1
|
Xu L, Zhang W, Zhang H, Yang X, Ceccobelli S, Zhao Y, E G. Identification of Goat Supernumerary Teat Phenotype Using Wide-Genomic Copy Number Variants. Animals (Basel) 2024; 14:3252. [PMID: 39595305 PMCID: PMC11591440 DOI: 10.3390/ani14223252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Supernumerary teats (SNTs) or nipples often emerge around the mammary line. This study performed a genome-wide selective sweep analysis (GWS) at the copy number variant (CNV) level using two selected signal calculation methods (VST and FST) to identify candidate genes associated with SNTs in goats. A total of 12,310 CNVs were identified from 37 animals and 123 CNVs, with the top 1% VST values including 84 candidate genes (CDGs). Of these CDGs, minichromosome maintenance complex component 3, ectodysplasin A receptor associated via death domain, and cullin 5 demonstrated functions closely related to mammary gland development. In addition, 123 CNVs with the top 1% FST values were annotated to 97 CDGs. 5-Hydroxytryptamine receptor 2A, CCAAT/enhancer-binding protein alpha, and the polymeric immunoglobulin receptor affect colostrum secretion through multiple signaling pathways. Two genes, namely, RNA-binding motif protein 46 and β-1,3-galactosyltransferase 5, showed a close relation to mammary gland development. Six CNVs were identified and annotated to five genes by intersecting the top 1% of candidate CNVs with both parameters. These genes include LOC102185621, LOC102190481, and UDP-glucose pyrophosphorylase 2, which potentially affect the occurrence of BC through multiple biological processes, such as cell detoxification, glycogen synthesis, and phospholipid metabolism. In conclusion, we discovered numerous genes related to mammary development and breast cancer (BC) through a GWS, which suggests the mechanism of SNTs in goats and a certain association between mammary cancer and SNTs.
Collapse
Affiliation(s)
- Lu Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| | - Weiyi Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.X.); (W.Z.); (H.Z.); (Y.Z.)
| |
Collapse
|
2
|
Wang W, Wang S, Wang H, Zheng E, Wu Z, Li Z. Protein Dynamic Landscape during Mouse Mammary Gland Development from Virgin to Pregnant, Lactating, and Involuting Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7546-7557. [PMID: 38513219 DOI: 10.1021/acs.jafc.3c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The mammary gland undergoes significant physiological changes as it undergoes a transition from virgin to pregnancy, lactation, and involution. However, the dynamic role of proteins in regulating these processes during mouse mammary gland development has not been thoroughly explored. In this study, we collected mouse mammary gland tissues from mature virgins aged 8-10 weeks (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW 1d), and day 3 of forced weaning (FW 3d) stages for analysis using DIA-based quantitative proteomics technology. A total of 3,312 proteins were identified, of which 843 were DAPs that were categorized into nine clusters based on their abundance changes across developmental stages. Notably, DAPs in cluster 2, which peaked at the L12d stage, were primarily associated with mammary gland development and lactation. The protein-protein interaction network revealed that the epidermal growth factor (EGF) was central to this cluster. Our study provides a comprehensive overview of the mouse mammary gland development proteome and identifies some important proteins, such as EGF, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 6 (STAT6) that may serve as potential targets for future research to provide guidelines for a deeper understanding of the developmental biology of mammary glands.
