1
|
Loivamaa I, Sillanpää A, Deptula P, Chamlagain B, Edelmann M, Auvinen P, Nyman TA, Savijoki K, Piironen V, Varmanen P. Aerobic adaptation and metabolic dynamics of Propionibacterium freudenreichii DSM 20271: insights from comparative transcriptomics and surfaceome analysis. mSystems 2024; 9:e0061524. [PMID: 39345151 PMCID: PMC11494915 DOI: 10.1128/msystems.00615-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Propionibacterium freudenreichii (PFR) DSM 20271T is a bacterium known for its ability to thrive in diverse environments and to produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271T to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably of vitamin B12, pseudovitamin-B12, propionate, and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, tricarboxylic acid cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications. IMPORTANCE The study of the response of Propionibacterium freudenreichii to aerobic growth is crucial for understanding how this bacterium adapts to different environments and produces essential compounds like vitamin B12. By investigating its physiological changes under aerobic conditions, we can gain insights into its metabolic adjustments and potential for enhanced growth. These findings not only deepen our understanding of P. freudenreichii's responses to oxygen availability but also offer valuable information for optimizing its growth in industrial applications. This research sheds light on the adaptive mechanisms of this bacterium, providing a foundation for further exploration and potential applications in various fields.
Collapse
Affiliation(s)
- Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Annika Sillanpää
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Paulina Deptula
- Department of Food Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Bhawani Chamlagain
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Möller J, Bodenschatz M, Sangal V, Hofmann J, Burkovski A. Multi-Omics of Corynebacterium Pseudotuberculosis 12CS0282 and an In Silico Reverse Vaccinology Approach Reveal Novel Vaccine and Drug Targets. Proteomes 2022; 10:proteomes10040039. [PMID: 36548458 PMCID: PMC9784263 DOI: 10.3390/proteomes10040039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Corynebacterium pseudotuberculosis is an important animal pathogen, which is also able to infect humans. An optimal treatment of infections with this pathogen is not available today and consequently, more research is necessary to understand the infection process. Here, we present a combined -omics and bioinformatics approach to characterize C. pseudotuberculosis 12CS0282. The genome sequence of strain 12CS0282 was determined, analyzed in comparison with the available 130 C. pseudotuberculosis sequences and used as a basis for proteome analyses. In a reverse vaccinology approach, putative vaccine and drug targets for 12CS0208 were identified. Mass spectrometry analyses revealed the presence of multiple virulence factors even without host contact. In macrophage interaction studies, C. pseudotuberculosis 12CS0282 was highly resistant against human phagocytes and even multiplied within human THP-1 cells. Taken together, the data indicate a high pathogenic potential of the strain.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Mona Bodenschatz
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-28086
| |
Collapse
|
3
|
Cell Proteins Obtained by Peptic Shaving of Two Phenotypically Different Strains of Streptococcus thermophilus as a Source of Anti-Inflammatory Peptides. Nutrients 2022; 14:nu14224777. [PMID: 36432464 PMCID: PMC9695010 DOI: 10.3390/nu14224777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus thermophilus, a food grade bacterium, is extensively used in the manufacture of fermented products such as yogurt and cheeses. It has been shown that S. thermophilus strains exhibited varying anti-inflammatory activities in vitro. Our previous study displayed that this activity could be partially due to peptide(s) generated by trypsin hydrolysis of the surface proteins of S. thermophilus LMD-9. Surface protease PrtS could be the source of these peptides during gastrointestinal digestion. Therefore, peptide hydrolysates were obtained by shaving two phenotypically distinct strains of S. thermophilus (LMD-9 PrtS+ and CNRZ-21N PrtS-) with pepsin, a gastric protease, followed or not by trypsinolysis. The peptide hydrolysates of both strains exhibited anti-inflammatory action through the modulation of pro-inflammatory mediators in LPS-stimulated THP-1 macrophages (COX-2, Pro-IL-1β, IL-1β, and IL-8) and LPS-stimulated HT-29 cells (IL-8). Therefore, peptides released from either PrtS+ or PrtS- strains in the gastrointestinal tract during digestion of a product containing this bacterium may display anti-inflammatory effects and reduce the risk of inflammation-related chronic diseases.
Collapse
|
4
|
Piletska E, Magumba K, Joseph L, Garcia Cruz A, Norman R, Singh R, Tabasso AFS, Jones DJL, Macip S, Piletsky S. Molecular imprinting as a tool for determining molecular markers: a lung cancer case. RSC Adv 2022; 12:17747-17754. [PMID: 35765329 PMCID: PMC9200412 DOI: 10.1039/d2ra01830f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Determining which cancer patients will be sensitive to a given therapy is essential for personalised medicine. Thus, it is important to develop new tools that will allow us to stratify patients according to their predicted response to treatment. The aim of work presented here was to use molecular imprinting for determining the sensitivity of lung cancer cell lines to ionising radiation based on cell surface proteomic differences. Molecularly imprinted polymer nanoparticles (nanoMIPs) were formed in the presence of whole cells. Following trypsinolysis, protein epitopes protected by complexing with MIPs were eluted from the nanoparticles and analysed by LC-MS/MS. The analysis identified two membrane proteins, neutral amino acid transporter B (0) and 4F2 cell-surface antigen heavy chain, the abundance of which in the lung cancer cells could indicate resistance of these cells to radiotherapy. This proof-of-principle experiments shows that this technology can be used in the discovery of new biomarkers and in development of novel diagnostic and therapeutic tools for a personalised medicine approach to treating cancer. A first use of molecular imprinting for characterisation of surfaceome of the lung cancer cells and discovery of the molecular markers for radiosensitivity: towards development of an effective tool for cancer therapy and personalised medicine.![]()
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Kirabo Magumba
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Lesslly Joseph
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Alvaro Garcia Cruz
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| | - Rachel Norman
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK
| | - Rajinder Singh
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK
| | - Antonella F S Tabasso
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK.,Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester UK
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester Leicester Royal Infirmary Leicester UK.,Department of Cardiovascular Sciences, University of Leicester Leicester UK.,National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital Leicester UK
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester UK.,FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya Barcelona Spain
| | - Sergey Piletsky
- School of Chemistry, College of Science and Engineering, University of Leicester Leicester UK +44-(0)116-0294-4666
| |
Collapse
|
5
|
Du Y, Li H, Shao J, Wu T, Xu W, Hu X, Chen J. Adhesion and Colonization of the Probiotic Lactobacillus plantarum HC-2 in the Intestine of Litopenaeus Vannamei Are Associated With Bacterial Surface Proteins. Front Microbiol 2022; 13:878874. [PMID: 35535252 PMCID: PMC9076606 DOI: 10.3389/fmicb.2022.878874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Surface proteins are a type of proteins expressed on the surface of bacteria that play an important role in cell wall synthesis, maintenance of cell morphology, and signaling with the host. Our previous study showed that the probiotic Lactobacillus plantarum HC-2 improved the growth performance and immune response of Litopenaeus vannamei. To further investigate the probiotic mechanism, we determined the automatic aggregation ability of the bacteria and surface hydrophobicity of HC-2 after being treated with 5 M of lithium chloride (LiCl) and observed the morphology and adhesion of the bacteria to HCT116 cells. The results showed that with the removal of the HC-2 surface protein, the auto-aggregation ability and surface hydrophobicity of HC-2 decreased, and the crude mucus layer coated on the bacterial surface gradually dissociated. The adhesion rate of HC-2 to HCT116 cells decreased from 98.1 to 20.9%. Moreover, a total of 201 unique proteins were identified from the mixture of the surface proteins by mass spectrometry (MS). Several proteins are involved in transcription and translation, biosynthetic or metabolic process, cell cycle or division, cell wall synthesis, and emergency response. Meanwhile, a quantitative real-time PCR qPCR_ showed that HC-2 was mainly colonized in the midgut of shrimp, and the colonization numbers were 15 times higher than that in the foregut, while the colonization rate in the hindgut was lower. The adhesion activity measurement showed that the adhesion level of HC-2 to crude intestinal mucus of L. vannamei was higher than that of bovine serum albumin (BSA) and collagen, and the adhesion capacity of the bacterial cells decreased with the extension of LiCl-treatment time. Finally, we identified the elongation factor Tu, Type I glyceraldehyde-3-phosphate dehydrogenase, small heat shock protein, and 30S ribosomal protein from the surface proteins, which may be the adhesion proteins of HC-2 colonization in the shrimp intestine. The above results indicate that surface proteins play an important role in maintaining the cell structure stability and cell adhesion. Surface proteomics analysis contributes to describing potential protein-mediated probiotic-host interactions. The identification of some interacting proteins in this work may be beneficial to further understand the adhesion/colonization mechanism and probiotic properties of L. plantarum HC-2 in the shrimp intestine.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jianchun Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - WenLong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Assessment of Listeria monocytogenes Surface Proteins Identified from Proteomics Analysis for Use as Diagnostic Biomarkers. Appl Environ Microbiol 2022; 88:e0003522. [PMID: 35477262 DOI: 10.1128/aem.00035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is an important pathogen that causes a foodborne illness with a high percentage of fatalities. Surface proteins, specifically expressed from a wide range of L. monocytogenes serotypes under selective enrichment culture conditions, can serve as targets for the detection and isolation of this pathogen using antibody-based methods. Among a number of surface proteins identified by mass spectrometry in a previous proteomic study, six candidates (annotated as LMOf2365_0148, LMOf2365_0312, LMOf2365_0546, LMOf2365_1883, LMOf2365_2111, and LMOf2365_2742) were selected here for investigating their expression in the bacterial cells cultured in vitro by raising rabbit polyclonal antibodies (PAbs) against the recombinant form of each candidate. These protein candidates contained regions conserved among various L. monocytogenes isolates but variable in other Listeria species. LMOf2365_0148, an uncharacterized protein with a LPXTG motif accountable for covalent linkage to the cell wall peptidoglycan, exhibited a strong reaction signal from anti-LMOf2365_0148 PAb binding to the cell surface, as detected by immunofluorescence microscopy. Further study, through the generation of a panel of mouse monoclonal antibodies (MAbs) to the recombinant LMOf2365_0148, showed that one of the MAbs, M3686, reacted to bacterial isolates belonging to all three lineages of L. monocytogenes under Health Canada's standard enrichment culture conditions (MFHPB-07 and MFHPB-30). These results demonstrated the potential of using LMOf2365_0148 as a surface biomarker, in conjunction with specific MAbs developed here, for the isolation and detection of L. monocytogenes from foods and food processing environments. IMPORTANCE Strains of Listeria monocytogenes are differentiated serologically into at least 13 serotypes and grouped phylogenetically into 4 distinct lineages (I, II, III, and IV). No single monoclonal antibody (MAb) reported to date is capable of binding to the surface of L. monocytogenes strains representing all the serotypes. This study assessed the expression of six surface proteins selected from a previous proteomic study and demonstrated that surface protein LMOf2365_0148 has the greatest potential as a surface biomarker. A panel of 24 MAbs to LMOf2365_0148 were assessed extensively, revealing that one of the MAbs, M3686, reacted to a wide range of L. monocytogenes isolates (lineage I, II, and III isolates) grown under standard enrichment culture conditions and thus led to the conclusion that LMOf2365_0148 is a useful novel surface biomarker for identifying, detecting, and isolating the pathogen from food and environmental samples.
