1
|
ASAI D, KANG JH, KATAYAMA Y. Old but Still Useful [γ-<sup>32</sup>P]ATP —Development of Peptide Substrates for Protein Kinases by <sup>32</sup>P-Based Enzyme Activity Assay—. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Daisuke ASAI
- Laboratory of Microbiology, Showa Pharmaceutical University
| | - Jeong-Hun KANG
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute
| | - Yoshiki KATAYAMA
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| |
Collapse
|
2
|
Kawano T, Tachibana Y, Inokuchi J, Kang JH, Murata M, Eto M. Identification of Activated Protein Kinase Cα (PKCα) in the Urine of Orthotopic Bladder Cancer Xenograft Model as a Potential Biomarker for the Diagnosis of Bladder Cancer. Int J Mol Sci 2021; 22:ijms22179276. [PMID: 34502182 PMCID: PMC8430461 DOI: 10.3390/ijms22179276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer has a high recurrence rate; therefore, frequent and effective monitoring is essential for disease management. Cystoscopy is considered the gold standard for the diagnosis and continuous monitoring of bladder cancer. However, cystoscopy is invasive and relatively expensive. Thus, there is a need for non-invasive, relatively inexpensive urinary biomarker-based diagnoses of bladder cancer. This study aimed to investigate the presence of activated protein kinase Cα (PKCα) in urine samples and the possibility of PKCα as a urinary biomarker for bladder cancer diagnosis. Activated PKCα was found to be present at higher levels in bladder cancer tissues than in normal bladder tissues. Furthermore, high levels of activated PKCα were observed in urine samples collected from orthotopic xenograft mice carrying human bladder cancer cells compared to urine samples from normal mice. These results suggest that activated PKCα can be used as a urinary biomarker to diagnose bladder cancer. To the best of our knowledge, this is the first report describing the presence of activated PKCα in the urine of orthotopic xenograft mice.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (T.K.); (Y.T.)
| | - Yoko Tachibana
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (T.K.); (Y.T.)
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Correspondence: (J.I.); (J.-H.K.); (M.M.); (M.E.)
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
- Correspondence: (J.I.); (J.-H.K.); (M.M.); (M.E.)
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (T.K.); (Y.T.)
- Correspondence: (J.I.); (J.-H.K.); (M.M.); (M.E.)
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (T.K.); (Y.T.)
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Correspondence: (J.I.); (J.-H.K.); (M.M.); (M.E.)
| |
Collapse
|
3
|
Kim CW, Toita R, Kang JH, Mori T, Kishimura A, Katayama Y. Protein Kinase C α-Responsive Gene Carrier for Cancer-Specific Transgene Expression and Cancer Therapy. ACS Biomater Sci Eng 2021; 7:2530-2537. [PMID: 33890761 DOI: 10.1021/acsbiomaterials.1c00213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The presence of intracellular signal transduction and its abnormal activities in many cancers has potential for medical and pharmaceutical applications. We recently developed a protein kinase C α (PKCα)-responsive gene carrier for cancer-specific gene delivery. Here, we demonstrate an in-depth analysis of cellular signal-responsive gene carrier and the impact of its selective transgene expression in response to malfunctioning intracellular signaling in cancer cells. We prepared a novel gene carrier consisting of a linear polyethylenimine (LPEI) main chain grafted to a cationic PKCα-specific substrate (FKKQGSFAKKK-NH2). The LPEI-peptide conjugate formed a nanosized polyplex with pDNA and mediated efficient cellular uptake and endosomal escape. This polyplex also led to successful transgene expression which responded to the target PKCα in various cancer cells and exhibited a 10-100-fold higher efficiency compared to the control group. In xenograft tumor models, the LPEI-peptide conjugate promoted transgene expression showing a clear-cut response to PKCα. Furthermore, when a plasmid containing a therapeutic gene, human caspase-8 (pcDNA-hcasp8), was used, the LPEI-peptide conjugate had significant cancer-suppressive effects and extended animal survival. Collectively, these results reveal that our method has great potential for cancer-specific gene delivery and therapy.