Collapse
Affiliation(s)
- Wenjing Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Shunbo Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hao Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| |
Collapse
|
3
|
Hughes K. Comparative mammary gland postnatal development and tumourigenesis in the sheep, cow, cat and rabbit: Exploring the menagerie. Semin Cell Dev Biol 2020; 114:186-195. [PMID: 33082118 DOI: 10.1016/j.semcdb.2020.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Sheep, cows, cats, and rabbits are kept by humans for agricultural purposes and as companion animals. Much of the mammary research in these species has focussed on mastitis in the case of ruminants and rabbits, and mammary tumourigenesis in cats and rabbits. However, similarities with the human breast suggest that these species may be currently underutilised as valuable comparative models of breast development and disease. The mammary gland undergoes cyclical postnatal development that will be considered here in the context of these non-traditional model species, with a focus on the mammary microenvironment at different postnatal developmental stages. The second part of this review will consider mammary tumour development. Ruminants are thought to be relatively 'resistant' to mammary tumourigenesis, likely due to multiple factors including functional properties of ruminant mammary stem/progenitor cells, diet, and/or the fact that production animals undergo a first parity soon after puberty. By contrast, unneutered female cats and rabbits have a propensity to develop mammary neoplasms, and subsets of these may constitute valuable comparative models of breast cancer.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
4
|
Sabha BH, Masood A, Alanazi IO, Alfadda AA, Almehdar HA, Benabdelkamel H, Redwan EM. Comparative Analysis of Milk Fat Globular Membrane (MFGM) Proteome between Saudi Arabia Camelus dromedary Safra and Wadha Breeds. Molecules 2020; 25:E2146. [PMID: 32375319 PMCID: PMC7249027 DOI: 10.3390/molecules25092146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Camel milk is traditionally known to have medicinal properties and many potential health benefits. Natural milk contains many soluble proteins and nanoparticles, such as a milk fat globule membrane (MFGM), a three-layered membrane covering of milk fat globule mainly composed of proteins and lipids, which plays an important role in human health. MFGM proteins account for 1%-4% of total milk proteins, and their nutritive value and distribution depends on the different breeds. The differential composition of these membrane proteins among different camel breeds has not been explored. The current study, therefore, aimed to quantitatively analyze and compare the MFGM proteome between the milk produced by the two most common Saudi camel breeds, Camelus dromedarius: Safra and Wadha. Two-dimensional difference in gel electrophoresis (2D-DIGE) and mass spectrometry analysis revealed a total of 44 MFGM proteins that were identified with a significant difference in abundance (p ≤ 0.05; fold change ≥ 1.5) between the two breeds. Thirty-one proteins were up-regulated and 13 proteins were down-regulated in the Safra breed compared to the Wadha breed. The proteins identified with an increased abundance included α-lactalbumin, lactadherin, and annexin a8, whereas the down-regulated proteins included butyrophilin subfamily 1 member a1, lactotransferrin, and vinculin. The differentially abundant proteins were analyzed by the UNIPROT system and gene ontology (GO) to reveal their associations with known biological functions and pathways. Enzyme-linked immunosorbent assay (ELISA) confirmed the 2D-DIGE findings of butyrophilin (BTN) and α-lactalbumin (α-LA) levels obtained from Safra and Wadha breeds.
Collapse
Affiliation(s)
- Bassam H. Sabha
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (B.H.S.); (H.A.A.)
| | - Afshan Masood
- Proteomics Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.)
| | - Ibrahim O. Alanazi
- The National Center for Genomic Technology (NCGT), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), PO Box 6086, Riyadh 11461, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.)
| | - Hussein A. Almehdar
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (B.H.S.); (H.A.A.)
| | - Hicham Benabdelkamel
- Proteomics Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (A.M.); (A.A.A.)
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (B.H.S.); (H.A.A.)
| |
Collapse
|
5
|
In-depth proteome analysis of more than 12,500 proteins in buffalo mammary epithelial cell line identifies protein signatures for active proliferation and lactation. Sci Rep 2020; 10:4834. [PMID: 32179766 PMCID: PMC7075962 DOI: 10.1038/s41598-020-61521-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
The mature mammary gland is made up of a network of ducts that terminates in alveoli. The innermost layer of alveoli is surrounded by the differentiated mammary epithelial cells (MECs), which are responsible for milk synthesis and secretion during lactation. However, the MECs are in a state of active proliferation during pregnancy, when they give rise to network like structures in the mammary gland. Buffalo (Bubalus bubalis) constitute a major source of milk for human consumption, and the MECs are the major precursor cells which are mainly responsible for their lactation potential. The proteome of MECs defines their functional state and suggests their role in various cellular activities such as proliferation and lactation. To date, the proteome profile of MECs from buffalo origin is not available. In the present study, we have profiled in-depth proteome of in vitro cultured buffalo MECs (BuMECs) during active proliferation using high throughput tandem mass spectrometry (MS). MS analysis identified a total of 8330, 5970, 5289, 4818 proteins in four sub-cellular fractions (SCFs) that included cytosolic (SCF-I), membranous and membranous organelle’s (SCF-II), nuclear (SCF-III), and cytoskeletal (SCF-IV). However, 792 proteins were identified in the conditioned media, which represented the secretome. Altogether, combined analysis of all the five fractions (SCFs- I to IV, and secretome) revealed a total of 12,609 non-redundant proteins. The KEGG analysis suggested that these proteins were associated with 325 molecular pathways. Some of the highly enriched molecular pathways observed were metabolic, MAPK, PI3-AKT, insulin, estrogen, and cGMP-PKG signalling pathway. The newly identified proteins in this study are reported to be involved in NOTCH signalling, transport and secretion processes.