Collapse
|
7
|
Allouche R, Hafeez Z, Papier F, Dary-Mourot A, Genay M, Miclo L. In Vitro Anti-Inflammatory Activity of Peptides Obtained by Tryptic Shaving of Surface Proteins of Streptococcus thermophilus LMD-9. Foods 2022; 11:foods11081157. [PMID: 35454744 PMCID: PMC9030335 DOI: 10.3390/foods11081157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Streptococcus thermophilus, a lactic acid bacterium widely used in the dairy industry, is consumed regularly by a significant proportion of the population. Some strains show in vitro anti-inflammatory activity which is not fully understood. We hypothesized that peptides released from the surface proteins of this bacterium during digestion could be implied in this activity. Consequently, we prepared a peptide hydrolysate by shaving and hydrolysis of surface proteins using trypsin, and the origin of peptides was checked by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Most of the identified peptides originated from bacterial cell surface proteins. The anti-inflammatory activity of peptide hydrolysate was investigated under inflammatory conditions in two cell models. Peptide hydrolysate significantly decreased secretion of pro-inflammatory cytokine IL-8 in lipopolysaccharide (LPS)-stimulated human colon epithelial HT-29 cells. It also reduced the production of pro-inflammatory cytokines IL-8, IL-1β and the protein expression levels of Pro-IL-1β and COX-2 in LPS-stimulated THP-1 macrophages. The results showed that peptides released from bacterial surface proteins by a pancreatic protease could therefore participate in an anti-inflammatory activity of S. thermophilus LMD-9 and could prevent low-grade inflammation.
Collapse
|
8
|
Montemari AL, Marzano V, Essa N, Levi Mortera S, Rossitto M, Gardini S, Selan L, Vrenna G, Onetti Muda A, Putignani L, Fiscarelli EV. A Shaving Proteomic Approach to Unveil Surface Proteins Modulation of Multi-Drug Resistant Pseudomonas aeruginosa Strains Isolated From Cystic Fibrosis Patients. Front Med (Lausanne) 2022; 9:818669. [PMID: 35355602 PMCID: PMC8959810 DOI: 10.3389/fmed.2022.818669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common rare disease caused by a mutation of the CF transmembrane conductance regulator gene encoding a channel protein of the apical membrane of epithelial cells leading to alteration of Na+ and K+ transport, hence inducing accumulation of dense and sticky mucus and promoting recurrent airway infections. The most detected bacterium in CF patients is Pseudomonas aeruginosa (PA) which causes chronic colonization, requiring stringent antibiotic therapies that, in turn induces multi-drug resistance. Despite eradication attempts at the first infection, the bacterium is able to utilize several adaptation mechanisms to survive in hostile environments such as the CF lung. Its adaptive machinery includes modulation of surface molecules such as efflux pumps, flagellum, pili and other virulence factors. In the present study we compared surface protein expression of PA multi- and pan-drug resistant strains to wild-type antibiotic-sensitive strains, isolated from the airways of CF patients with chronic colonization and recent infection, respectively. After shaving with trypsin, microbial peptides were analyzed by tandem-mass spectrometry on a high-resolution platform that allowed the identification of 174 differentially modulated proteins localized in the region from extracellular space to cytoplasmic membrane. Biofilm assay was performed to characterize all 26 PA strains in term of biofilm production. Among the differentially expressed proteins, 17 were associated to the virulome (e.g., Tse2, Tse5, Tsi1, PilF, FliY, B-type flagellin, FliM, PyoS5), six to the resistome (e.g., OprJ, LptD) and five to the biofilm reservoir (e.g., AlgF, PlsD). The biofilm assay characterized chronic antibiotic-resistant isolates as weaker biofilm producers than wild-type strains. Our results suggest the loss of PA early virulence factors (e.g., pili and flagella) and later expression of virulence traits (e.g., secretion systems proteins) as an indicator of PA adaptation and persistence in the CF lung environment. To our knowledge, this is the first study that, applying a shaving proteomic approach, describes adaptation processes of a large collection of PA clinical strains isolated from CF patients in early and chronic infection phases.
Collapse
Affiliation(s)
- Anna Lisa Montemari
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valeria Marzano
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nour Essa
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Martina Rossitto
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Andrea Onetti Muda
- Department of Diagnostics and Laboratory Medicine, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Cystic Fibrosis Diagnostics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
9
|
Singhal N, Garg A, Singh N, Gulati P, Kumar M, Goel M. Efficacy of signal peptide predictors in identifying signal peptides in the experimental secretome of Picrophilous torridus, a thermoacidophilic archaeon. PLoS One 2021; 16:e0255826. [PMID: 34358261 PMCID: PMC8345856 DOI: 10.1371/journal.pone.0255826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
Secretory proteins are important for microbial adaptation and survival in a particular environment. Till date, experimental secretomes have been reported for a few archaea. In this study, we have identified the experimental secretome of Picrophilous torridus and evaluated the efficacy of various signal peptide predictors (SPPs) in identifying signal peptides (SPs) in its experimental secretome. Liquid chromatography mass spectrometric (LC MS) analysis was performed for three independent P. torridus secretome samples and only those proteins which were common in the three experiments were selected for further analysis. Thus, 30 proteins were finally included in this study. Of these, 10 proteins were identified as hypothetical/uncharacterized proteins. Gene Ontology, KEGG and STRING analyses revealed that majority of the sercreted proteins and/or their interacting partners were involved in different metabolic pathways. Also, a few proteins like malate dehydrogenase (Q6L0C3) were multi-functional involved in different metabolic pathways like carbon metabolism, microbial metabolism in diverse environments, biosynthesis of antibiotics, etc. Multi-functionality of the secreted proteins reflects an important aspect of thermoacidophilic adaptation of P. torridus which has the smallest genome (1.5 Mbp) among nonparasitic aerobic microbes. SPPs like, PRED-SIGNAL, SignalP 5.0, PRED-TAT and LipoP 1.0 identified SPs in only a few secreted proteins. This suggests that either these SPPs were insufficient, or N-terminal SPs were absent in majority of the secreted proteins, or there might be alternative mechanisms of protein translocation in P. torridus.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Nirpendra Singh
- Regional Center for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Pallavi Gulati
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
10
|
The Landscape of Pseudomonas aeruginosa Membrane-Associated Proteins. Cells 2020; 9:cells9112421. [PMID: 33167383 PMCID: PMC7694347 DOI: 10.3390/cells9112421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Pseudomonas aeruginosa cell envelope-associated proteins play a relevant role in infection mechanisms. They can contribute to the antibiotic resistance of the bacterial cells and be involved in the interaction with host cells. Thus, studies contributing to elucidating these key molecular elements are of great importance to find alternative therapeutics. Methods: Proteins and peptides were extracted by different methods and analyzed by Multidimensional Protein Identification Technology (MudPIT) approach. Proteomic data were processed by Discoverer2.1 software and multivariate statistics, i.e., Linear Discriminant Analysis (LDA), while the Immune Epitope Database (IEDB) resources were used to predict antigenicity and immunogenicity of experimental identified peptides and proteins. Results: The combination of 29 MudPIT runs allowed the identification of 10,611 peptides and 2539 distinct proteins. Following application of extraction methods enriching specific protein domains, about 15% of total identified peptides were classified in trans inner-membrane, inner-membrane exposed, trans outer-membrane and outer-membrane exposed. In this scenario, nine outer membrane proteins (OprE, OprI, OprF, OprD, PagL, OprG, PA1053, PAL and PA0833) were predicted to be highly antigenic. Thus, they were further processed and epitopes target of T cells (MHC Class I and Class II) and B cells were predicted. Conclusion: The present study represents one of the widest characterizations of the P. aeruginosa membrane-associated proteome. The feasibility of our method may facilitates the investigation of other bacterial species whose envelope exposed protein domains are still unknown. Besides, the stepwise prioritization of proteome, by combining experimental proteomic data and reverse vaccinology, may be useful for reducing the number of proteins to be tested in vaccine development.
