1
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Gallo V, Srivastava V, Bulone V, Zappettini A, Villani M, Marmiroli N, Marmiroli M. Proteomic Analysis Identifies Markers of Exposure to Cadmium Sulphide Quantum Dots (CdS QDs). NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1214. [PMID: 32580447 PMCID: PMC7353101 DOI: 10.3390/nano10061214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
The use of cadmium sulphide quantum dot (CdS QD)-enabled products has become increasingly widespread. The prospect of their release in the environment is raising concerns. Here we have used the yeast model Saccharomyces cerevisiae to determine the potential impact of CdS QD nanoparticles on living organisms. Proteomic analyses and cell viability assays performed after 9 h exposure revealed expression of proteins involved in oxidative stress and reduced lethality, respectively, whereas oxidative stress declined, and lethality increased after 24 h incubation in the presence of CdS QDs. Quantitative proteomics using the iTRAQ approach (isobaric tags for relative and absolute quantitation) revealed that key proteins involved in essential biological pathways were differentially regulated over the time course of the experiment. At 9 h, most of the glycolytic functions increased, and the abundance of the number of heat shock proteins increased. This contrasts with the situation at 24 h where glycolytic functions, some heat shock proteins as well as oxidative phosphorylation and ATP synthesis were down-regulated. It can be concluded from our data that cell exposure to CdS QDs provokes a metabolic shift from respiration to fermentation, comparable to the situation reported in some cancer cell lines.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| | - Vaibhav Srivastava
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
| | - Vincent Bulone
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Urbrae, SA 5064, Australia
| | - Andrea Zappettini
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Marco Villani
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| |
Collapse
|
3
|
Saviola AJ, Negrão F, Yates JR. Proteomics of Select Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:315-336. [PMID: 32109150 DOI: 10.1146/annurev-anchem-091619-093003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Technological advances in mass spectrometry have enabled the extensive identification, characterization, and quantification of proteins in any biological system. In disease processes proteins are often altered in response to external stimuli; therefore, proteomics, the large-scale study of proteins and their functions, represents an invaluable tool for understanding the molecular basis of disease. This review highlights the use of mass spectrometry-based proteomics to study the pathogenesis, etiology, and pathology of several neglected tropical diseases (NTDs), a diverse group of disabling diseases primarily associated with poverty in tropical and subtropical regions of the world. While numerous NTDs have been the subject of proteomic studies, this review focuses on Buruli ulcer, dengue, leishmaniasis, and snakebite envenoming. The proteomic studies highlighted provide substantial information on the pathogenic mechanisms driving these diseases; they also identify molecular targets for drug discovery and development and uncover promising biomarkers that can assist in early diagnosis.
Collapse
Affiliation(s)
- Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Fernanda Negrão
- Department of Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
4
|
Buruli Ulcer, a Prototype for Ecosystem-Related Infection, Caused by Mycobacterium ulcerans. Clin Microbiol Rev 2017; 31:31/1/e00045-17. [PMID: 29237707 DOI: 10.1128/cmr.00045-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Buruli ulcer is a noncontagious disabling cutaneous and subcutaneous mycobacteriosis reported by 33 countries in Africa, Asia, Oceania, and South America. The causative agent, Mycobacterium ulcerans, derives from Mycobacterium marinum by genomic reduction and acquisition of a plasmid-borne, nonribosomal cytotoxin mycolactone, the major virulence factor. M. ulcerans-specific sequences have been readily detected in aquatic environments in food chains involving small mammals. Skin contamination combined with any type of puncture, including insect bites, is the most plausible route of transmission, and skin temperature of <30°C significantly correlates with the topography of lesions. After 30 years of emergence and increasing prevalence between 1970 and 2010, mainly in Africa, factors related to ongoing decreasing prevalence in the same countries remain unexplained. Rapid diagnosis, including laboratory confirmation at the point of care, is mandatory in order to reduce delays in effective treatment. Parenteral and potentially toxic streptomycin-rifampin is to be replaced by oral clarithromycin or fluoroquinolone combined with rifampin. In the absence of proven effective primary prevention, avoiding skin contamination by means of clothing can be implemented in areas of endemicity. Buruli ulcer is a prototype of ecosystem pathology, illustrating the impact of human activities on the environment as a source for emerging tropical infectious diseases.