Collapse
|
6
|
Ma H, Ni A, Ge P, Li Y, Shi L, Wang P, Fan J, Isa AM, Sun Y, Chen J. Analysis of Long Non-Coding RNAs and mRNAs Associated with Lactation in the Crop of Pigeons ( Columba livia). Genes (Basel) 2020; 11:genes11020201. [PMID: 32079139 PMCID: PMC7073620 DOI: 10.3390/genes11020201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pigeons have the ability to produce milk and feed their squabs. The genetic mechanisms underlying milk production in the crops of 'lactating' pigeons are not fully understood. In this study, RNA sequencing was employed to profile the transcriptome of lncRNA and mRNA in lactating and non-'lactating' pigeon crops. We identified 7066 known and 17,085 novel lncRNAs. Of these lncRNAs, 6166 were differentially expressed. Among the 15,138 mRNAs detected, 6483 were differentially expressed, including many predominant genes with known functions in the milk production of mammals. A GO annotation analysis revealed that these genes were significantly enriched in 55, 65, and 30 pathways of biological processes, cellular components, and molecular functions, respectively. A KEGG pathway enrichment analysis revealed that 12 pathways (involving 544 genes), including the biosynthesis of amino acids, the propanoate metabolism, the carbon metabolism and the cell cycle, were significantly enriched. The results provide fundamental evidence for the better understanding of lncRNAs' and differentially expressed genes' (DEGs) regulatory role in the molecular pathways governing milk production in pigeon crops. To our knowledge, this is the first genome-wide investigation of the lncRNAs in pigeon crop associated with milk production. This study provided valuable resources for differentially expressed lncRNAs and mRNAs, improving our understanding of the molecular mechanism of pigeon milk production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-6281-6005
| |
Collapse
|
7
|
Upregulation of BTF3 affects the proliferation, apoptosis, and cell cycle regulation in hypopharyngeal squamous cell carcinoma. Biomed Pharmacother 2019; 118:109211. [DOI: 10.1016/j.biopha.2019.109211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
|
8
|
Shibayama H, Yamamoto T, Oshima K, Matsuda T, Nadano D. Transcription Factor Sox4 as a Potential Player in Mammary Gland Involution. DNA Cell Biol 2019; 38:1125-1133. [PMID: 31408364 DOI: 10.1089/dna.2019.4700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammary gland involution is a regressive process for the gland to return to its prepregnancy state after lactation and comprises an initial reversible and second remodeling stage. Although many genes and the multiple expression profiles of their mRNAs have been found in this process, the mechanisms controlling the profiles are largely unknown. In this study, we identified and analyzed transcription factor Sox4 in mammary gland involution. Elevated expression of Sox4 gene in the first stage (48 h after weaning) was observed at the mRNA and protein levels in the mouse mammary gland. Immunohistochemistry of the involuting gland indicated that Sox4 was located in the nuclei of epithelial cells. Nuclear Sox4 was also detected in the second stage, but unlikely to be involved in cell death, one of the characteristic events of involution. To clarify the functional roles of Sox4 in involution, we introduced a model, including a normal mammary epithelial cell line, for finding candidate target genes of this transcription factor and examined its effect on tenascin C mRNA expression.