Collapse
|
11
|
Martínez-García E, Fraile S, Rodríguez Espeso D, Vecchietti D, Bertoni G, de Lorenzo V. Naked Bacterium: Emerging Properties of a Surfome-Streamlined Pseudomonas putida Strain. ACS Synth Biol 2020; 9:2477-2492. [PMID: 32786355 DOI: 10.1021/acssynbio.0c00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Environmental bacteria are most often endowed with native surface-attachment programs that frequently conflict with efforts to engineer biofilms and synthetic communities with given tridimensional architectures. In this work, we report the editing of the genome of Pseudomonas putida KT2440 for stripping the cells of most outer-facing structures of the bacterial envelope that mediate motion, binding to surfaces, and biofilm formation. To this end, 23 segments of the P. putida chromosome encoding a suite of such functions were deleted, resulting in the surface-naked strain EM371, the physical properties of which changed dramatically in respect to the wild type counterpart. As a consequence, surface-edited P. putida cells were unable to form biofilms on solid supports and, because of the swimming deficiency and other alterations, showed a much faster sedimentation in liquid media. Surface-naked bacteria were then used as carriers of interacting partners (e.g., Jun-Fos domains) ectopically expressed by means of an autotransporter display system on the now easily accessible cell envelope. Abstraction of individual bacteria as adhesin-coated spherocylinders enabled rigorous quantitative description of the multicell interplay brought about by thereby engineered physical interactions. The model was then applied to parametrize the data extracted from automated analysis of confocal microscopy images of the experimentally assembled bacterial flocks for analyzing their structure and distribution. The resulting data not only corroborated the value of P. putida EM371 over the parental strain as a platform for display artificial adhesins but also provided a strategy for rational engineering of catalytic communities.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sofía Fraile
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Rodríguez Espeso
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Davide Vecchietti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Möller J, Schorlemmer S, Hofmann J, Burkovski A. Cellular and Extracellular Proteome of the Animal Pathogen Corynebacterium silvaticum, a Close Relative of Zoonotic Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Proteomes 2020; 8:proteomes8030019. [PMID: 32806579 PMCID: PMC7564913 DOI: 10.3390/proteomes8030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Corynebacterium silvaticum is a newly described animal pathogen, closely related to the emerging human pathogen Corynebacterium ulcerans and Corynebacterium pseudotuberculosis, a major pathogen of small ruminants. In this study, proteins of a whole cell and a shaving fraction and the exoproteome of C. silvaticum strain W25 were analyzed as a first proteome study of this species. In total, 1305 proteins were identified out of 2013 proteins encoded by the W25 genome sequence and number of putative virulence factors were detected already under standard growth conditions including phospholipase D and sialidase. An up to now uncharacterized trypsin-like protease is by far the most secreted protein in this species, indicating a putative role in pathogenicity. Furthermore, the proteome analyses carried out in this study support the recently published taxonomical delineation of C. silvaticum from the closely related zoonotic Corynebacterium species.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
| | - Svenja Schorlemmer
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
| | - Jörg Hofmann
- Biochemistry Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany;
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany; (J.M.); (S.S.)
- Correspondence: ; Tel.: +49-9131-85-28086
| |
Collapse
|
13
|
Adu KT, Wilson R, Baker AL, Bowman J, Britz ML. Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J Proteome Res 2020; 19:1824-1846. [PMID: 32108472 DOI: 10.1021/acs.jproteome.0c00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactobacillus casei group bacteria improve cheese ripening and may interact with host intestinal cells as probiotics, where surface proteins play a key role. Three complementary methods [trypsin shaving (TS), LiCl-sucrose (LS) extraction, and extracellular culture fluid precipitation] were used to analyze cell surface proteins of Lactobacillus paracasei GCRL163 by label-free quantitative proteomics after culture to the mid-exponential phase in bioreactors at pH 6.5 and temperatures of 30-45 °C. A total of 416 proteins, including 300 with transmembrane, cell wall anchoring, and secretory motifs and 116 cytoplasmic proteins, were quantified as surface proteins. Although LS caused significantly greater cell lysis as growth temperature increased, higher numbers of extracytoplasmic proteins were exclusively obtained by LS treatment. Together with the increased positive surface charge of cells cultured at supra-optimal temperatures, proteins including cell wall hydrolases Msp1/p75 and Msp2/p40, α-fucosidase AlfB, SecA, and a PspC-domain putative adhesin were upregulated in surface or secreted protein fractions, suggesting that cell adhesion may be altered. Prolonged heat stress (PHS) increased binding of L. paracasei GCRL163 to human colorectal adenocarcinoma HT-29 cells, relative to acid-stressed cells. This study demonstrates that PHS influences cell adhesion and relative abundance of proteins located on the surface, which may impact probiotic functionality, and the detected novel surface proteins likely linked to the cell cycle and envelope stress.
Collapse
Affiliation(s)
- Kayode T Adu
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Anthony L Baker
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - John Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Margaret L Britz
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
14
|
Ali SA, Singh P, Tomar SK, Mohanty AK, Behare P. Proteomics fingerprints of systemic mechanisms of adaptation to bile in Lactobacillus fermentum. J Proteomics 2019; 213:103600. [PMID: 31805390 DOI: 10.1016/j.jprot.2019.103600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022]
Abstract
Lactobacillus fermentum is a natural resident of the human GIT and is used as a probiotic. A unique property of L. fermentum is its ability to tolerate, colonize, and survive in the harsh conditions of bile, which facilitates transient colonization of the host colon. In the current study, we investigated the key mechanisms of action involved in bacterial survival in the presence of bile, using high-resolution mass spectrometry. A total of 1071 proteins were identified, among which 378 were up-regulated and 368 down-regulated by ≥2-fold (t-test, p < .05). Differentially regulated proteins comprised both intracellular and surface-exposed (i.e., membrane) proteins (p < .01, t-test for total proteome analysis; p < .05, t-test for membrane proteome analysis). These alterations strengthen the cell envelope and also mediate bile efflux by adjusting carbohydrate metabolic pathways and prevention of protein misfolding. These processes are mainly involved in the active removal of bile salts or amelioration of its adverse effects on cells. Further investigation of mRNA transcript expression levels of selected proteins by quantitative reverse transcriptase-PCR verified the proteomic data. Together, our proteomics findings reveal the roles of post-stress recovery proteins and highlight the interacting pathways responsible for bacterial cell tolerance to bile stress. BIOLOGICAL SIGNIFICANCE: Our intestinal tract is a nutrient-rich milieu crowded with up to 100 trillion (1014) of microbes. The fact that we are born germ-free describes that these microbes must colonize our intestinal tract from outside. However, their survival is also complicated because of hazardous conditions in the gut due to the presence of bile acid and others, which exerts a deleterious effect on the beneficial microbial load. While there was limited information available describing the comprehensive mechanism of survival? Furthermore, the imbalance of these micro floras leads to numerous disease conditions. It explains the need for enhanced understanding of host-microbe interactions in the colon. The present study majorly focuses on identifying "how microbes respond to environmental stressors" in this context, particularly bile acid response. This work addresses a fascinating cellular mechanism involved in the complex changes of bile induction in the microbial system; in this case, L. fermentum NCDC 605 a well established probiotic organism. In this article, we decipher the characteristic adaptation mechanism adjusted by probiotics in the harsh condition of 1.2% bile. The generated new knowledge will also improve the potential therapeutic efficacy of probiotics strains in clinical trials for patients of inflammatory bowel diseases (IBD) and related disorders.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India.
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India
| | - Sudhir K Tomar
- National Collection of Dairy Cultures (NCDC) lab, Dairy Microbiology Division, National Dairy Research Institute, Haryana, India
| | - Ashok K Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Haryana, India
| | - Pradip Behare
- National Collection of Dairy Cultures (NCDC) lab, Dairy Microbiology Division, National Dairy Research Institute, Haryana, India.