Collapse
|
5
|
Marion E, Jarry U, Cano C, Savary C, Beauvillain C, Robbe-Saule M, Preisser L, Altare F, Delneste Y, Jeannin P, Marsollier L. FVB/N Mice Spontaneously Heal Ulcerative Lesions Induced by Mycobacterium ulcerans and Switch M. ulcerans into a Low Mycolactone Producer. THE JOURNAL OF IMMUNOLOGY 2016; 196:2690-8. [DOI: 10.4049/jimmunol.1502194] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/15/2016] [Indexed: 12/29/2022]
|
6
|
Yang S, Zhang F, Kang J, Zhang W, Deng G, Xin Y, Ma Y. Mycobacterium tuberculosis Rv1096 protein: gene cloning, protein expression, and peptidoglycan deacetylase activity. BMC Microbiol 2014; 14:174. [PMID: 24975018 PMCID: PMC4087242 DOI: 10.1186/1471-2180-14-174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023] Open
Abstract
Background Many bacteria modulate and evade the immune defenses of their hosts through peptidoglycan (PG) deacetylation. The PG deacetylases from Streptococcus pneumonia, Listeria monocytogenes and Lactococcus lactis have been characterized. However, thus far, the PG deacetylase of Mycobacterium tuberculosis has not been identified. Results In this study, we cloned the Rv1096 gene from the M. tuberculosis H37Rv strain and expressed Rv1096 protein in both Escherichia coli and M. smegmatis. The results showed that the purified Rv1096 protein possessed metallo-dependent PG deacetylase activity, which increased in the presence of Co2+. The kinetic parameters of the PG deacetylase towards M. smegmatis PG as a substrate were as follows: Km, 0.910 ± 0.007 mM; Vmax, 0.514 ± 0.038 μMmin-1; and Kcat = 0.099 ± 0.007 (S-1). Additionally, the viability of M. smegmatis in the presence of over-expressed Rv1096 protein was 109-fold higher than that of wild-type M. smegmatis after lysozyme treatment. Additionally, light microscopy and scanning electron microscopy showed that in the presence of over-expressed Rv1096 protein, M. smegmatis kept its regular shape, with an undamaged cell wall and smooth surface. These results indicate that Rv1096 caused deacetylation of cell wall PG, leading to lysozyme resistance in M. smegmatis. Conclusion We have determined that M. tuberculosis Rv1096 is a PG deacetylase. The PG deacetylase activity of Rv1096 contributed to lysozyme resistance in M. smegmatis. Our findings suggest that deacetylation of cell wall PG may be involved in evasion of host immune defenses by M. tuberculosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China.
| |
Collapse
|
7
|
Chany AC, Tresse C, Casarotto V, Blanchard N. History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 2014; 30:1527-67. [PMID: 24178858 DOI: 10.1039/c3np70068b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium ulcerans infections (Buruli ulcer disease) have a long history that can be traced back 150 years. The successive discoveries of the mycobacteria in 1948 and of mycolactone A/B in 1999, the toxin responsible for this dramatic necrotic skin disease, resulted in a paradigm shift concerning the disease itself and in a broader sense, delineated an entirely new role for bioactive polyketides as virulence factors. The fascinating history, biology and chemistry of M. ulcerans infections are discussed in this review.