Collapse
Affiliation(s)
- Chan Woo Kim
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
4
|
Sogawa C, Eguchi T, Okusha Y, Ono K, Ohyama K, Iizuka M, Kawasaki R, Hamada Y, Takigawa M, Sogawa N, Okamoto K, Kozaki KI. A Reporter System Evaluates Tumorigenesis, Metastasis, β-catenin/MMP Regulation, and Druggability. Tissue Eng Part A 2019; 25:1413-1425. [PMID: 30734664 DOI: 10.1089/ten.tea.2018.0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer invasion, metastasis, and therapy resistance are the crucial phenomena in cancer malignancy. The high expression of matrix metalloproteinase 9 (MMP9) is a biomarker as well as a causal factor of cancer invasiveness and metastatic activity. However, a regulatory mechanism underlying MMP9 expression in cancer is not clarified yet. In addition, a new strategy for anticancer drug discovery is becoming an important clue. In the present study, we aimed (i) to develop a novel reporter system evaluating tumorigenesis, invasiveness, metastasis, and druggability with a combination of three-dimensional tumoroid model and Mmp9 promoter and (ii) to examine pharmacological actions of anticancer medications using this reporter system. High expression and genetic amplification of MMP9 were found in colon cancer cases. We found that proximal promoter sequences of MMP9 in murine and human contained conserved binding sites for transcription factors β-catenin/TCF/LEF, glucocorticoid receptor (GR), and nuclear factor kappa-B (NF-κB). The murine Mmp9 promoter (-569 to +19) was markedly activated in metastatic colon cancer cells and additionally activated by tumoroid formation and by β-catenin signaling stimulator lithium chloride. The Mmp9 promoter-driven fluorescent reporter cells enabled the monitoring of activities of MMP9/gelatinase, tumorigenesis, invasion, and metastasis in syngeneic transplantation experiments. We also demonstrated pharmacological actions as follows: dexamethasone and hydrocortisone, steroidal medications binding to GR, inhibited the Mmp9 promoter but did not inhibit tumorigenesis. On the contrary, antimetabolite 5-fluorouracil, a gold standard for colon cancer chemotherapy, inhibited tumoroid formation but did not inhibit Mmp9 promoter activity. Notably, antimalaria medication artesunate inhibited both tumorigenesis and the Mmp9 promoter in vitro, potentially through inhibition of β-catenin/TCF/LEF signaling. Thus, this novel reporter system enabled monitoring tumorigenesis, invasiveness, metastasis, key regulatory signalings such as β-catenin/MMP9 axis, and druggability. Impact Statement Cancer invasion and metastasis have been shown to be driven by matrix metalloproteinase 9 (MMP9), whose expression mechanism is not clarified yet. In addition, a new strategy for anticancer drug discovery is becoming important. We established a novel reporter system evaluating tumorigenesis, invasiveness, metastasis, and druggability with a combination of three-dimensional (3D) tumoroid model and Mmp9 promoter. Using this reporter system, we demonstrated pharmacological actions of anticancer medications such as antimetabolite 5-fluorouracil (5-FU) and antimalaria medication artesunate (ART), which inhibited both tumorigenesis and β-catenin/MMP regulatory signaling. Our study impacts the translational fields of oncology, drug discovery, and organoid model.
Collapse
Affiliation(s)
- Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Motoharu Iizuka
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Ryu Kawasaki
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Yusaku Hamada
- Research Program for Undergraduate Students, Okayama University Dental School, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Norio Sogawa
- Department of Dental Pharmacology, Matsumoto Dental University, Shiojiri, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken-Ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Katayama Y. Peptide-Grafted Polymers as Artificial Converter of Cellular Signals. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Asai D, Murata M, Toita R, Kawano T, Nakashima H, Kang JH. Role of amino acid residues surrounding the phosphorylation site in peptide substrates of G protein-coupled receptor kinase 2 (GRK2). Amino Acids 2016; 48:2875-2880. [PMID: 27714516 DOI: 10.1007/s00726-016-2345-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022]
Abstract
A series of amino acid substitutions was made in a previously identified β-tubulin-derived GRK2 substrate peptide (404DEMEFTEAESNMN416) to examine the role of amino acid residues surrounding the phosphorylation site. Anionic amino acid residues surrounding the phosphorylation site played an important role in the affinity for GRK2. Compared to the original peptide, a modified peptide (Ac-EEMEFSEAEANMN-NH2) exhibited markedly higher affinity for GRK2, but very low affinity for GRK5, suggesting that it can be a sensitive and selective peptide for GRK2.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Sugao 2-16-1 Miyamae, Kawasaki, 216-8511, Japan.