Collapse
Affiliation(s)
- Hirohisa Shibayama
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomomi Yamamoto
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenzi Oshima
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsukasa Matsuda
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daita Nadano
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
GLUT1 and GLUT8 support lactose synthesis in Golgi of murine mammary epithelial cells. J Physiol Biochem 2019; 75:209-215. [DOI: 10.1007/s13105-019-00679-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/22/2019] [Indexed: 01/12/2023]
|
10
|
Zheng X, Ning C, Zhao P, Feng W, Jin Y, Zhou L, Yu Y, Liu J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J Dairy Sci 2018; 101:11061-11073. [PMID: 30268606 DOI: 10.3168/jds.2018-14900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) play a critical role in mammary development and breast cancer biology. Despite their important role in the mammary gland, little is known of the roles of lncRNA in bovine lactation, particularly regarding the molecular processes underlying it. To characterize the role of lncRNA in bovine lactation, 4 samples of Holstein cow mammary gland tissue at peak and late lactation stages were examined after biopsy. We then profiled the transcriptome of the mammary gland using RNA sequencing technology. Further, functional lncRNA-mRNA coexpression pairs were constructed to infer the function of lncRNA using a generalized linear model, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. More than 1,000 putative lncRNA were identified, 117 of which were differentially expressed between peak and late lactation stages. Bovine lncRNA were shorter, with fewer exon numbers, and expressed at significantly lower levels than protein-coding genes. Seventy-two differentially expressed (DE) lncRNA were coexpressed with 340 different protein-coding genes. The KEGG pathway analysis showed that target mRNA for DE lncRNA were mainly related to lipid and glucose metabolism, including the peroxisome proliferator-activated receptors and 5' adenosine monophosphate-activated protein kinase signaling pathways. Further bioinformatics and integrative analyses revealed that 12 DE lncRNA potentially played important roles in bovine lactation. Our findings provide a valuable resource for future bovine transcriptome studies, facilitate the understanding of bovine lactation biology, and offer functional information for cattle lactation.
Collapse
Affiliation(s)
- X Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - C Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - P Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - W Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - L Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - J Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Dai W, Wang Q, Zou Y, White R, Liu J, Liu H. Short communication: Comparative proteomic analysis of the lactating and nonlactating bovine mammary gland. J Dairy Sci 2017; 100:5928-5935. [DOI: 10.3168/jds.2016-12366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/09/2023]
|
12
|
Morris JS, Stein T. Pubertal Ductal Morphogenesis: Isolation and Transcriptome Analysis of the Terminal End Bud. Methods Mol Biol 2017; 1501:131-148. [PMID: 27796950 DOI: 10.1007/978-1-4939-6475-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The terminal end bud (TEB) is the growing part of the ductal mammary epithelium during puberty, enabling the formation of a primary epithelial network. These highly proliferative bulbous end structures that drive the ductal expansion into the mammary fat pad comprise an outer cap cell layer, containing the progenitor cells of the ductal myoepithelium, and the body cells, which form the luminal epithelium. As TEB make up only a very small part of the whole mammary tissue, TEB-associated factors can be easily missed when whole-tissue sections are being analyzed. Here we describe a method to enzymatically separate TEB and ducts, respectively, from the surrounding stroma of pubertal mice in order to perform transcriptomic or proteomic analysis on the isolated structures and identify potential novel regulators of epithelial outgrowth, or to allow further cell culturing. This approach has previously allowed us to identify novel TEB-associated proteins, including several axonal guidance proteins. We further include protocols for the culturing of isolated TEB, processing of mammary tissue into paraffin and immunohistochemical/fluorescent staining for verification, and localization of protein expression in the mammary tissue at different developmental time points.
Collapse
Affiliation(s)
- Joanna S Morris
- School of Veterinary Medicine, College of MVLS, University of Glasgow, Glasgow, UK
| | - Torsten Stein
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, G12 8 QQ, UK.