Collapse
Affiliation(s)
- Anne-Caroline Chany
- Université de Haute Alsace, Laboratoire de Chimie Organique et Bioorganique, EA4566, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | |
Collapse
|
8
|
|
9
|
Roupie V, Pidot SJ, Einarsdottir T, Van Den Poel C, Jurion F, Stinear TP, Huygen K. Analysis of the vaccine potential of plasmid DNA encoding nine mycolactone polyketide synthase domains in Mycobacterium ulcerans infected mice. PLoS Negl Trop Dis 2014; 8:e2604. [PMID: 24392169 PMCID: PMC3879250 DOI: 10.1371/journal.pntd.0002604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
There is no effective vaccine against Buruli ulcer. In experimental footpad infection of C57BL/6 mice with M. ulcerans, a prime-boost vaccination protocol using plasmid DNA encoding mycolyltransferase Ag85A of M. ulcerans and a homologous protein boost has shown significant, albeit transient protection, comparable to the one induced by M. bovis BCG. The mycolactone toxin is an obvious candidate for a vaccine, but by virtue of its chemical structure, this toxin is not immunogenic in itself. However, antibodies against some of the polyketide synthase domains involved in mycolactone synthesis, were found in Buruli ulcer patients and healthy controls from the same endemic region, suggesting that these domains are indeed immunogenic. Here we have analyzed the vaccine potential of nine polyketide synthase domains using a DNA prime/protein boost strategy. C57BL/6 mice were vaccinated against the following domains: acyl carrier protein 1, 2, and 3, acyltransferase (acetate) 1 and 2, acyltransferase (propionate), enoylreductase, ketoreductase A, and ketosynthase load module. As positive controls, mice were vaccinated with DNA encoding Ag85A or with M. bovis BCG. Strongest antigen specific antibodies could be detected in response to acyltransferase (propionate) and enoylreductase. Antigen-specific Th1 type cytokine responses (IL-2 or IFN-γ) were induced by vaccination against all antigens, and were strongest against acyltransferase (propionate). Finally, vaccination against acyltransferase (propionate) and enoylreductase conferred some protection against challenge with virulent M. ulcerans 1615. However, protection was weaker than the one conferred by vaccination with Ag85A or M. bovis BCG. Combinations of these polyketide synthase domains with the vaccine targeting Ag85A, of which the latter is involved in the integrity of the cell wall of the pathogen, and/or with live attenuated M. bovis BCG or mycolactone negative M. ulcerans may eventually lead to the development of an efficacious BU vaccine.
Collapse
Affiliation(s)
- Virginie Roupie
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Tobba Einarsdottir
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Christophe Van Den Poel
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Fabienne Jurion
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Kris Huygen
- Service Immunology, Scientific Institute of Public Health (WIV-ISP Site Ukkel), Brussels, Belgium
- * E-mail:
| |
Collapse
|
10
|
Regulation of mycolactone, the Mycobacterium ulcerans toxin, depends on nutrient source. PLoS Negl Trop Dis 2013; 7:e2502. [PMID: 24244764 PMCID: PMC3828164 DOI: 10.1371/journal.pntd.0002502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans, a slow-growing environmental bacterium, is the etiologic agent of Buruli ulcer, a necrotic skin disease. Skin lesions are caused by mycolactone, the main virulence factor of M. ulcerans, with dermonecrotic (destruction of the skin and soft tissues) and immunosuppressive activities. This toxin is secreted in vesicles that enhance its biological activities. Nowadays, it is well established that the main reservoir of the bacilli is localized in the aquatic environment where the bacillus may be able to colonize different niches. Here we report that plant polysaccharides stimulate M. ulcerans growth and are implicated in toxin synthesis regulation. METHODOLOGY/PRINCIPAL FINDINGS In this study, by selecting various algal components, we have identified plant-specific carbohydrates, particularly glucose polymers, capable of stimulating M. ulcerans growth in vitro. Furthermore, we underscored for the first time culture conditions under which the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, is down-regulated. Using a quantitative proteomic approach and analyzing transcript levels by RT-qPCR, we demonstrated that its regulation is not at the transcriptional or translational levels but must involve another type of regulation. M. ulcerans produces membrane vesicles, as other mycobacterial species, in which are the mycolactone is concentrated. By transmission electron microscopy, we observed that the production of vesicles is independent from the toxin production. Concomitant with this observed decrease in mycolactone production, the production of mycobacterial siderophores known as mycobactins was enhanced. CONCLUSIONS/SIGNIFICANCE This work is the first step in the identification of the mechanisms involved in mycolactone regulation and paves the way for the discovery of putative new drug targets in the future.