| | - Masaharu Murata
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka, 563-8577, Japan
| | - Takahito Kawano
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine, Sugao 2-16-1 Miyamae, Kawasaki, 216-8511, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
7
|
Lucke-Wold BP, Logsdon AF, Smith KE, Turner RC, Alkon DL, Tan Z, Naser ZJ, Knotts CM, Huber JD, Rosen CL. Bryostatin-1 Restores Blood Brain Barrier Integrity following Blast-Induced Traumatic Brain Injury. Mol Neurobiol 2015; 52:1119-1134. [PMID: 25301233 PMCID: PMC5000781 DOI: 10.1007/s12035-014-8902-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/24/2014] [Indexed: 02/08/2023]
Abstract
Recent wars in Iraq and Afghanistan have accounted for an estimated 270,000 blast exposures among military personnel. Blast traumatic brain injury (TBI) is the 'signature injury' of modern warfare. Blood brain barrier (BBB) disruption following blast TBI can lead to long-term and diffuse neuroinflammation. In this study, we investigate for the first time the role of bryostatin-1, a specific protein kinase C (PKC) modulator, in ameliorating BBB breakdown. Thirty seven Sprague-Dawley rats were used for this study. We utilized a clinically relevant and validated blast model to expose animals to moderate blast exposure. Groups included: control, single blast exposure, and single blast exposure + bryostatin-1. Bryostatin-1 was administered i.p. 2.5 mg/kg after blast exposure. Evan's blue, immunohistochemistry, and western blot analysis were performed to assess injury. Evan's blue binds to albumin and is a marker for BBB disruption. The single blast exposure caused an increase in permeability compared to control (t = 4.808, p < 0.05), and a reduction back toward control levels when bryostatin-1 was administered (t = 5.113, p < 0.01). Three important PKC isozymes, PKCα, PKCδ, and PKCε, were co-localized primarily with endothelial cells but not astrocytes. Bryostatin-1 administration reduced toxic PKCα levels back toward control levels (t = 4.559, p < 0.01) and increased the neuroprotective isozyme PKCε (t = 6.102, p < 0.01). Bryostatin-1 caused a significant increase in the tight junction proteins VE-cadherin, ZO-1, and occludin through modulation of PKC activity. Bryostatin-1 ultimately decreased BBB breakdown potentially due to modulation of PKC isozymes. Future work will examine the role of bryostatin-1 in preventing chronic neurodegeneration following repetitive neurotrauma.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA
| | - Kelly E Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, 26506, USA
| | - Zhenjun Tan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Zachary J Naser
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Office of Professional Studies in Health Sciences, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Chelsea M Knotts
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Department of Neurosurgery, West Virginia University School of Medicine, One Medical Center Drive, Suite 4300, Health Sciences Center, PO Box 9183, Morgantown, WV, 26506-9183, USA.
| |
Collapse
|
8
|
Chakrabarti M, Ray SK. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis 2015; 21:312-28. [DOI: 10.1007/s10495-015-1198-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Reversal of efflux of an anticancer drug in human drug-resistant breast cancer cells by inhibition of protein kinase Cα (PKCα) activity. Tumour Biol 2015; 37:1901-8. [DOI: 10.1007/s13277-015-3963-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022] Open
|
10
|
Monitoring of phosphorylated peptides by radioactive assay and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Amino Acids 2015; 47:2377-83. [DOI: 10.1007/s00726-015-2025-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 01/03/2023]
|
11
|
Funamoto D, Asai D, Kim CW, Nakamura Y, Lee EK, Nobori T, Niidome T, Mori T, Katayama Y. Tandemly Repeated Peptide for Cancer-specific Gene Carrier Prepared by Native Chemical Ligation. CHEM LETT 2015. [DOI: 10.1246/cl.141121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daiki Funamoto
- Graduate School of System Life Sciences, Kyushu University
| | - Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine
| | - Chan Woo Kim
- Graduate School of System Life Sciences, Kyushu University
| | - Yuta Nakamura
- Graduate School of System Life Sciences, Kyushu University
| | - Eun Kyung Lee
- Graduate School of System Life Sciences, Kyushu University
| | | | - Takuro Niidome
- Graduate School of System Life Sciences, Kyushu University
| | - Takeshi Mori
- Graduate School of System Life Sciences, Kyushu University
- Center for Future Chemistry, Kyushu University
| | - Yoshiki Katayama
- Graduate School of System Life Sciences, Kyushu University
- Center for Future Chemistry, Kyushu University
| |
Collapse
|
12
|
Toita R, Kang JH, Kim CW, Shiosaki S, Mori T, Niidome T, Katayama Y. Effect of peptide content on the regulation of transgene expression by protein kinase Cα-responsive linear polyethylenimine-peptide conjugates. Colloids Surf B Biointerfaces 2014; 123:123-9. [PMID: 25270730 DOI: 10.1016/j.colsurfb.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 01/04/2023]
Abstract
We examined a series of linear polyethylenimine (LPEI)-based nanocarriers that activate transgene expression in response to cancer-specific protein kinase Cα (PKCα). Eight types of LPEI-peptide conjugate differing in peptide content and number were synthesized using click chemistry. The conjugates could form polyplexes with pDNA through electrostatic interaction, but the degree of pDNA condensation, sizes, and surface charges of the resulting polyplexes depended on the pendant-peptide content and number. None of the polyplexes showed significant cytotoxicity toward human hepatoma cells (HepG2). Furthermore, pendant peptide content and number markedly affected transgene activation in response to PKCα. To achieve an all-or-none response to PKCα, we determined the optimum peptide content and number in LPEI-peptide conjugates as ≈6 mol% and ≈40 peptides/conjugate.