| |
Collapse
|
15
|
Siciliano RA, Lippolis R, Mazzeo MF. Proteomics for the Investigation of Surface-Exposed Proteins in Probiotics. Front Nutr 2019; 6:52. [PMID: 31069232 PMCID: PMC6491629 DOI: 10.3389/fnut.2019.00052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Probiotics are commensal microorganisms that are present in the intestinal tract and in many fermented foods and positively affect human health, promoting digestion and uptake of dietary nutrients, strengthening intestinal barrier function, modulating immune response, and enhancing antagonism toward pathogens. The proteosurfaceome, i.e., the complex set of proteins present on the bacterial surface, is directly involved as leading actor in the dynamic communication between bacteria and host. In the last decade, the biological relevance of surface-exposed proteins prompted research activities exploiting the potentiality of proteomics to define the complex network of proteins that are involved in the molecular mechanisms at the basis of the adaptation to gastrointestinal environment and the probiotic effects. These studies also took advantages of the recent technological improvements in proteomics, mass spectrometry and bioinformatics that triggered the development of ad hoc designed innovative strategies to characterize the bacterial proteosurfaceome. This mini-review is aimed at describing the key role of proteomics in depicting the cell wall protein architecture and the involvement of surface-exposed proteins in the intimate and dynamic molecular dialogue between probiotics and intestinal epithelial and immune cells.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Rosa Lippolis
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | | |
Collapse
|
16
|
Möller J, Kraner ME, Burkovski A. More than a Toxin: Protein Inventory of Clostridium tetani Toxoid Vaccines. Proteomes 2019; 7:proteomes7020015. [PMID: 30988272 PMCID: PMC6631180 DOI: 10.3390/proteomes7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
Clostridium tetani is the etiological agent of tetanus, a life-threatening bacterial infection. The most efficient protection strategy against tetanus is a vaccination with the C. tetani neurotoxin, which is inactivated by formaldehyde-crosslinking. Since we assumed that besides the tetanus toxin, other proteins of C. tetani may also be present in toxoid preparations, we analyzed commercially available vaccines from different countries in respect to their protein content using mass spectrometry. In total 991 proteins could be identified in all five analyzed vaccines, 206 proteins were common in all analyzed vaccines and 54 proteins from the 206 proteins were potential antigens. The additionally present proteins may contribute at least partially to protection against C. tetani infection by supporting the function of the vaccine against the devastating effects of the tetanus toxin indirectly. Two different label-free protein quantification methods were applied for an estimation of protein contents. Similar results were obtained with a Total Protein Approach (TPA)-based method and Protein Discoverer 2.2 software package based on the minora algorithm. Depending on the tetanus toxoid vaccine and the quantification method used, tetanus neurotoxin contributes between 14 and 76 % to the total C. tetani protein content and varying numbers of other C. tetani proteins were detected.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Max Edmund Kraner
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
17
|
Production of neutralizing antibodies against the secreted Clostridium chauvoei toxin A (CctA) upon blackleg vaccination. Anaerobe 2019; 56:78-87. [PMID: 30771460 DOI: 10.1016/j.anaerobe.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 01/23/2023]
Abstract
Clostridium chauvoei is the etiologic agent of blackleg in cattle, inducing fever, severe myonecrosis, oedemic lesions and ultimately death of infected animals. The pathogen often results in such rapid death that antibiotic therapy is futile and thus vaccination is the only efficient strategy in order to control the disease. The β-barrel pore forming leucocidin Clostridium chauvoei toxin A (CctA) is one of the best characterised toxins of C. chauvoei and has been shown to be an important virulence factor. It has been reported to induce protective immunity and is conserved across C. chauvoei strains collected from diverse geographical locations for more than 50 years. The aim of this study was to identify the location of the CctA toxin during liquid culture fermentation and to use CctA to develop an in vitro assay to replace the current guinea pig challenge assay for vaccine potency in standard batch release procedures. We report that CctA is fully secreted in C. chauvoei culture and show that it is found abundantly in the supernatant of liquid cultures. Sera from cattle vaccinated with a commercial blackleg vaccine revealed strong haemolysin-neutralizing activity against recombinant CctA which reached titres of 1000 times 28 days post-vaccination. Similarly, guinea pig sera from an official potency control test reached titres of 600 times 14 days post-vaccination. In contrast, ELISA was not able to specifically measure anti-CctA antibodies in cattle serum due to strong cross-reactions with antibodies against other proteins present pre-vaccination. We conclude that haemolysin-neutralizing antibodies are a valuable measurement for protective immunity against blackleg and have the potential to be a suitable replacement of the guinea pig challenge potency test, which would forego the unnecessary challenge of laboratory animals.
Collapse
|
18
|
Fagerquist CK, Zaragoza WJ. Proteolytic Surface-Shaving and Serotype-Dependent Expression of SPI-1 Invasion Proteins in Salmonella enterica Subspecies enterica. Front Nutr 2018; 5:124. [PMID: 30619870 PMCID: PMC6295468 DOI: 10.3389/fnut.2018.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
We performed proteolytic surface-shaving with trypsin on three strains/sevovars of Salmonella enterica enterica (SEE): Newport, Kentucky, and Thompson. Surfaced-exposed proteins of live bacterial cells were digested for 15 min. A separate 20 h re-digestion was also performed on the supernatant of each shaving experiment to more completely digest protein fragments into detectable peptides for proteomic analysis by nano-liquid chromatography-electrospray ionization-Orbitrap mass spectrometry. Control samples (i.e., no trypsin during surface-shaving step) were also performed in parallel. We detected peptides of flagella proteins: FliC (filament), FliD (cap), and FlgL (hook-filament junction) as well as peptides of FlgM (anti-σ28 factor), i.e., the negative regulator of flagella synthesis. For SEE Newport and Thompson, we detected Salmonella pathogenicity island 1 (SPI-1) secreted effector/invasion proteins: SipA, SipB, SipC, and SipD, whereas no Sip proteins were detected in control samples. No Sip proteins were detected for SEE Kentucky (or its control) although sip genes were confirmed to be present. Our results may suggest a biological response (<15 min) to proteolysis of live cells for these SEE strains and, in the case of Newport and Thompson, a possible invasion response.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - William J Zaragoza
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| |
Collapse
|
19
|
Esbelin J, Santos T, Ribière C, Desvaux M, Viala D, Chambon C, Hébraud M. Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:779-787. [PMID: 30457927 DOI: 10.1089/omi.2018.0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cell surface proteome of the foodborne pathogen Listeria monocytogenes, the etiological agent of listeriosis, is critical for understanding the physiological processes associated with stress resistance and persistence in the environment. In this context, the most widespread mode of growth for bacterial cells in natural and industrial environments is in biofilms. Cell surface proteins are, however, challenging to characterize because of their low abundance and poor solubility. Moreover, cell surface protein extracts are usually contaminated with cytoplasmic proteins that constitute the main signal in proteomic analysis. This study aimed to compare the efficiency of three methods to extract and explore surface proteins of L. monocytogenes growing in a biofilm: trypsin shaving, biotinylation, and cell fractionation. Peptide separation and identification were performed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The biotinylation method was the most effective in extracting surface proteins, with the lowest rate of contamination by cytoplasmic proteins. Although presenting a higher contamination rate in cytoplasmic proteins, the other two techniques allowed the identification of additional surface proteins. Seven proteins were commonly retrieved by the three methods. The extracted proteins belong to several functional classes, involved in virulence, transport, or metabolic pathways. Finally, the three extraction methods seemed complementary and their combined use improved the exploration of the bacterial surface proteome. These new findings collectively inform future discovery and translational proteomics for clinical, environmental health, and industrial applications.
Collapse
Affiliation(s)
- Julia Esbelin
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Tiago Santos
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Céline Ribière
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Mickaël Desvaux
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Didier Viala
- 2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| | - Christophe Chambon
- 2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| | - Michel Hébraud
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France.,2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| |
Collapse
|
20
|
Surface and Extracellular Proteome of the Emerging Pathogen Corynebacterium ulcerans. Proteomes 2018; 6:proteomes6020018. [PMID: 29673200 PMCID: PMC6027474 DOI: 10.3390/proteomes6020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Corynebacterium ulcerans is an emerging pathogen, which is increasingly recognized as an etiological agent of diphtheria, but can also evoke ulcers of the skin and systemic infections in humans. Besides man, the bacteria can colonize a wide variety of different animals, including cattle and pet animals, which might serve as a reservoir for human infections. In this study, surface-located proteins and the exoproteome of two Corynebacterium ulcerans strains were analyzed, since these may have key roles in the interaction of the pathogen with host cells. Strain 809 was isolated from a fatal case of human respiratory tract infection, while strain BR-AD22 was isolated from a nasal swap of an asymptomatic dog. While a very similar pattern of virulence factors was observed in the culture supernatant and surface protein fractions of the two strains, proteome analyses revealed a higher stability of 809 cells compared to strain BR-AD22. During exponential growth, 17% of encoded proteins of strain 809 were detectable in the medium, while 38% of the predicted proteins encoded by the BR-AD22 chromosome were found. Furthermore, the data indicate differential expression of phospholipase D and a cell wall-associated hydrolase, since these were only detected in strain BR-AD22.
Collapse
|
21
|
Rodríguez-Ortega MJ. "Shaving" Live Bacterial Cells with Proteases for Proteomic Analysis of Surface Proteins. Methods Mol Biol 2018; 1722:21-29. [PMID: 29264796 DOI: 10.1007/978-1-4939-7553-2_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface proteins are essential molecules for the interplay between cells and the environment. They participate in many biological processes including transport, adhesion, cell-cell recognition, signaling, and other cell interactions. In pathogenic microorganisms, these molecules may act as virulence or cytotoxicity factors. Analyzing the set of surface proteins is critical to understand these processes and to identify possible targets that can be the starting point for other studies or discoveries (e.g., vaccines or diagnostics). Here I describe a proteomic procedure to identify in a fast and reliable way a set of surface-exposed proteins in bacteria, the methodology of which can be adapted to other biological systems (unicellular fungi, parasites). The protocol presented here involves "shaving" the cells cultured in broth with proteases followed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and analysis of the generated peptides. This method overcomes some important limitations of the first-generation, gel based proteomics techniques, and the "shaving" approach allows one to identify which domains from identified proteins are more accessible to proteases. These identified proteins have the highest potential to be recognized by antibodies, and thus permits the identification of potential epitopes or antigens.