Collapse
|
11
|
Porter JL, Tobias NJ, Pidot SJ, Falgner S, Tuck KL, Vettiger A, Hong H, Leadlay PF, Stinear TP. The cell wall-associated mycolactone polyketide synthases are necessary but not sufficient for mycolactone biosynthesis. PLoS One 2013; 8:e70520. [PMID: 23894666 PMCID: PMC3720922 DOI: 10.1371/journal.pone.0070520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/26/2013] [Indexed: 11/23/2022] Open
Abstract
Mycolactones are polyketide-derived lipid virulence factors made by the slow-growing human pathogen, Mycobacterium ulcerans. Three unusually large and homologous plasmid-borne genes (mlsA1: 51 kb, mlsB: 42 kb and mlsA2: 7 kb) encode the mycolactone type I polyketide synthases (PKS). The extreme size and low sequence diversity of these genes has posed significant barriers for exploration of the genetic and biochemical basis of mycolactone synthesis. Here, we have developed a truncated, more tractable 3-module version of the 18-module mycolactone PKS and we show that this engineered PKS functions as expected in the natural host M. ulcerans to produce an additional polyketide; a triketide lactone (TKL). Cell fractionation experiments indicated that this 3-module PKS and the putative accessory enzymes encoded by mup045 and mup038 associated with the mycobacterial cell wall, a finding supported by confocal microscopy. We then assessed the capacity of the faster growing, Mycobacterium marinum to harbor and express the 3-module Mls PKS and accessory enzymes encoded by mup045 and mup038. RT-PCR, immunoblotting, and cell fractionation experiments confirmed that the truncated Mls PKS multienzymes were expressed and also partitioned with the cell wall material in M. marinum. However, this heterologous host failed to produce TKL. The systematic deconstruction of the mycolactone PKS presented here suggests that the Mls multienzymes are necessary but not sufficient for mycolactone synthesis and that synthesis is likely to occur (at least in part) within the mycobacterial cell wall. This research is also the first proof-of-principle demonstration of the potential of this enzyme complex to produce tailored small molecules through genetically engineered rearrangements of the Mls modules.
Collapse
Affiliation(s)
- Jessica L. Porter
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Steffen Falgner
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Andrea Vettiger
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
12
|
Pütz SM, Boehm AM, Stiewe T, Sickmann A. iTRAQ analysis of a cell culture model for malignant transformation, including comparison with 2D-PAGE and SILAC. J Proteome Res 2012; 11:2140-53. [PMID: 22313033 DOI: 10.1021/pr200881c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To study human cancer development, cell culture models for malignant transformation can be used. In 1999 Hahn and Coworkers introduced such a model system and established herewith a basis for research on human tumorigenesis. Primary human fibroblasts are sequentially transduced with defined genetic elements (hTERT, SV40 ER, and H-RasV12), resulting in four defined cell lines, whereby the last has a fully transformed phenotype. In order to get a deeper insight into the molecular biology of human tumorigenesis, we compared the proteomes of these four cell lines following a multimethod concept. At the beginning we assumed SILAC and sample fractionation with COFRADIC is the method of choice to analyze the cell culture model for malignant transformation. Here, the compared samples are combined before sample preparation, thus avoiding differences in sample preparation, and using COFRADIC notably reduces sample complexity. Because 2D-PAGE is a standard method for the separation and visualization of closely related proteomes, we decided to analyze and compare the proteomes of these four cell lines in a first approach by differential 2D-PAGE. Surprisingly, we discovered much more unique results with iTRAQ and sample fractionation with SCX than with the combination of 2D-PAGE and SILAC-COFRADIC. Moreover, iTRAQ outperforms the other strategies not only in number of yielded results but also in analysis time. Here, we present the iTRAQ quantification results and compare them with the results of 2D-PAGE and SILAC-COFRADIC. We found changes in the protein level at each transition. Thereby, SV40 has the strongest impact on the proteome. In detail we identified 201 regulated proteins. Beside others, these proteins are involved in cytoskeleton, RNA processing, and cell cycle, such as CDC2, hnRNPs, snRNPs, collagens, and MCM proteins. For example, MCM proteins are up-regulated and collagens are down-regulated due to SV40 ER expression. Furthermore we made the observation that proteins containing the same domain have analogous regulation profiles during malignant transformation. For instance, several proteins containing a CH or LIM domain are down-regulated. Moreover, by this study and the defined cell culture model, changes could be clearly matched to specific steps during tumorigenesis.
Collapse
Affiliation(s)
- Stephanie M Pütz
- Institute of Medical Radiation and Cell Research (MSZ), University of Würzburg, D-97078 Würzburg, Germany.
