2011.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 01/02/2023]
|
38
|
Gyenis L, Duncan JS, Turowec JP, Bretner M, Litchfield DW. Unbiased functional proteomics strategy for protein kinase inhibitor validation and identification of bona fide protein kinase substrates: application to identification of EEF1D as a substrate for CK2. J Proteome Res 2011; 10:4887-901. [PMID: 21936567 PMCID: PMC3208357 DOI: 10.1021/pr2008994] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein kinases have emerged as attractive targets for treatment of several diseases prompting large-scale phosphoproteomics studies to elucidate their cellular actions and the design of novel inhibitory compounds. Current limitations include extensive reliance on consensus predictions to derive kinase-substrate relationships from phosphoproteomics data and incomplete experimental validation of inhibitors. To overcome these limitations in the case of protein kinase CK2, we employed functional proteomics and chemical genetics to enable identification of physiological CK2 substrates and validation of CK2 inhibitors including TBB and derivatives. By 2D electrophoresis and mass spectrometry, we identified the translational elongation factor EEF1D as a protein exhibiting CK2 inhibitor-dependent decreases in phosphorylation in (32)P-labeled HeLa cells. Direct phosphorylation of EEF1D by CK2 was shown by performing CK2 assays with EEF1D -FLAG from HeLa cells. Dramatic increases in EEF1D phosphorylation following λ-phosphatase treatment and phospho- EEF1D antibody recognizing EEF1D pS162 indicated phosphorylation at the CK2 site in cells. Furthermore, phosphorylation of EEF1D in the presence of TBB or TBBz is restored using CK2 inhibitor-resistant mutants. Collectively, our results demonstrate that EEF1D is a bona fide physiological CK2 substrate for CK2 phosphorylation. Furthermore, this validation strategy could be adaptable to other protein kinases and readily combined with other phosphoproteomic methods.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, The University of Western Ontario , London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
The response to extracellular stimuli often alters the phosphorylation state of plasma membrane- associated proteins. In this regard, generation of a comprehensive membrane phosphoproteome can significantly enhance signal transduction and drug mechanism studies. However, analysis of this subproteome is regarded as technically challenging, given the low abundance and insolubility of integral membrane proteins, combined with difficulties in isolating, ionizing and fragmenting phosphopeptides. In this article, we highlight recent advances in membrane and phosphoprotein enrichment techniques resulting in improved identification of these elusive peptides. We also describe the use of alternative fragmentation techniques, and assess their current and future value to the field of membrane phosphoproteomics.
Collapse
Affiliation(s)
- Benjamin C Orsburn
- Drug Mechanism Group, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Luke H Stockwin
- Drug Mechanism Group, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | - Dianne L Newton
- Drug Mechanism Group, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
40
|
Wang H, Duan J, Xu H, Zhao L, Liang Y, Shan Y, Zhang L, Liang Z, Zhang Y. Monoliths with immobilized zirconium ions for selective enrichment of phosphopeptides. J Sep Sci 2011; 34:2113-21. [DOI: 10.1002/jssc.201100168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 11/11/2022]
|
41
|
Chandramouli KH, Mok FSY, Wang H, Qian PY. Phosphoproteome analysis during larval development and metamorphosis in the spionid polychaete Pseudopolydora vexillosa. BMC DEVELOPMENTAL BIOLOGY 2011; 11:31. [PMID: 21612608 PMCID: PMC3115903 DOI: 10.1186/1471-213x-11-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/25/2011] [Indexed: 01/04/2023]
Abstract
Background The metamorphosis of the spionid polychaete Pseudopolydora vexillosa includes spontaneous settlement onto soft-bottom habitats and morphogenesis that can be completed in a very short time. A previous study on the total changes to the proteome during the various developmental stages of P. vexillosa suggested that little or no de novo protein synthesis occurs during metamorphosis. In this study, we used multicolor fluorescence detection of proteins in 2-D gels for differential analysis of proteins and phosphoproteins to reveal the dynamics of post-translational modification proteins in this species. A combination of affinity chromatography, 2D-PAGE, and mass spectrometry was used to identify the phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles. Results We reproducibly detected 210, 492, and 172 phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles, respectively. The highest percentage of phosphorylation was observed during the competent larval stage. About 64 stage-specific phosphoprotein spots were detected in the competent stage, and 32 phosphoproteins were found to be significantly differentially expressed in the three stages. We identified 38 phosphoproteins, 10 of which were differentially expressed during metamorphosis. These phosphoproteins belonged to six categories of biological processes: (1) development, (2) cell differentiation and integrity, (3) transcription and translation, (4) metabolism, (5) protein-protein interaction and proteolysis, and (6) receptors and enzymes. Conclusion This is the first study to report changes in phosphoprotein expression patterns during the metamorphosis of the marine polychaete P. vexillosa. The higher degree of phosphorylation during the process of attaining competence to settle and metamorphose may be due to fast morphological transitions regulated by various mechanisms. Our data are consistent with previous studies showing a high percentage of phosphorylation during competency in the barnacle Balanus amphitrite and the bryozoan Bugula neritina. The identified phosphoproteins may play an important role during metamorphosis, and further studies on the location and functions of important proteins during metamorphosis are warranted.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Global Collaborative Research Program, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | |
Collapse
|
42
|
Kosako H, Nagano K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 2011; 8:81-94. [PMID: 21329429 DOI: 10.1586/epr.10.104] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.