| |
Collapse
|
13
|
Jena MK, Janjanam J, Naru J, Kumar S, Kumar S, Singh S, Mohapatra SK, Kola S, Anand V, Jaswal S, Verma AK, Malakar D, Dang AK, Kaushik JK, Reddy VS, Mohanty AK. DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis): lactating vis-a-vis heifer. J Proteomics 2015; 119:100-11. [PMID: 25661041 DOI: 10.1016/j.jprot.2015.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED Mammary gland is an exocrine and sebaceous gland made up of branching network of ducts that end in alveoli. Milk is synthesized in the alveoli and secreted into alveolar lumen. Mammary gland represents an ideal system for the study of organogenesis that undergoes successive cycles of pregnancy, lactation and involution. To gain insights on the molecular events that take place in pubertal and lactating mammary gland, we have identified 43 differentially expressed proteins in mammary tissue of heifer (non-lactating representing a virgin mammary gland), and lactating buffaloes (Bubalus bubalis) by 2D-difference gel electrophoresis (2D-DIGE) and mass spectrometry. Twenty one proteins were upregulated during lactation whereas 8 proteins were upregulated in heifer mammary gland significantly (p<0.05). Bioinformatics analyses of the identified proteins showed that a majority of the proteins are involved in metabolic processes. The differentially expressed proteins were validated by real-time PCR and Western blotting. We observed differential expressions of certain new proteins including EEF1D, HSPA5, HSPD1 and PRDX6 during lactation which have not been reported before. The differentially expressed proteins were mapped to available biological pathways and networks involved in lactation. This study signifies the importance of some proteins which are preferentially expressed during lactation and in heifer mammary gland. BIOLOGICAL SIGNIFICANCE This work is important because we have generated information in water buffalo (B. bubalis) for the first time which is the major milk producing animal in Indian Subcontinent. Out of a present production of 133milliontons of milk produced in India, contribution of buffalo milk is around 54%. Its physiology is somewhat different from the lactating cows. Buffalo milk composition varies from cow milk in terms of higher fat and total solid content, which confers an advantage in preparation of specialized cheese, curd and other dairy products. Being a major milk producing animal in India it is highly essential to understand the lactation associated proteins in the mammary gland of buffalo. In the present investigation our attempt has been to identify new protein evidences which are expressed in lactating buffalo mammary gland and have not been reported before. The findings reported in the present study will help in understanding the lactation biology of buffalo mammary gland in particular and the mammary gland biology in general.
Collapse
Affiliation(s)
- Manoj K Jena
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | | | - Jasmine Naru
- Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Saravanan Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sudarshan Kumar
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | - Surender Singh
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | | | - Srujana Kola
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110016, India
| | - Vijay Anand
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | - Shalini Jaswal
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | - Arvind K Verma
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | - Dhruba Malakar
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | - Ajay K Dang
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | - Jai K Kaushik
- National Dairy Research Institute (NDRI), Karnal 132001, India
| | - Vanga S Reddy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ashok K Mohanty
- National Dairy Research Institute (NDRI), Karnal 132001, India.
| |
Collapse
|
14
|
Abstract
Lactation physiology is a process that is only partly understood. Proteomics techniques have shown to be useful to help advance the knowledge on lactation physiology in human and rodent species but have not been used as major tools for dairy cows, except for mastitis. In this paper, advanced non-targeted proteomics techniques (Filter aided sample preparation and NanoLC-Orbitrap-MS/MS) were applied to study the milk fat globule membrane and milk serum fraction, resulting in the identification of 246 proteins. Of these, 23 transporters and enzymes were related to lipid synthesis and secretion in mammary gland and their functions are discussed in detail. The identification of these intracellular transporters and enzymes in milk provides a possibility of using milk itself to study lipid synthesis and secretion pathways. This full-scale scan of milk proteins by using non-targeted proteomic analysis helps to reveal the important proteins involved in lipid synthesis and secretion for further examination in targeted studies.
Collapse
|
15
|
Murgiano L, D'Alessandro A, Zolla L, Valentini A, Pariset L. Comparison of Milk Fat Globule Membrane (MFGM) proteins in milk samples of Chianina and Holstein cattle breeds across three lactation phases through 2D IEF SDS PAGE — A preliminary study. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Janjanam J, Jamwal M, Singh S, Kumar S, Panigrahi AK, Hariprasad G, Jena MK, Anand V, Kumar S, Kaushik JK, Dang AK, Mukesh M, Mishra BP, Srinivasan A, Reddy VS, Mohanty AK. Proteome analysis of functionally differentiated bovine (Bos indicus
) mammary epithelial cells isolated from milk. Proteomics 2013; 13:3189-204. [DOI: 10.1002/pmic.201300031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Jagadeesh Janjanam
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Manu Jamwal
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Surender Singh
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Saravanan Kumar
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB); New Delhi India
| | - Aswini K. Panigrahi
- Biosciences Core Laboratory, King Abdullah University of Science and Technology (KAUST); Jeddah Saudi Arabia
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS); New Delhi India
| | - Manoj K. Jena
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Vijay Anand
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Sudarshan Kumar
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Jai K. Kaushik
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Ajay K. Dang
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Manishi Mukesh
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources (NBAGR); Karnal India
| | - Bishnu P. Mishra
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources (NBAGR); Karnal India
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS); New Delhi India
| | - Vanga S. Reddy
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB); New Delhi India
| | - Ashok K. Mohanty
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| |
Collapse
|
17
|
Liu Q, Zhou JP, Li B, Huang ZC, Dong HY, Li GY, Zhou K, Nie SL. Basic transcription factor 3 is involved in gastric cancer development and progression. World J Gastroenterol 2013; 19:4495-4503. [PMID: 23901224 PMCID: PMC3725373 DOI: 10.3748/wjg.v19.i28.4495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/25/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To further analyse cancer involvement of basic transcription factor 3 (BTF3) after detection of its upregulation in gastric tumor samples.