| | | | | | | |
Collapse
|
13
|
Pidot SJ, Porter JL, Marsollier L, Chauty A, Migot-Nabias F, Badaut C, Bénard A, Ruf MT, Seemann T, Johnson PDR, Davies JK, Jenkin GA, Pluschke G, Stinear TP. Serological evaluation of Mycobacterium ulcerans antigens identified by comparative genomics. PLoS Negl Trop Dis 2010; 4:e872. [PMID: 21072233 PMCID: PMC2970529 DOI: 10.1371/journal.pntd.0000872] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 10/06/2010] [Indexed: 01/17/2023] Open
Abstract
A specific and sensitive serodiagnostic test for Mycobacterium ulcerans infection would greatly assist the diagnosis of Buruli ulcer and would also facilitate seroepidemiological surveys. By comparative genomics, we identified 45 potential M. ulcerans specific proteins, of which we were able to express and purify 33 in E. coli. Sera from 30 confirmed Buruli ulcer patients, 24 healthy controls from the same endemic region and 30 healthy controls from a non-endemic region in Benin were screened for antibody responses to these specific proteins by ELISA. Serum IgG responses of Buruli ulcer patients were highly variable, however, seven proteins (MUP045, MUP057, MUL_0513, Hsp65, and the polyketide synthase domains ER, AT propionate, and KR A) showed a significant difference between patient and non-endemic control antibody responses. However, when sera from the healthy control subjects living in the same Buruli ulcer endemic area as the patients were examined, none of the proteins were able to discriminate between these two groups. Nevertheless, six of the seven proteins showed an ability to distinguish people living in an endemic area from those in a non-endemic area with an average sensitivity of 69% and specificity of 88%, suggesting exposure to M. ulcerans. Further validation of these six proteins is now underway to assess their suitability for use in Buruli ulcer seroepidemiological studies. Such studies are urgently needed to assist efforts to uncover environmental reservoirs and understand transmission pathways of the M. ulcerans. Buruli ulcer is a slowly progressive but potentially devastating disease of skin and subcutaneous tissue caused by the bacterium Mycobacterium ulcerans. The disease is widespread throughout West and Central Africa, and some countries in the region have established Buruli ulcer control programs. Buruli ulcer is difficult to distinguish from other chronic skin conditions that require different treatments, and there is an urgent need for an accurate point-of-care diagnostic test. In this study, we have used genomic techniques to identify 45 potential M. ulcerans–specific antigens, 33 of which we have been able to produce and purify. We tested these proteins against sera from patients, healthy people living in the same region as the patients and from individuals living in a region with no cases of Buruli ulcer. We found that seven proteins were able to elicit antibody responses that were significantly different between patients and the control subjects from the non-endemic region but not from the healthy individuals in the same Buruli ulcer endemic region. Further analysis showed that six of these M. ulcerans proteins might be useful as markers of exposure to M. ulcerans and could be developed into tools to uncover environmental reservoirs and understand transmission pathways of the bacterium.
Collapse
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Laurent Marsollier
- Groupe d'Étude des Interactions Hôte-Pathogène, Université d'Angers, Angers, France
| | - Annick Chauty
- Centre de Dépistage et de Traitement de l'ulcère de Buruli, Pobè, Benin
| | - Florence Migot-Nabias
- Institut de Recherche pour le Développement UMR216, Mère et enfant face aux infections tropicales, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Cyril Badaut
- Institut de Recherche pour le Développement UMR216, Mère et enfant face aux infections tropicales, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Angèle Bénard
- Swiss Tropical Public Health Institute, Basel, Switzerland
| | | | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Paul D. R. Johnson
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - John K. Davies
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Grant A. Jenkin
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Gerd Pluschke
- Swiss Tropical Public Health Institute, Basel, Switzerland
| | - Timothy P. Stinear
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
14
|
Pidot SJ, Porter JL, Tobias NJ, Anderson J, Catmull D, Seemann T, Kidd S, Davies JK, Reynolds E, Dashper S, Stinear TP. Regulation of the 18 kDa heat shock protein in Mycobacterium ulcerans: an alpha-crystallin orthologue that promotes biofilm formation. Mol Microbiol 2010; 78:1216-31. [PMID: 21091506 DOI: 10.1111/j.1365-2958.2010.07401.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mycobacterium ulcerans is the causative agent of the debilitating skin disease Buruli ulcer, which is most prevalent in Western and Central Africa. M. ulcerans shares >98% DNA sequence identity with Mycobacterium marinum, however, M. marinum produces granulomatous, but not ulcerative, lesions in humans and animals. Here we report the differential expression of a small heat shock protein (Hsp18) between strains of M. ulcerans (Hsp18(+) ) and M. marinum (Hsp18(-) ) and describe the molecular basis for this difference. We show by gene deletion and GFP reporter assays in M. marinum that a divergently transcribed gene called hspR_2, immediately upstream of hsp18, encodes a MerR-like regulatory protein that represses hsp18 transcription while promoting its own expression. Naturally occurring mutations within a 70 bp segment of the 144 bp hspR_2-hsp18 intergenic region among M. ulcerans strains inhibit hspR_2 transcription and explain the Hsp18(+) phenotype. We also propose a biological role for Hsp18, as we show that this protein significantly enhances bacterial attachment or aggregation during biofilm formation. This study has uncovered a new member of the MerR family of transcriptional regulators and suggests that upregulation of hsp18 expression was an important pathoadaptive response in the evolution of M. ulcerans from a M. marinum-like ancestor.