Collapse
Affiliation(s)
- Riki Toita
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Chan Woo Kim
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shujiro Shiosaki
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuro Niidome
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Advanced Medical Innovation, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
13
|
Peptide substrates for G protein-coupled receptor kinase 2. FEBS Lett 2014; 588:2129-32. [PMID: 24813628 DOI: 10.1016/j.febslet.2014.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/04/2014] [Accepted: 04/16/2014] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinases (GRKs) control the signaling and activation of G protein-coupled receptors through phosphorylation. In this study, consensus substrate motifs for GRK2 were identified from the sequences of GRK2 protein substrates, and 17 candidate peptides were synthesized to identify peptide substrates with high affinity for GRK2. GRK2 appears to require an acidic amino acid at the -2, -3, or -4 positions and its consensus phosphorylation site motifs were identified as (D/E)X1-3(S/T), (D/E)X1-3(S/T)(D/E), or (D/E)X0-2(D/E)(S/T). Among the 17 peptide substrates examined, a 13-amino-acid peptide fragment of β-tubulin (DEMEFTEAESNMN) showed the highest affinity for GRK2 (Km, 33.9 μM; Vmax, 0.35 pmol min(-1) mg(-1)), but very low affinity for GRK5. This peptide may be a useful tool for investigating cellular signaling pathways regulated by GRK2.
Collapse
|
14
|
Otsubo Y, Ikeda H, Kamimoto J, Niidome T, Mori T, Katayama Y. A Rapid and Quantitative Detection of Cellular Protein Kinase Activity Based on MALDI-TOF-MS. CHEM LETT 2014. [DOI: 10.1246/cl.131227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Otsubo
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Hiromu Ikeda
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Junpei Kamimoto
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Takuro Niidome
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
- International Research Center for Molecular System, Kyushu University
| |
Collapse
|
15
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
16
|
Zhao GX, Tanaka H, Kim CW, Li K, Funamoto D, Nobori T, Nakamura Y, Niidome T, Kishimura A, Mori T, Katayama Y. Histidinylated poly-L-lysine-based vectors for cancer-specific gene expression via enhancing the endosomal escape. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:519-34. [PMID: 24460548 DOI: 10.1080/09205063.2013.879562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we synthesized a series of poly-L-lysine (PLL)-based polymers for gene delivery, by modifying the PLL with both cationic peptide and histidine. The peptide moieties serve as cationic centers for polyplex formation, and also as substrates for protein kinase Cα (PKCα), which is specifically activated in many types of cancer cells, to achieve cancer-specific gene expression. The histidine groups serve as buffering moieties to increase the ability of the plasmid DNA (pDNA)-polymer complex (polyplex) to escape the endosome and thus to promote expression of the pDNA in the transfected cells. The facile synthesis of the polymers proceeded by modifying the PLL with side-group-protected peptide and protected histidine, followed by deprotection of the functional groups. The synthesized polymers showed significant buffering capacity over the neutral to acidic pH range and showed less cytotoxicity in vitro compared with histidine-unmodified polymers. The polyplexes successfully showed PKCα-responsive gene expression immediately after their introduction into cancer cells and the gene expression continued for at least 24 h. These PLL-based carriers thus show promise for cancer-targeted gene therapy.