Collapse
Affiliation(s)
- Hidetaka Kosako
- Division of Disease Proteomics, Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | |
Collapse
|
43
|
Kimura Y, Nagata K, Suzuki N, Yokoyama R, Yamanaka Y, Kitamura H, Hirano H, Ohara O. Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate-affinity electrophoresis. Proteomics 2011; 10:3884-95. [PMID: 20960454 DOI: 10.1002/pmic.201000349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The phosphorylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) is thought to play an important role in cell regulation and signal transduction. However, the relationship between hnRNP K phosphorylation and cellular events has only been indirectly examined, and the phosphorylated forms of endogenous hnRNP K have not been biochemically characterized in detail. In this study, we extensively examined the phosphorylated forms of endogenous hnRNP K by direct protein-chemical characterization using phosphate-affinity electrophoresis followed by immunoblotting and MS. Phosphate-affinity electrophoresis enabled us to sensitively detect and separate the phosphorylated forms of hnRNP K. When we used 2-DE with phosphate-affinity SDS-PAGE in the second dimension, the nuclear fraction contained more than 20 spots of endogenous hnRNP K on the 2-D map. We determined that the multiple forms of hnRNP K were produced mainly by alternative splicing of the single hnRNP K gene and phosphorylation of Ser116 and/or Ser284. Furthermore, the subcellular localization of these proteins revealed by the 2-D gel correlated with their phosphorylation states and alternative splicing patterns. The results also indicated that the multiple forms of hnRNP K were differentially modulated in response to external stimulation with bacterial lipopolysaccharide or serum.
Collapse
Affiliation(s)
- Yayoi Kimura
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are caused by tobacco and alcohol consumption and by infection with high-risk types of human papillomavirus (HPV). Tumours often develop within preneoplastic fields of genetically altered cells. The persistence of these fields after treatment presents a major challenge, because it might lead to local recurrences and second primary tumours that are responsible for a large proportion of deaths. Aberrant signalling pathways have been identified in HNSCCs and inhibition of epidermal growth factor receptor (EGFR) has proved a successful therapeutic strategy. In this Review, we discuss the recent literature on tumour heterogeneity, field cancerization, molecular pathogenesis and the underlying causative cancer genes that can be exploited for novel and personalized treatments of patients with HNSCC.
Collapse
Affiliation(s)
- C René Leemans
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
45
|
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are caused by tobacco and alcohol consumption and by infection with high-risk types of human papillomavirus (HPV). Tumours often develop within preneoplastic fields of genetically altered cells. The persistence of these fields after treatment presents a major challenge, because it might lead to local recurrences and second primary tumours that are responsible for a large proportion of deaths. Aberrant signalling pathways have been identified in HNSCCs and inhibition of epidermal growth factor receptor (EGFR) has proved a successful therapeutic strategy. In this Review, we discuss the recent literature on tumour heterogeneity, field cancerization, molecular pathogenesis and the underlying causative cancer genes that can be exploited for novel and personalized treatments of patients with HNSCC.