Collapse
|
22
|
Zanzoni A, Spinelli L, Braham S, Brun C. Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. MICROBIOME 2017; 5:89. [PMID: 28793925 PMCID: PMC5551000 DOI: 10.1186/s40168-017-0307-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/13/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Fusobacterium nucleatum is a gram-negative anaerobic species residing in the oral cavity and implicated in several inflammatory processes in the human body. Although F. nucleatum abundance is increased in inflammatory bowel disease subjects and is prevalent in colorectal cancer patients, the causal role of the bacterium in gastrointestinal disorders and the mechanistic details of host cell functions subversion are not fully understood. RESULTS We devised a computational strategy to identify putative secreted F. nucleatum proteins (FusoSecretome) and to infer their interactions with human proteins based on the presence of host molecular mimicry elements. FusoSecretome proteins share similar features with known bacterial virulence factors thereby highlighting their pathogenic potential. We show that they interact with human proteins that participate in infection-related cellular processes and localize in established cellular districts of the host-pathogen interface. Our network-based analysis identified 31 functional modules in the human interactome preferentially targeted by 138 FusoSecretome proteins, among which we selected 26 as main candidate virulence proteins, representing both putative and known virulence proteins. Finally, six of the preferentially targeted functional modules are implicated in the onset and progression of inflammatory bowel diseases and colorectal cancer. CONCLUSIONS Overall, our computational analysis identified candidate virulence proteins potentially involved in the F. nucleatum-human cross-talk in the context of gastrointestinal diseases.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France.
| | - Lionel Spinelli
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Shérazade Braham
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Christine Brun
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
- CNRS, Marseille, France
| |
Collapse
|
23
|
Horvatić A, Kuleš J, Guillemin N, Galan A, Mrljak V, Bhide M. High-throughput proteomics and the fight against pathogens. MOLECULAR BIOSYSTEMS 2017; 12:2373-84. [PMID: 27227577 DOI: 10.1039/c6mb00223d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathogens pose a major threat to human and animal welfare. Understanding the interspecies host-pathogen protein-protein interactions could lead to the development of novel strategies to combat infectious diseases through the rapid development of new therapeutics. The first step in understanding the host-pathogen crosstalk is to identify interacting proteins in order to define crucial hot-spots in the host-pathogen interactome, such as the proposed pharmaceutical targets by means of high-throughput proteomic methodologies. In order to obtain holistic insight into the inter- and intra-species bimolecular interactions, apart from the proteomic approach, sophisticated in silico modeling is used to correlate the obtained large data sets with other omics data and clinical outcomes. Since the main focus in this area has been directed towards human medicine, it is time to extrapolate the existing expertise to a new emerging field: the 'systems veterinary medicine'. Therefore, this review addresses high-throughput mass spectrometry-based technology for monitoring protein-protein interactions in vitro and in vivo and discusses pathogen cultivation, model host cells and available bioinformatic tools employed in vaccine development.
Collapse
Affiliation(s)
- Anita Horvatić
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Josipa Kuleš
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
24
|
Identification of some main Streptococcus iniae associated proteins: relationship. Vet Res Commun 2017; 41:85-95. [DOI: 10.1007/s11259-017-9675-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
|
25
|
Changes in the Expression of Biofilm-Associated Surface Proteins in Staphylococcus aureus Food-Environmental Isolates Subjected to Sublethal Concentrations of Disinfectants. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4034517. [PMID: 27868063 PMCID: PMC5102705 DOI: 10.1155/2016/4034517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Sublethal concentrations (sub-MICs) of certain disinfectants are no longer effective in removing biofilms from abiotic surfaces and can even promote the formation of biofilms. Bacterial cells can probably adapt to these low concentrations of disinfectants and defend themselves by way of biofilm formation. In this paper, we report on three Staphylococcus aureus biofilm formers (strong B+++, moderate B++, and weak B+) that were cultivated with sub-MICs of commonly used disinfectants, ethanol or chloramine T, and quantified using Syto9 green fluorogenic nucleic acid stain. We demonstrate that 1.25–2.5% ethanol and 2500 μg/mL chloramine T significantly enhanced S. aureus biofilm formation. To visualize differences in biofilm compactness between S. aureus biofilms in control medium, 1.25% ethanol, or 2500 μg/mL chloramine T, scanning electron microscopy was used. To describe changes in abundance of surface-exposed proteins in ethanol- or chloramine T-treated biofilms, surface proteins were prepared using a novel trypsin shaving approach and quantified after dimethyl labeling by LC-LTQ/Orbitrap MS. Our data show that some proteins with adhesive functions and others with cell maintenance functions and virulence factor EsxA were significantly upregulated by both treatments. In contrast, immunoglobulin-binding protein A was significantly downregulated for both disinfectants. Significant differences were observed in the effect of the two disinfectants on the expression of surface proteins including some adhesins, foldase protein PrsA, and two virulence factors.
Collapse
|
26
|
Casas V, Vadillo S, San Juan C, Carrascal M, Abian J. The Exposed Proteomes of Brachyspira hyodysenteriae and B. pilosicoli. Front Microbiol 2016; 7:1103. [PMID: 27493641 PMCID: PMC4955376 DOI: 10.3389/fmicb.2016.01103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022] Open
Abstract
Brachyspira hyodysenteriae and Brachyspira pilosicoli are well-known intestinal pathogens in pigs. B. hyodysenteriae is the causative agent of swine dysentery, a disease with an important impact on pig production while B. pilosicoli is responsible of a milder diarrheal disease in these animals, porcine intestinal spirochetosis. Recent sequencing projects have provided information for the genome of these species facilitating the search of vaccine candidates using reverse vaccinology approaches. However, practically no experimental evidence exists of the actual gene products being expressed and of those proteins exposed on the cell surface or released to the cell media. Using a cell-shaving strategy and a shotgun proteomic approach we carried out a large-scale characterization of the exposed proteins on the bacterial surface in these species as well as of peptides and proteins in the extracellular medium. The study included three strains of B. hyodysenteriae and two strains of B. pilosicoli and involved 148 LC-MS/MS runs on a high resolution Orbitrap instrument. Overall, we provided evidence for more than 29,000 different peptides pointing to 1625 and 1338 different proteins in B. hyodysenteriae and B. pilosicoli, respectively. Many of the most abundant proteins detected corresponded to described virulence factors and vaccine candidates. The level of expression of these proteins, however, was different among species and strains, stressing the value of determining actual gene product levels as a complement of genomic-based approaches for vaccine design.
Collapse
Affiliation(s)
- Vanessa Casas
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Santiago Vadillo
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura Cáceres, Spain
| | - Carlos San Juan
- Departamento Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura Cáceres, Spain
| | - Montserrat Carrascal
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Joaquin Abian
- Consejo Superior de Investigaciones Científicas/UAB Proteomics Laboratory, Instituto de Investigaciones Biomedicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| |
Collapse
|
27
|
Solis N, Cordwell SJ. Cell Shaving and False-Positive Control Strategies Coupled to Novel Statistical Tools to Profile Gram-Positive Bacterial Surface Proteomes. Methods Mol Biol 2016; 1440:47-55. [PMID: 27311663 DOI: 10.1007/978-1-4939-3676-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A powerful start to the discovery and design of novel vaccines, and for better understanding of host-pathogen interactions, is to profile bacterial surfaces using the proteolytic digestion of surface-exposed proteins under mild conditions. This "cell shaving" approach has the benefit of both identifying surface proteins and their surface-exposed epitopes, which are those most likely to interact with host cells and/or the immune system, providing a comprehensive overview of bacterial cell topography. An essential requirement for successful cell shaving is to account for (or minimize) cellular lysis that can occur during the shaving procedure and thus generate data that is biased towards non-surface (e.g., cytoplasmic) proteins. This is further complicated by the presence of "moonlighting" proteins, which are proteins predicted to be intracellular but with validated surface or extracellular functions. Here, we describe an optimized cell shaving protocol for Gram-positive bacteria that uses proteolytic digestion and a "false-positive" control to reduce the number of intracellular contaminants in these datasets. Released surface-exposed peptides are analyzed by liquid chromatography (LC) coupled to high-resolution tandem mass spectrometry (MS/MS). Additionally, the probabilities of proteins being surface exposed can be further calculated by applying novel statistical tools.
Collapse
Affiliation(s)
- Nestor Solis
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
- Department of Oral Biological and Medical Sciences, Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Stuart J Cordwell
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia.
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, The Hub Building D17, Sydney, NSW, 2006, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Solis N, Cain JA, Cordwell SJ. Comparative analysis of Staphylococcus epidermidis strains utilizing quantitative and cell surface shaving proteomics. J Proteomics 2016; 130:190-9. [DOI: 10.1016/j.jprot.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
|
29
|
Surfaceome and exoproteome of a clinical sequence type 398 methicillin resistant Staphylococcus aureus strain. Biochem Biophys Rep 2015; 3:7-13. [PMID: 29124163 PMCID: PMC5668672 DOI: 10.1016/j.bbrep.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 11/23/2022] Open
Abstract
For many years Staphylococcus aureus has been recognized as an important human pathogen. In this study, the surfacome and exoproteome of a clinical sample of MRSA was analyzed. The C2355 strain, previously typed as ST398 and spa-t011 and showing a phenotype of multiresistance to antibiotics, has several resistance genes. Using shotgun proteomics and bioinformatics tools, 236 proteins were identified in the surfaceome and 99 proteins in the exoproteome. Although many of these proteins are related to basic cell functions, some are related to virulence and pathogenicity like catalase and isdA, main actors in S. aureus infection, and others are related to antibiotic action or eventually resistance like penicillin binding protein, a cell-wall protein. Studying the proteomes of different subcellular compartments should improve our understanding of this pathogen, a microorganism with several mechanisms of resistance and pathogenicity, and provide valuable data for bioinformatics databases. We examine the surface proteome and exoproteome of multiresistant strains. We identify bacterial infection proteins in the extracellular proteome. Confirmation that moonlighting proteins will extend the localization data.