Collapse
Affiliation(s)
- Sacha J Pidot
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Deshayes C, Bach H, Euphrasie D, Attarian R, Coureuil M, Sougakoff W, Laval F, Av-Gay Y, Daffé M, Etienne G, Reyrat JM. MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. Mol Microbiol 2010; 78:989-1003. [DOI: 10.1111/j.1365-2958.2010.07385.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Eshghi A, Cullen PA, Cowen L, Zuerner RL, Cameron CE. Global proteome analysis of Leptospira interrogans. J Proteome Res 2010; 8:4564-78. [PMID: 19663501 PMCID: PMC2757032 DOI: 10.1021/pr9004597] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometry complemented with two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. A total of 563 proteins were identified in this study. Altered expression of 65 proteins, including upregulation of the L. interrogans virulence factor Loa22 and 5 novel proteins with homology to virulence factors found in other pathogens, was observed between the comparative conditions. Immunoblot analyses confirmed upregulation of 5 of the known or putative virulence factors in L. interrogans exposed to the in vivo-like environmental conditions. Further, ELISA analyses using serum from patients with leptospirosis and immunofluorescence studies performed on liver sections derived from L. interrogans-infected hamsters verified expression of all but one of the identified proteins during infection. These studies, which represent the first documented comparative global proteome analysis of Leptospira, demonstrated proteome alterations under conditions that mimic in vivo infection and allowed for the identification of novel putative L. interrogans virulence factors. The L. interrogans proteome was analyzed using iTRAQ and 2DGE. These analyses identified 563 proteins and altered expression of 65 proteins upon growth of L. interrogans under in vivo-like conditions, including upregulation of the L. interrogans virulence factor Loa22, a putative lipoprotein with primary amino acid sequence similarity to the outer surface protein ErpY of B. burgdorferi, and 4 additional proteins with homology to virulence factors found in other pathogens.
Collapse
Affiliation(s)
- Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
17
|
Ko KS, Alexander MD, Fontaine SD, Biggs-Houck JE, La Clair JJ, Burkart MD. Synthetic studies on the mycolactone core. Org Biomol Chem 2010; 8:5159-65. [DOI: 10.1039/c0ob00540a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Silva MT, Portaels F, Pedrosa J. Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. THE LANCET. INFECTIOUS DISEASES 2009; 9:699-710. [PMID: 19850228 DOI: 10.1016/s1473-3099(09)70234-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The necrotising skin infection Buruli ulcer is at present the third most common human mycobacteriosis worldwide, after tuberculosis and leprosy. Buruli ulcer is an emergent disease that is predominantly found in humid tropical regions. There is no vaccine against Buruli ulcer and its treatment is difficult. In addition to the huge social effect, Buruli ulcer is of great scientific interest because of the unique characteristics of its causative organism, Mycobacterium ulcerans. This pathogen is genetically very close to the typical intracellular parasites Mycobacterium marinum and Mycobacterium tuberculosis. We review data supporting the interpretation that M ulcerans has the essential hallmarks of an intracellular parasite, producing infections associated with immunologically relevant inflammatory responses, cell-mediated immunity, and delayed-type hypersensitivity. This interpretation judges that whereas M ulcerans behaves like the other pathogenic mycobacteria, it represents an extreme in the biodiversity of this family of pathogens because of its higher cytotoxicity due to the secretion of the exotoxin mycolactone. The acceptance of the interpretation that Buruli ulcer is caused by an intracellular parasite has relevant prophylactic and therapeutic implications, rather than representing the mere attribution of a label with academic interest, because it prompts the development of vaccines that boost cell-mediated immunity and the use of chemotherapeutic protocols that include intracellularly active antibiotics.