Collapse
|
46
|
|
47
|
Trost M, Bridon G, Desjardins M, Thibault P. Subcellular phosphoproteomics. MASS SPECTROMETRY REVIEWS 2010; 29:962-90. [PMID: 20931658 DOI: 10.1002/mas.20297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Protein phosphorylation represents one of the most extensively studied post-translational modifications, primarily due to the emergence of sensitive methods enabling the detection of this modification both in vitro and in vivo. The availability of enrichment methods combined with sensitive mass spectrometry instrumentation has played a crucial role in uncovering the dynamic changes and the large expanding repertoire of this reversible modification. The structural changes imparted by the phosphorylation of specific residues afford exquisite mechanisms for the regulation of protein functions by modulating new binding sites on scaffold proteins or by abrogating protein-protein interactions. However, the dynamic interplay of protein phosphorylation is not occurring randomly within the cell but is rather finely orchestrated by specific kinases and phosphatases that are unevenly distributed across subcellular compartments. This spatial separation not only regulates protein phosphorylation but can also control the activity of other enzymes and the transfer of other post-translational modifications. While numerous large-scale phosphoproteomics studies highlighted the extent and diversity of phosphoproteins present in total cell lysates, the further understanding of their regulation and biological activities require a spatio-temporal resolution only achievable through subcellular fractionation. This review presents a first account of the emerging field of subcellular phosphoproteomics where cell fractionation approaches are combined with sensitive mass spectrometry methods to facilitate the identification of low abundance proteins and to unravel the intricate regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Matthias Trost
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
48
|
Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D, Wrulich OA, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber LA. QIKS--Quantitative identification of kinase substrates. Proteomics 2010; 10:2015-25. [PMID: 20217869 DOI: 10.1002/pmic.200900749] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Signaling networks regulate cellular responses to external stimuli through post-translational modifications such as protein phosphorylation. Phosphoproteomics facilitate the large-scale identification of kinase substrates. Yet, the characterization of critical connections within these networks and the identification of respective kinases remain the major analytical challenge. To address this problem, we present a novel approach for the identification of direct kinase substrates using chemical genetics in combination with quantitative phosphoproteomics. Quantitative identification of kinase substrates (QIKS) is a novel-screening platform developed for the proteome-wide substrate-analysis of specific kinases. Here, we aimed to identify substrates of mitogen-activated protein kinase/Erk kinase (Mek1), an essential kinase in the mitogen-activated protein kinase cascade. An ATP analog-sensitive mutant of Mek1 (Mek1-as) was incubated with a cell extract from Mek1 deficient cells. Phosphorylated proteins were analyzed by LC-MS/MS of IMAC-enriched phosphopeptides, labeled differentially for relative quantification. The identification of extracellular regulated kinase 1/2 as the sole cytoplasmic substrates of MEK1 validates the applicability of this approach and suggests that QIKS could be used to identify substrates of a wide variety of kinases.
Collapse
Affiliation(s)
- Sandra Morandell
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Proteomics has the goal of defining the complete protein complement of biological systems, which can then be analyzed in a comparative fashion to generate informative data regarding protein expression and function. Proteomic analyses can also facilitate the discovery of biomarkers that can be used to diagnose and monitor disease severity, activity and therapeutic response, as well as to identify new targets for drug development. A major challenge for proteomics, however, has been detecting low-abundance proteins in complex biological fluids. This review summarizes how proteomic analyses have advanced lung cell biology and facilitated the identification of new mechanisms of disease pathogenesis in respiratory disorders, such as asthma, cystic fibrosis, lung cancer, acute lung injury and sarcoidosis. The impact of nanotechnology and microfluidics, as well as studies of post-translational modifications and protein-protein interactions (the interactome), are considered. Furthermore, the application of systems-biology approaches to organize and analyze data regarding the lung proteome, interactome, genome, transcriptome, metabolome, glycome and small RNAome (regulatory RNAs), should facilitate future conceptual advances regarding lung cell biology, disease pathogenesis, biomarker discovery and drug development.
Collapse
Affiliation(s)
- Stewart J Levine
- National Institutes of Health, Pulmonary-Critical Care Medicine Branch, NHLBI, Building 10, Room 6D03, MSC 1590, Bethesda, MD 0892-1590, USA.
| |
Collapse
|
50
|
Choong LY, Lim S, Chong PK, Wong CY, Shah N, Lim YP. Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS One 2010; 5:e11030. [PMID: 20543960 PMCID: PMC2882958 DOI: 10.1371/journal.pone.0011030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/18/2010] [Indexed: 01/27/2023] Open
Abstract
Background Mapping the expression changes during breast cancer development should facilitate basic and translational research that will eventually improve our understanding and clinical management of cancer. However, most studies in this area are challenged by genetic and environmental heterogeneities associated with cancer. Methodology/Principal Findings We conducted proteomics of the MCF10AT breast cancer model, which comprises of 4 isogenic xenograft-derived human cell lines that mimic different stages of breast cancer progression, using iTRAQ-based tandem mass spectrometry. Of more than 1200 proteins detected, 98 proteins representing at least 20 molecular function groups including kinases, proteases, adhesion, calcium binding and cytoskeletal proteins were found to display significant expression changes across the MCF10AT model. The number of proteins that showed different expression levels increased as disease progressed from AT1k pre-neoplastic cells to low grade CA1h cancer cells and high grade cancer cells. Bioinformatics revealed that MCF10AT model of breast cancer progression is associated with a major re-programming in metabolism, one of the first identified biochemical hallmarks of tumor cells (the “Warburg effect”). Aberrant expression of 3 novel breast cancer-associated proteins namely AK1, ATOX1 and HIST1H2BM were subsequently validated via immunoblotting of the MCF10AT model and immunohistochemistry of progressive clinical breast cancer lesions. Conclusion/Significance The information generated by this study should serve as a useful reference for future basic and translational cancer research. Dysregulation of ATOX1, AK1 and HIST1HB2M could be detected as early as the pre-neoplastic stage. The findings have implications on early detection and stratification of patients for adjuvant therapy.
Collapse
Affiliation(s)
- Lee Yee Choong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Simin Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Poh Kuan Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chow Yin Wong
- Department of General Surgery, Singapore General Hospital, Singapore, Singapore
| | - Nilesh Shah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yoon Pin Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail:
| |
Collapse
|