Collapse
|
30
|
Ronholm J, Raymond-Bouchard I, Creskey M, Cyr T, Cloutis EA, Whyte LG. Characterizing the surface-exposed proteome of Planococcus halocryophilus during cryophilic growth. Extremophiles 2015; 19:619-29. [PMID: 25832669 DOI: 10.1007/s00792-015-0743-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/01/2015] [Indexed: 12/16/2022]
Abstract
Planococcus halocryophilus OR1 is a bacterial isolate capable of growth at temperatures ranging from -15 to +37 °C. During sub-zero (cryophilic) growth, nodular features appear on its cell surface; however, the biochemical compositions of these features as well as any cold-adaptive benefits they may offer are not understood. This study aimed to identify differences in the cell surface proteome (surfaceome) of P. halocryophilus cells grown under optimal (24 °C, no added salt), low- and mid-salt (5 and 12 % NaCl, respectively) at 24 °C, and low- and mid-salt sub-zero (5 % NaCl at -5 °C and 12 % NaCl at -10 °C) culture conditions, for the purpose of gaining insight into cold-adapted proteomic traits at the cell surface. Mid-log cells were harvested, treated briefly with trypsin and the resultant peptides were purified followed by identification by LC-MS/MS analysis. One hundred and forty-four proteins were subsequently identified in at least one culture condition. Statistically significant differences in amino acid usage, a known indicator of cold adaptation, were identified through in silico analysis. Two proteins with roles in peptidoglycan (PG) metabolism, an N-acetyl-L-alanine amidase and a multimodular transpeptidase-transglycosylase, were detected, though each was only detected under optimal conditions, indicating that high-salt and high-cold stress each affect PG metabolism. Two iron transport-binding proteins, associated with two different iron transport strategies, were identified, indicating that P. halocryophilus uses a different iron acquisition strategy at very low temperatures. Here we present the first set of data that describes bacterial adaptations at the cellular surface that occur as a cryophilic bacterium is transitioned from optimal to near-inhibitory sub-zero culture conditions.
Collapse
Affiliation(s)
- Jennifer Ronholm
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd. Sainte-Anne-de-Bellevue, Montreal, QC, H9X3V9, Canada,
| | | | | | | | | | | |
Collapse
|
31
|
Jarocki VM, Tacchi JL, Djordjevic SP. Non-proteolytic functions of microbial proteases increase pathological complexity. Proteomics 2015; 15:1075-88. [PMID: 25492846 PMCID: PMC7167786 DOI: 10.1002/pmic.201400386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/26/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
Abstract
Proteases are enzymes that catalyse hydrolysis of peptide bonds thereby controlling the shape, size, function, composition, turnover and degradation of other proteins. In microbes, proteases are often identified as important virulence factors and as such have been targets for novel drug design. It is emerging that some proteases possess additional non‐proteolytic functions that play important roles in host epithelia adhesion, tissue invasion and in modulating immune responses. These additional “moonlighting” functions have the potential to obfuscate data interpretation and have implications for therapeutic design. Moonlighting enzymes comprise a subcategory of multifunctional proteins that possess at least two distinct biological functions on a single polypeptide chain. Presently, identifying moonlighting proteins relies heavily on serendipitous empirical data with clues arising from proteins lacking signal peptides that are localised to the cell surface. Here, we describe examples of microbial proteases with additional non‐proteolytic functions, including streptococcal pyrogenic exotoxin B, PepO and C5a peptidases, mycoplasmal aminopeptidases, mycobacterial chaperones and viral papain‐like proteases. We explore how these non‐proteolytic functions contribute to host cell adhesion, modulate the coagulation pathway, assist in non‐covalent folding of proteins, participate in cell signalling, and increase substrate repertoire. We conclude by describing how proteomics has aided in moonlighting protein discovery, focusing attention on potential moonlighters in microbial exoproteomes.
Collapse
Affiliation(s)
- Veronica M. Jarocki
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Jessica L. Tacchi
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Steven P. Djordjevic
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
- Proteomics Core FacilityUniversity of TechnologySydneyNSWAustralia
| |
Collapse
|
32
|
Espino E, Koskenniemi K, Mato-Rodriguez L, Nyman TA, Reunanen J, Koponen J, Öhman T, Siljamäki P, Alatossava T, Varmanen P, Savijoki K. Uncovering Surface-Exposed Antigens of Lactobacillus rhamnosus by Cell Shaving Proteomics and Two-Dimensional Immunoblotting. J Proteome Res 2014; 14:1010-24. [DOI: 10.1021/pr501041a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Eva Espino
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Lourdes Mato-Rodriguez
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | | | | | - Pia Siljamäki
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tapani Alatossava
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pekka Varmanen
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kirsi Savijoki
- Department
of Food and Environmental Sciences, ‡Department of Veterinary Biosciences, and §Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
33
|
Romero-Saavedra F, Laverde D, Wobser D, Michaux C, Budin-Verneuil A, Bernay B, Benachour A, Hartke A, Huebner J. Identification of peptidoglycan-associated proteins as vaccine candidates for enterococcal infections. PLoS One 2014; 9:e111880. [PMID: 25369230 PMCID: PMC4219796 DOI: 10.1371/journal.pone.0111880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/02/2014] [Indexed: 01/17/2023] Open
Abstract
Infections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE) strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH. Proteomic profiling was carried out by gel-free and gel-nanoLC-MS/MS analyses. The total proteins found with each method were 390 by the trypsin shaving, 329 by the elution at high pH, and 45 using biotinylation. An exclusively extracytoplasmic localization was predicted in 39 (10%) by trypsin shaving, in 47 (15%) by elution at high pH, and 27 (63%) by biotinylation. Comparison between the three extraction methods by Venn diagram and subcellular localization predictors (CELLO v.2.5 and Gpos-mPLoc) allowed us to identify six proteins that are most likely surface-exposed: the SCP-like extracellular protein, a low affinity penicillin-binding protein 5 (PBP5), a basic membrane lipoprotein, a peptidoglycan-binding protein LysM (LysM), a D-alanyl-D-alanine carboxypeptidase (DdcP) and the peptidyl-prolyl cis-trans isomerase (PpiC). Due to their close relationship with the peptidoglycan, we chose PBP5, LysM, DdcP and PpiC to test their potential as vaccine candidates. These putative surface-exposed proteins were overexpressed in Escherichia coli and purified. Rabbit polyclonal antibodies raised against the purified proteins were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Passive immunization with rabbit antibodies raised against these proteins reduced significantly the colony counts of E. faecium E155 in mice, indicating the effectiveness of these surface-related proteins as promising vaccine candidates to target different enterococcal pathogens.
Collapse
Affiliation(s)
- Felipe Romero-Saavedra
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Diana Laverde
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Charlotte Michaux
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | | | - Benoit Bernay
- Proteogen platform SFR ICORE 4206, University of Caen Lower-Normandy, Caen, France
| | - Abdellah Benachour
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Axel Hartke
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Johannes Huebner
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
34
|
Burgain J, Scher J, Francius G, Borges F, Corgneau M, Revol-Junelles A, Cailliez-Grimal C, Gaiani C. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components. Adv Colloid Interface Sci 2014; 213:21-35. [PMID: 25277266 DOI: 10.1016/j.cis.2014.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed.
Collapse
|
35
|
Rees MA, Kleifeld O, Crellin PK, Ho B, Stinear TP, Smith AI, Coppel RL. Proteomic Characterization of a Natural Host–Pathogen Interaction: Repertoire of in Vivo Expressed Bacterial and Host Surface-Associated Proteins. J Proteome Res 2014; 14:120-32. [DOI: 10.1021/pr5010086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Timothy P. Stinear
- Department
of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
36
|
Flores-Ramirez G, Jankovicova B, Bilkova Z, Miernyk JA, Skultety L. Identification of Coxiella burnetii surface-exposed and cell envelope associated proteins using a combined bioinformatics plus proteomics strategy. Proteomics 2014; 14:1868-81. [PMID: 24909302 DOI: 10.1002/pmic.201300338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
Abstract
The Gram-negative pathogen Coxiella burnetii is an intracellular bacterium that replicates within the phagolysosomal vacuoles of eukaryotic cells. This pathogen can infect a wide range of hosts, and is the causative agent of Q fever in humans. Surface-exposed and cell envelope associated proteins are thought to be important for both pathogenesis and protective immunity. Herein, we propose a complementary strategy consisting of (i) in silico prediction and (ii) inventory of the proteomic composition using three enrichment approaches coupled with protein identification. The efficiency of classical Triton X-114 phase partitioning was compared with two novel procedures; isolation of alkaline proteins by liquid-phase IEF, and cell surface enzymatic shaving using biofunctional magnetic beads. Of the 2026 protein sequences analyzed using seven distinct bioinformatic algorithms, 157 were predicted to be outer membrane proteins (OMP) and/or lipoproteins (LP). Using the three enrichment protocols, we identified 196 nonredundant proteins, including 39 predicted OMP and/or LP, 32 unknown or poorly characterized proteins, and 17 effectors of the Type IV secretion system. We additionally identified eight proteins with moonlighting activities, and several proteins apparently peripherally associated with integral or anchored OMP and/or LP.