METHODS: BTF3 transcription rates in human gastric tumor tissue samples (n = 20) and adjacent normal tissue (n = 18) specimens as well as in the gastric cancer cell lines AGS, SGC-7901, MKN-28, MKN-45 and MGC803 were analyzed via quantitative real-time polymerase chain reaction. The effect of stable BTF3 silencing via infection with a small interfering RNA (siRNA)-BTF3 expressing lentivirus on SGC-7901 cells was measured via Western blotting analysis, proliferation assays, cell cycle and apoptosis profiling by flow cytometry as well as colony forming assays with a Cellomic Assay System.
RESULTS: A significant higher expression of BTF3 mRNA was detected in tumors compared to normal gastric tissues (P < 0.01), especially in section tissues from female patients compared to male patients, and all tested gastric cancer cell lines expressed high levels of BTF3. From days 1 to 5, the relative proliferation rates of stable BTF3-siRNA transfected SGC7901 cells were 82%, 70%, 57%, 49% and 44% compared to the control, while the percentage of cells arrested in the G1 phase was significantly decreased (P = 0.000) and the percentages of cells in the S (P = 0.031) and G2/M (P = 0.027) phases were significantly increased. In addition, the colony forming tendency was significantly decreased (P = 0.014) and the apoptosis rate increased from 5.73% to 8.59% (P = 0.014) after BTF3 was silenced in SGC7901 cells.
CONCLUSION: BTF3 expression is associated with enhanced cell proliferation, reduced cell cycle regulation and apoptosis and its silencing decreased colony forming and proliferation of gastric cancer cells.
Collapse
|
18
|
Signorelli F, Francesca Cifuni G, Miarelli M. Differentially expressed mammary proteins during lactation in dairy sheep. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Hadsell DL, Olea W, Wei J, Fiorotto ML, Matsunami RK, Engler DA, Collier RJ. Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle. Physiol Genomics 2010; 43:271-85. [PMID: 21189371 DOI: 10.1152/physiolgenomics.00133.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypothesis tested was that changes in mammary cell mitochondrial biogenesis and function during lactation would be accounted for by coordinated changes in the proteins of the electron transport chain and that some of these proteins might be linked by their expression patterns to PPARGC1α and AMP kinase. The mitochondrial proteome was studied along with markers of mitochondrial biogenesis and function in mammary tissue collected from mice over the course of a single prolonged lactation cycle. Mammary tissue concentrations of AMP and ADP were increased (P < 0.05) during early lactation and then declined with prolonged lactation. Similar changes were also observed for mitochondrial ATP synthesis activity, mitochondrial mass and DNA copy number. Analysis of the mammary cell mitochondrial proteome identified 244 unique proteins. Of these, only two proteins of the electron transport chain were found to increase during early lactation. In contrast, coordinated changes in numerous electron transport chain proteins were observed both during mid- and late lactation. There were six proteins that could be directly linked to PPARGC1α through network analysis. Abundance of PPARGC-1α and phosphorylation of AMP kinase was highest on day 2 postpartum. The results suggest that the increases in mammary mitochondria ATP synthesis activity during early lactation results from changes in only a limited number proteins. In addition, decreases in a handful of proteins linked to lipid oxidation could be temporally linked to decreases in PPARGC1α and phospho-AMP kinase suggesting potential roles for these proteins in coordinating mammary gland metabolism during early lactation.