Collapse
Affiliation(s)
- Manuel T Silva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, Porto 4150-180, Portugal
| | | | | |
Collapse
|
19
|
de Souza GA, Søfteland T, Koehler CJ, Thiede B, Wiker HG. Validating divergent ORF annotation of the Mycobacterium leprae genome through a full translation data set and peptide identification by tandem mass spectrometry. Proteomics 2009; 9:3233-43. [PMID: 19562797 DOI: 10.1002/pmic.200800955] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium leprae has undergone extensive degenerative evolution, with a large number of pseudogenes. It is also the organism with the greatest divergence between gene annotations from independent institutes. Therefore, M. leprae is a good model to verify the currently predicted coding sequence regions between different annotations, to identify new ones and to investigate the expression of pseudogenes. We submitted a total extract of the bacteria isolated from Armadillo to Gel-LC-MS/MS using a linear quadrupole ion trap-Orbitrap mass spectrometer. Spectra were analyzed using the Leproma (1614 genes and 1133 pseudogenes) and TIGR (5446 genes) databases and a database containing the full genome translation. We identified a total of 1046 proteins, including five proteins encoded by previously predicted pseudogenes, which upon closer inspection appeared to be proper genes. Only 11 of the additional annotations by TIGR were verified. We also identified six tryptic peptides from five proteins from regions not considered to be coding sequences, in addition to peptides from two unannotated gene candidates that overlap with other genes. Our data show that the Leproma annotation of M. leprae is quite accurate, and there were no peptide observations corresponding to true pseudogenes, except for a new gene candidate, overlapping with an essential enolase on the complementary strand.
Collapse
Affiliation(s)
- Gustavo A de Souza
- The Gade Institute, Section for Microbiology and Immunology, University of Bergen, Norway
| | | | | | | | | |
Collapse
|
20
|
Walsh DS, Portaels F, Meyers WM. Buruli Ulcer (Mycobacterium ulcerans Infection): a Re-emerging Disease. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.clinmicnews.2009.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Scott NE, Cordwell SJ. Campylobacter proteomics: guidelines, challenges and future perspectives. Expert Rev Proteomics 2009; 6:61-74. [PMID: 19210127 DOI: 10.1586/14789450.6.1.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Campylobacter species are a major cause of disease in mammalian systems. The most common human etiological agent within this genus is Campylobacter jejuni - the leading cause of bacterial gastroenteritis in the developed world. While this organism has been extensively studied at the cellular level, and the genome sequences of several strains have now been elucidated, little is known regarding the role of individual proteins in virulence processes, such as adhesion, colonization and toxicity towards host cells. Proteomics encompasses the global analysis of proteins at the organism level. The technologies included under this term have now started to be utilized for understanding how Campylobacter species respond to changes in the environment, with an emphasis on the human host, as well as to map subcellular locations of proteins, in particular those that are surface-associated. C. jejuni is also of great significance as, unlike most other bacteria, it is able to post-translationally modify its proteins. The analysis of such proteins represents a major challenge in understanding this organism at the proteomic and cellular levels. This review will examine the state-of-the-art in Campylobacter proteomics, as well as provide insights into strategies that need to be undertaken to provide a comprehensive understanding of this organism at the molecular and functional level.
Collapse
Affiliation(s)
- Nichollas E Scott
- School of Molecular and Microbial Biosciences, Building GO8, Maze Crescent, The University of Sydney, Australia.
| | | |
Collapse
|
22
|
Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol 2009; 7:50-60. [PMID: 19079352 DOI: 10.1038/nrmicro2077] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Buruli ulcer is an emerging human disease caused by infection with a slow-growing pathogen, Mycobacterium ulcerans, that produces mycolactone, a cytotoxin with immunomodulatory properties. The disease is associated with wetlands in certain tropical countries, and evidence for a role of insects in transmission of this pathogen is growing. Comparative genomic analysis has revealed that M. ulcerans arose from Mycobacterium marinum, a ubiquitous fast-growing aquatic species, by horizontal transfer of a virulence plasmid that carries a cluster of genes for mycolactone production, followed by reductive evolution. Here, the ecology, microbiology, evolutionary genomics and immunopathology of Buruli ulcer are reviewed.
Collapse
|
23
|
Meier JL, Burkart MD. The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 2009; 38:2012-45. [DOI: 10.1039/b805115c] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|