Collapse
|
37
|
Siljamäki P, Varmanen P, Kankainen M, Sukura A, Savijoki K, Nyman TA. Comparative exoprotein profiling of different Staphylococcus epidermidis strains reveals potential link between nonclassical protein export and virulence. J Proteome Res 2014; 13:3249-61. [PMID: 24840314 DOI: 10.1021/pr500075j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Staphylococcus epidermidis (SE) includes commensal and pathogenic strains capable of infecting humans and animals. This study reports global exoproteome profiling of bovine mastitis strain PM221 and two human strains, commensal-type ATCC12228 and sepsis-associated RP62A. We identified 451, 395, and 518 proteins from culture supernatants of PM221, ATCC12228, and RP62A, respectively. Comparison of the identified exoproteomes revealed several strain-specific differences related to secreted antigens and adhesins, higher virulence capability for RP62A, and similarities between the PM221 and RP62A exoproteomes. The majority of the identified proteins (∼80%) were predicted to be cytoplasmic, including proteins known to be associated in membrane vesicles (MVs) in Staphylococcus aureus and immunogenic/adhesive moonlighting proteins. Enrichment of MV fractions from culture supernatants and analysis of their protein composition indicated that this nonclassical protein secretion pathway was being exploited under the conditions used and that there are strain-specific differences in nonclassical protein export. In addition, several predicted cell-surface proteins were identified in the culture media. In summary, the present study is the first in-depth exoproteome analysis of SE highlighting strain-specific factors able to contribute to virulence and adaptation.
Collapse
Affiliation(s)
- Pia Siljamäki
- Department of Food and Environmental Sciences, ‡Institute of Biotechnology, and §Department of Veterinary Biosciences, University of Helsinki , FI-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
38
|
Solis N, Parker BL, Kwong SM, Robinson G, Firth N, Cordwell SJ. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach. J Proteome Res 2014; 13:2954-72. [PMID: 24708102 DOI: 10.1021/pr500107p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of sacol2302 in APT grown with oxacillin (>6-fold compared with COL). Overexpression of sacol2302 in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC-MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation.
Collapse
Affiliation(s)
- Nestor Solis
- School of Molecular Bioscience, ‡Discipline of Pathology, School of Medical Sciences, and §School of Biological Sciences, The University of Sydney , New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Sun B, Hood L. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res 2014; 13:2705-14. [PMID: 24754784 PMCID: PMC4053080 DOI: 10.1021/pr500187g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The advent of proteomics technology
has transformed our understanding
of biological membranes. The challenges for studying membrane proteins
have inspired the development of many analytical and bioanalytical
tools, and the techniques of glycoproteomics have emerged as an effective
means to enrich and characterize membrane and plasma-membrane proteomes.
This Review summarizes the development of various glycoproteomics
techniques to overcome the hurdles formed by the unique structures
and behaviors of membrane proteins with a focus on N-glycoproteomics.
Example contributions of N-glycoproteomics to the understanding of
membrane biology are provided, and the areas that require future technical
breakthroughs are discussed.
Collapse
Affiliation(s)
- Bingyun Sun
- Department of Chemistry, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | | |
Collapse
|
40
|
Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, Blisnick T, Huet D, Perrot S, Santi-Rocca J, Duchateau M, Hourdel V, Rousselle JC, Cayet N, Namane A, Chamot-Rooke J, Bastin P. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics 2014; 13:1769-86. [PMID: 24741115 DOI: 10.1074/mcp.m113.033357] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity.
Collapse
Affiliation(s)
- Ines Subota
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Daria Julkowska
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | | | - Nele Reeg
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Johanna Buisson
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Thierry Blisnick
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Diego Huet
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Sylvie Perrot
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Julien Santi-Rocca
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Magalie Duchateau
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Véronique Hourdel
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | | | - Nadège Cayet
- ‖Imagopole Platform, Institut Pasteur, Paris, France
| | | | - Julia Chamot-Rooke
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Philippe Bastin
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581,
| |
Collapse
|
41
|
Tsolakos N, Brookes C, Taylor S, Gorringe A, Tang CM, Feavers IM, Wheeler JX. Identification of vaccine antigens using integrated proteomic analyses of surface immunogens from serogroup B Neisseria meningitidis. J Proteomics 2014; 101:63-76. [PMID: 24561796 DOI: 10.1016/j.jprot.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
Abstract
UNLABELLED Meningococcal surface proteins capable of evoking a protective immune response are candidates for inclusion in protein-based vaccines against serogroup B Neisseria meningitidis (NmB). In this study, a 2-dimensional (2-D) gel-based platform integrating surface and immune-proteomics was developed to characterize NmB surface protein antigens. The surface proteome was analyzed by differential 2-D gel electrophoresis following treatment of live bacteria with proteinase K. Alongside, proteins recognized by immune sera from mice challenged with live meningococci were detected using 2-D immunoblots. In combination, seventeen proteins were identified including the well documented antigens PorA, OpcA and factor H-binding protein, previously reported potential antigens and novel potential immunogens. Results were validated for the macrophage infectivity potentiator (MIP), a recently proposed NmB vaccine candidate. MIP-specific antisera bound to meningococci in whole-cell ELISA and facilitated opsonophagocytosis and deposition of complement factors on the surface of meningococcal isolates of different serosubtypes. Cleavage by proteinase K was confirmed in western blots and shown to occur in a fraction of the MIP expressed by meningococci suggesting transient or limited surface exposure. These observations add knowledge for the development of a protein NmB vaccine. The proteomic workflow presented here may be used for the discovery of vaccine candidates against other pathogens. BIOLOGICAL SIGNIFICANCE This study presents an integrated proteomic strategy to identify proteins from N. meningitidis with desirable properties (i.e. surface exposure and immunogenicity) for inclusion in subunit vaccines against bacterial meningitis. The effectiveness of the method was demonstrated by the identification of some of the major meningococcal vaccine antigens. Information was also obtained about novel potential immunogens as well as the recently described potential antigen macrophage infectivity potentiator which can be useful for its consideration as a vaccine candidate. Additionally, the proteomic strategy presented in this study provides a generic 2-D gel-based platform for the discovery of vaccine candidates against other bacterial infections.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/isolation & purification
- Antigens, Bacterial/metabolism
- Antigens, Surface/analysis
- Antigens, Surface/isolation & purification
- Antigens, Surface/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Endopeptidase K/pharmacology
- Female
- Meningitis, Meningococcal/immunology
- Meningococcal Vaccines/isolation & purification
- Meningococcal Vaccines/metabolism
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/chemistry
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
- Proteomics/methods
Collapse
Affiliation(s)
- Nikos Tsolakos
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte Brookes
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Stephen Taylor
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andrew Gorringe
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Christoph M Tang
- Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Jun X Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| |
Collapse
|
42
|
Martín R, Miquel S, Langella P, Bermúdez-Humarán LG. The role of metagenomics in understanding the human microbiome in health and disease. Virulence 2014; 5:413-23. [PMID: 24429972 DOI: 10.4161/viru.27864] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The term microbiome refers to the genetic material of the catalog of microbial taxa associated with humans. As in all ecosystems, the microbiota reaches a dynamic equilibrium in the human body, which can be altered by environmental factors and external stimuli. Metagenomics is a relatively new field of study of microbial genomes within diverse environmental samples, which is of increasing importance in microbiology. The introduction of this ecological perception of microbiology is the key to achieving real knowledge about the influence of the microbiota in human health and disease. The aim of this review is to summarize the link between the human microbiota (focusing on the intestinal, vaginal, skin, and airway body sites) and health from this ecological point of view, highlighting the contribution of metagenomics in the advance of this field.
Collapse
Affiliation(s)
- Rebeca Martín
- INRA; UMR1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR Micalis; Jouy-en-Josas, France
| | - Sylvie Miquel
- INRA; UMR1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR Micalis; Jouy-en-Josas, France
| | - Philippe Langella
- INRA; UMR1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR Micalis; Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- INRA; UMR1319 Micalis; Jouy-en-Josas, France; AgroParisTech; UMR Micalis; Jouy-en-Josas, France
| |
Collapse
|
43
|
Pribyl T, Moche M, Dreisbach A, Bijlsma JJE, Saleh M, Abdullah MR, Hecker M, van Dijl JM, Becher D, Hammerschmidt S. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae. J Proteome Res 2014; 13:650-67. [PMID: 24387739 DOI: 10.1021/pr400768v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface proteins are important for the fitness and virulence of the Gram-positive pathogen Streptococcus pneumoniae. They are crucial for interaction of the pathogen with its human host during infection. Therefore, the analysis of the pneumococcal surface proteome is an important task that requires powerful tools. In this study, two different methods, an optimized biotinylation approach and shaving with trypsin beads, were applied to study the pneumococcal surface proteome and to identify surface-exposed protein domains, respectively. The identification of nearly 95% of the predicted lipoproteins and 75% of the predicted sortase substrates reflects the high coverage of the two classical surface protein classes accomplished in this study. Furthermore, the biotinylation approach was applied to study the impact of an impaired lipoprotein maturation pathway on the cell envelope proteome and exoproteome. Loss of the lipoprotein diacylglyceryl transferase Lgt leads to striking changes in the lipoprotein distribution. Many lipoproteins disappear from the surface proteome and accumulate in the exoproteome. Further insights into lipoprotein processing in pneumococci are provided by immunoblot analyses of bacterial lysates and corresponding supernatant fractions. Taken together, the first comprehensive overview of the pneumococcal surface and exoproteome is presented, and a model for lipoprotein processing in S. pneumoniae is proposed.