Collapse
Affiliation(s)
- Darryl L Hadsell
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Mukherjee A, Soyal SM, Li J, Ying Y, He B, DeMayo FJ, Lydon JP. Targeting RANKL to a specific subset of murine mammary epithelial cells induces ordered branching morphogenesis and alveologenesis in the absence of progesterone receptor expression. FASEB J 2010; 24:4408-19. [PMID: 20605949 PMCID: PMC2974417 DOI: 10.1096/fj.10-157982] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/24/2010] [Indexed: 11/11/2022]
Abstract
Despite support for receptor of activated NF-κB ligand (RANKL) as a mediator of mammary progesterone action, the extent to which this cytokine can functionally contribute to established progesterone-induced mammary morphogenetic responses in the absence of other presumptive effectors is still unclear. To address this uncertainty, we developed an innovative bigenic system for the doxycycline-inducible expression of RANKL in the mammary epithelium of the progesterone receptor knockout (PRKO) mouse. In response to acute doxycycline exposure, RANKL is specifically expressed in the estrogen receptor α (ER) positive/progesterone receptor negative (ER(+)/PR(-)) cell type in the PRKO mammary epithelium, a cell type that is equivalent to the ER(+)/PR(+) cell type in the wild-type (WT) mammary epithelium. Notably, the ER(+)/PR(+) mammary cell normally expresses RANKL in the WT mammary epithelium during pregnancy. In this PRKO bigenic system, acute doxycycline-induced expression of RANKL results in ordered mammary ductal side branching and alveologenesis, morphological changes that normally occur in the parous WT mouse. This mammary epithelial expansion is accompanied by significant RANKL-induced luminal epithelial proliferation, which is driven, in part, by indirect induction of cyclin D1. Collectively, our findings support the conclusion that RANKL represents a critical mediator of mammary PR action and that restricted expression of this effector to the ER(+)/PR(+) mammary cell-type is necessary for a spatially ordered morphogenetic response to progesterone.
Collapse
Affiliation(s)
- Atish Mukherjee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Selma M. Soyal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jie Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Ying
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Hens J, Dann P, Hiremath M, Pan TC, Chodosh L, Wysolmerski J. Analysis of gene expression in PTHrP-/- mammary buds supports a role for BMP signaling and MMP2 in the initiation of ductal morphogenesis. Dev Dyn 2010; 238:2713-24. [PMID: 19795511 DOI: 10.1002/dvdy.22097] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) acts on the mammary mesenchyme and is required for proper embryonic mammary development. In order to understand PTHrP's effects on mesenchymal cells, we profiled gene expression in WT and PTHrP(-/-) mammary buds, and in WT and K14-PTHrP ventral skin at E15.5. By cross-referencing the differences in gene expression between these groups, we identified 35 genes potentially regulated by PTHrP in the mammary mesenchyme, including 6 genes known to be involved in BMP signaling. One of these genes was MMP2. We demonstrated that PTHrP and BMP4 regulate MMP2 gene expression and MMP2 activity in mesenchymal cells. Using mammary bud cultures, we demonstrated that MMP2 acts downstream of PTHrP to stimulate ductal outgrowth. Future studies on the functional role of other genes on this list should expand our knowledge of how PTHrP signaling triggers the onset of ductal outgrowth from the embryonic mammary buds.
Collapse
Affiliation(s)
- Julie Hens
- Department of Biology, St. Bonaventure University, St. Bonaventure, New York, USA
| | | | | | | | | | | |
Collapse
|
22
|
Comparison of milk fat globule membrane (MFGM) proteins of Chianina and Holstein cattle breed milk samples through proteomics methods. Nutrients 2009; 1:302-15. [PMID: 22253986 PMCID: PMC3257596 DOI: 10.3390/nu1020302] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/15/2009] [Indexed: 12/18/2022] Open
Abstract
Identification of proteins involved in milk production is important to understand the biology of lactation. Many studies have advanced the understanding of mammary function and milk secretion, but the critical molecular mechanisms implicated in milk fat secretion is still incomplete. Milk fat globules are secreted from the apical surface of the mammary cells, surrounded by a thin membrane bilayer, the milk fat globule membrane (MFGM), formed by proteins which have been suggested to be cholesterolemia-lowering factors, inhibitors of cancer cell growth, vitamin binders, bactericidal, suppressors of multiple sclerosis. Using a proteomic approach, we compared MFGM from milk samples of individuals belonging to two different cattle breeds, Chianina and Holstein, representative of selection for milk and meat traits, respectively. We were able to isolate some of the major MFGM proteins in the examined samples and to identify differences between the protein fractions of the two breeds. We detected differences in the amount of proteins linked to mammary gland development and lipid droplets formation, as well as host defence mechanisms. We have shown that proteomics is a suitable, unbiased method for the study of milk fractions proteins and a powerful tool in nutritional genomics.