Collapse
Affiliation(s)
- Thomas Pribyl
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald , Friedrich-Ludwig-Jahn-Str. 15a, Greifswald D-17487, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jagusztyn-Krynicka EK, Dadlez M, Grabowska A, Roszczenko P. Proteomic technology in the design of new effective antibacterial vaccines. Expert Rev Proteomics 2014; 6:315-30. [DOI: 10.1586/epr.09.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Walters MS, Mobley HLT. Bacterial proteomics and identification of potential vaccine targets. Expert Rev Proteomics 2014; 7:181-4. [DOI: 10.1586/epr.10.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Abstract
The proteomic approaches have considerably evolved over the past two decades. This opened the doors for larger scale and deeper explorations of cellular physiology. Like for other living organisms, using the tools of proteomics has undoubtedly improved knowledge about the foodborne pathogen Listeria monocytogenes. Among the different technologies and approaches permanently evolving in the field of proteomics, the 2-DE is an analytical separation method of choice to resolve thousands of proteins simultaneously in a single gel, allowing their quantification, the study of their posttranslational modifications and the understanding of their biological function. In this, 2-DE remains a perfectly complementary technique to the new high-throughput techniques such as shotgun proteomics approaches. Moreover, in order to gain in analysis depth and improve knowledge about the target of action and the function of proteins in relation to their subcellular location, it is necessary to explore more specifically the different subcellular proteomes. Thus, the subproteomic analyses became essential and dramatically increased these last years, particularly on proteins secreted into the extracellular milieu, named exoproteome, or on cell envelope proteins (cell wall and membrane proteins) which are involved in the interactions with the surrounding environment. Here, the extraction and separation of L. monocytogenes subproteomes are described based on cell fractionation and 2-DE techniques. This chapter gives a workflow to obtain the exoproteome, the intracellular proteome, the cell wall, and membrane proteomes of the Gram-positive bacterium L. monocytogenes. The different steps of 2-DE technology, composed of a first dimension based on the separation of proteins according to their charge, an equilibration step, then a second dimension based on the separation of proteins according to their mass, and finally the staining of proteins in the gel are detailed. Emerging technologies to extract the exoproteome or the cell surface proteome after enzymatic shaving and to analyze them by shotgun method are also discussed briefly.
Collapse
Affiliation(s)
- Michel Hébraud
- UR454 Microbiology and proteomic component of the Metabolism Exploration Platform (PFEMcp), INRA, Clermont-Ferrand Research Centre (Theix site), Saint-Genès Champanelle, F-63122, France,
| |
Collapse
|
47
|
McNamara M, Tzeng SC, Maier C, Wu M, Bermudez LE. Surface-exposed proteins of pathogenic mycobacteria and the role of cu-zn superoxide dismutase in macrophages and neutrophil survival. Proteome Sci 2013; 11:45. [PMID: 24283571 PMCID: PMC4176128 DOI: 10.1186/1477-5956-11-45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022] Open
Abstract
Pathogenic mycobacteria are important agents causing human disease. Mycobacterium avium subsp. hominissuis (M. avium) is a species of recalcitrant environmental pathogen. The bacterium forms robust biofilms that allow it to colonize and persist in austere environments, such as residential and commercial water systems. M. avium is also an opportunistic pathogen that is a significant source of mortality for immune-compromised individuals. Proteins exposed at the bacterial surface play a central role in mediating the relationship between the bacterium and its environment. The processes underlying both biofilm formation and pathogenesis are directly dependent on this essential subset of the bacterial proteome. Therefore, the characterization of the surface-exposed proteome is an important step towards an improved understanding of the mycobacterial biology and pathogenesis. Here we examined the complement of surface exposed proteins from Mycobacterium avium 104, a clinical isolate and reference strain of Mycobacterium avium subsp. hominissuis. To profile the surface-exposed proteins of viable M. avium 104, bacteria were covalently labeled with a membrane impermeable biotinylation reagent and labeled proteins were affinity purified via the biotin-streptavidin interaction. The results provide a helpful snapshot of the surface-exposed proteome of this frequently utilized reference strain of M. avium. A Cu-Zn SOD knockout mutant, MAV_2043, a surface identified protein, was evaluated regarding its role in the survival in both macrophages and neutrophils.
Collapse
Affiliation(s)
- Michael McNamara
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Shin-Cheng Tzeng
- Department of Chemistry, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Claudia Maier
- Department of Chemistry, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Martin Wu
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Department of Microbiology, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| |
Collapse
|
48
|
Schmid G, Mathiesen G, Arntzen MO, Eijsink VGH, Thomm M. Experimental and computational analysis of the secretome of the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 2013; 17:921-30. [PMID: 23979514 PMCID: PMC3824201 DOI: 10.1007/s00792-013-0574-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 07/30/2013] [Indexed: 11/24/2022]
Abstract
Although Pyrococcus furiosus is one of the best studied hyperthermophilic archaea, to date no experimental investigation of the extent of protein secretion has been performed. We describe experimental verification of the extracellular proteome of P. furiosus grown on starch. LC-MS/MS-based analysis of culture supernatants led to the identification of 58 proteins. Fifteen of these proteins had a putative N-terminal signal peptide (SP), tagging the proteins for translocation across the membrane. The detected proteins with predicted SPs and known function were almost exclusively involved in important extracellular functions, like substrate degradation or transport. Most of the 43 proteins without predicted N-terminal signal sequences are known to have intracellular functions, mainly (70 %) related to intracellular metabolism. In silico analyses indicated that the genome of P. furiosus encodes 145 proteins with N-terminal SPs, including 21 putative lipoproteins and 17 with a class III peptide. From these we identified 15 (10 %; 7 SPI, 3 SPIII and 5 lipoproteins) under the specific growth conditions of this study. The putative lipoprotein signal peptides have a unique sequence motif, distinct from the motifs in bacteria and other archaeal orders.
Collapse
Affiliation(s)
- G. Schmid
- Hyperthermics Regensburg GmbH, Josef-Engert-Straße 9, 93053 Regensburg, Germany
| | - G. Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - M. O. Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
- Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway
| | - V. G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| | - M. Thomm
- Lehrstuhl für Mikrobiologie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
- Hyperthermics Regensburg GmbH, Josef-Engert-Straße 9, 93053 Regensburg, Germany
| |
Collapse
|
49
|
Vandermarliere E, Mueller M, Martens L. Getting intimate with trypsin, the leading protease in proteomics. MASS SPECTROMETRY REVIEWS 2013; 32:453-65. [PMID: 23775586 DOI: 10.1002/mas.21376] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 05/21/2023]
Abstract
Nowadays, mass spectrometry-based proteomics is carried out primarily in a bottom-up fashion, with peptides obtained after proteolytic digest of a whole proteome lysate as the primary analytes instead of the proteins themselves. This experimental setup crucially relies on a protease to digest an abundant and complex protein mixture into a far more complex peptide mixture. Full knowledge of the working mechanism and specificity of the used proteases is therefore crucial, both for the digestion step itself as well as for the downstream identification and quantification of the (fragmentation) mass spectra acquired for the peptides in the mixture. Targeted protein analysis through selected reaction monitoring, a relative newcomer in the specific field of mass spectrometry-based proteomics, even requires a priori understanding of protease behavior for the proteins of interest. Because of the rapidly increasing popularity of proteomics as an analytical tool in the life sciences, there is now a renewed demand for detailed knowledge on trypsin, the workhorse protease in proteomics. This review addresses this need and provides an overview on the structure and working mechanism of trypsin, followed by a critical analysis of its cleavage behavior, typically simply accepted to occur exclusively yet consistently after Arg and Lys, unless they are followed by a Pro. In this context, shortcomings in our ability to understand and predict the behavior of trypsin will be highlighted, along with the downstream implications. Furthermore, an analysis is carried out on the inherent shortcomings of trypsin with regard to whole proteome analysis, and alternative approaches will be presented that can alleviate these issues. Finally, some reflections on the future of trypsin as the workhorse protease in mass spectrometry-based proteomics will be provided.
Collapse
Affiliation(s)
- Elien Vandermarliere
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
50
|
Michaux C, Saavedra LFR, Reffuveille F, Bernay B, Goux D, Hartke A, Verneuil N, Giard JC. Cold-shock RNA-binding protein CspR is also exposed to the surface of
Enterococcus faecalis. Microbiology (Reading) 2013; 159:2153-2161. [DOI: 10.1099/mic.0.071076-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Charlotte Michaux
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence Université de Caen Basse-Normandie, Caen, France
| | - Luis Felipe Romero Saavedra
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence Université de Caen Basse-Normandie, Caen, France
| | - Fany Reffuveille
- Plateforme Proteogen SFR ICORE 4206, Université de Caen Basse-Normandie, Caen, France
| | - Benoît Bernay
- Centre de Microscopie Appliquée à la Biologie, Université de Caen Basse-Normandie IFR ICORE, Caen, France
| | - Didier Goux
- Equipe Antibio-résistance, Université de Caen Basse-Normandie, Caen, France
| | - Axel Hartke
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence Université de Caen Basse-Normandie, Caen, France
| | - Nicolas Verneuil
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence Université de Caen Basse-Normandie, Caen, France
| | - Jean-Christophe Giard
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|