Collapse
|
23
|
Kim H, Cope MB, Herring R, Robinson G, Wilson L, Page GP, Barnes S. 2D difference gel electrophoresis of prepubertal and pubertal rat mammary gland proteomes. J Proteome Res 2008; 7:4638-50. [PMID: 18767877 DOI: 10.1021/pr800121b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rat mammary gland proteomes at day 21 (prepubertal) and day 50 (late puberty) were compared by 2D difference gel electrophoresis. Two-hundred fifty-one spots were significantly different ( p < 0.05) in abundance. Peptide mass fingerprint analysis of a subset of these proteins identified two significantly over-represented classes including structural and blood proteins (increased), and metabolism-relevant proteins (reduced) in day 50 relative to day 21 glands. This is a first report of mammary gland proteome differences at these important breast cancer-relevant time-points.
Collapse
Affiliation(s)
- Helen Kim
- Departments of Pharmacology & Toxicology, the UAB Center for Nutrient-Gene Interaction, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Pechanova O, Stone WD, Monroe W, Nebeker TE, Klepzig KD, Yuceer C. Global and comparative protein profiles of the pronotum of the southern pine beetle, Dendroctonus frontalis. INSECT MOLECULAR BIOLOGY 2008; 17:261-277. [PMID: 18477241 DOI: 10.1111/j.1365-2583.2008.00801.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The southern pine beetle (Dendroctonus frontalis Zimmermann) kills all pines within its range and is among the most important forest pest species in the US. Using a specialized mycangium surrounded by gland cells in the pronotum, adult females culture, transport, and inoculate two fungi into beetle galleries during oviposition. These fungal symbionts, to varying degrees, exclude antagonistic fungi and provide nutrients to larvae. However, the mechanisms (e.g. secreted antibiotic chemicals or nutrients, proteins or pathways) by which this relationship is maintained are not known. Here we present the first global and differential proteome profile of the southern pine beetle pronotum. Two-dimensional polyacrylamide electrophoresis, tandem mass spectrometry, and database searches revealed that the majority of pronotal proteins were related to energy-yielding metabolism, contractile apparati, cell structure, and defence. The identified proteins provide important insights into the molecular and biochemical processes of, and candidates for functional genomics to understand mycangia and pronotum functions in, the southern pine beetle.
Collapse
Affiliation(s)
- O Pechanova
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
25
|
Reinhardt T, Lippolis J. Developmental Changes in the Milk Fat Globule Membrane Proteome During the Transition from Colostrum to Milk. J Dairy Sci 2008; 91:2307-18. [DOI: 10.3168/jds.2007-0952] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Beddek AJ, Rawson P, Peng L, Snell R, Lehnert K, Ward HE, Jordan TW. Profiling the metabolic proteome of bovine mammary tissue. Proteomics 2008; 8:1502-15. [DOI: 10.1002/pmic.200700864] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Peng L, Rawson P, McLauchlan D, Lehnert K, Snell R, Jordan TW. Proteomic analysis of microsomes from lactating bovine mammary gland. J Proteome Res 2008; 7:1427-32. [PMID: 18324766 DOI: 10.1021/pr700819b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammary gland has multiple metabolic potential including for large-scale synthesis of milk proteins, carbohydrate, and lipids including nutrient triacylglycerols. We have carried out a proteomic analysis of mammary tissue to discover proteins that affect lipid metabolism. Unfractionated microsomes from lactating bovine mammary tissue were analyzed using one-dimensional SDS-PAGE with RPLC-ESI-MS/MS. This approach gave 703 proteins including 160 predicted transmembrane proteins. Proteins were classified according to their subcellular localizations and biological functions. Over 50 proteins were associated with cellular uptake, metabolism, and secretion of lipids, including some enzymes that have been previously associated with breast cancer and potential therapeutic targets. This database develops a proteomic view of the metabolic potential of mammary gland that can be expected to contribute to a greater understanding of gene expression and tissue remodeling associated with lactation, and to further dissection of normal and pathological processes in mammary tissue.
Collapse
Affiliation(s)
- Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | | | |
Collapse
|