Collapse
Affiliation(s)
- Guo Xi Zhao
- a Graduate School of Systems Life Sciences , Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395 , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shiosaki S, Nobori T, Mori T, Toita R, Nakamura Y, Kim CW, Yamamoto T, Niidome T, Katayama Y. A protein kinase assay based on FRET between quantum dots and fluorescently-labeled peptides. Chem Commun (Camb) 2013; 49:5592-4. [PMID: 23677259 DOI: 10.1039/c3cc41680a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel protein kinase assay was developed, based on FRET between QDs and fluorescently-labeled substrate peptides. The negatively charged QDs recognize the change in net charge of the peptide upon phosphorylation. Despite its simple mechanism, this assay is sensitive and robust enough to be applied to the evaluation of protein kinase inhibitors.
Collapse
Affiliation(s)
- Shujiro Shiosaki
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kushio S, Tsuchiya A, Nakamura Y, Nobori T, Kim CW, Zhao GX, Funamoto T, Lee EK, Niidome T, Mori T, Katayama Y. CANCER-SPECIFIC GENE CARRIERS RESPONDING TO CANCER MICROENVIRONMENT: ACIDOSIS AND HYPER-ACTIVATED PROTEIN KINASES. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2013. [DOI: 10.4015/s101623721340005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein kinase (PK)-responsive gene carriers modified with polyethylene glycol (PEG) chains using an acid-labile linker were developed. These carriers were obtained by modifying the PEG chains and substrate peptides for the PKs (PKA or PKCα) on the branched polyethyleneimine main chain. Polyplexes formed from these carriers and plasmid DNA (pDNA) were stably dispersed under neutral pH medium. The polyplexes were also taken up by cells on the release of the PEG chains under the slightly acidic extracellular pH associated with cancer cells. The polyplexes taken up by cells resulted in gene expression when the substrate peptides were phosphorylated by the intracellular PKs to release pDNA from the polyplexes. These novel gene carriers are expected to be promising for cancer-specific gene therapy via intravenous administration.
Collapse
Affiliation(s)
- Satoshi Kushio
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Tsuchiya
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Nakamura
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takanobu Nobori
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chan Woo Kim
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Guo Xi Zhao
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taiki Funamoto
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eun Kyung Lee
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuro Niidome
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Nakamura Y, Kim CW, Tsuchiya A, Kushio S, Nobori T, Li K, Lee EK, Zhao GX, Funamoto D, Niidome T, Mori T, Katayama Y. Branched polyethylenimine-based PKCα-responsive gene carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1858-68. [PMID: 24073611 DOI: 10.1080/09205063.2013.807459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We examined in vitro performance of the branched polyethylenimine (bPEI)-based gene carriers which respond to cancer-specific activation of protein kinase Cα (PKCα) to express plasmid DNA. The carriers were synthesized straightforward by using amide bond formation between a peptide terminal carboxyl and a primary amine group of bPEI. To examine the effect of the peptide contents in the carrier, we prepared several carriers with various peptide contents. The obtained polymers form polyplexes with tighter condensation of plasmid DNA than our previous gene carriers. After internalization of the polyplexes via endocytosis, the polyplexes effectively escaped from the endosome into cytosol. Then, the polyplexes showed a clear-cut response to PKCα to release plasmid DNA for gene expression. We determined the optimum contents of the peptides in carriers as 5 mol% to achieve the clear-cut response to PKCα.
Collapse
Affiliation(s)
- Yuta Nakamura
- a Graduate School of Systems Life Sciences, Kyushu University , 744 Motooka , Nishi-ku , Fukuoka , 819-0395 , Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kang JH, Toita R, Kim CW, Katayama Y. Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 2012; 30:1662-72. [DOI: 10.1016/j.biotechadv.2012.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022]
|
21
|
Toita R, Kang JH, Tomiyama T, Kim CW, Shiosaki S, Niidome T, Mori T, Katayama Y. Gene carrier showing all-or-none response to cancer cell signaling. J Am Chem Soc 2012; 134:15410-7. [PMID: 22920909 DOI: 10.1021/ja305437n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this work we designed a novel nano carrier, a linear polyethylenimine (LPEI)-peptide conjugate, for cancer-specific expression of transgenes. The conjugate was easily synthesized by using a click chemistry scheme orthogonal to the reactive side groups of the peptide, which is the substrate of protein kinase Cα (PKCα). Polyplexes of the conjugates with plasmid DNA (pDNA) were intact and stably dispersed even in the presence of cell lysate. Despite this stability, the polyplexes readily dissociated upon phosphorylation of the grafted peptides by PKCα. Because of its endosomal escape ability and adequate susceptibility to PKCα, the polyplexes showed an all-or-none type response to PKCα activity in transgene expression in vitro. The polyplexes achieved cancer tissue-specific transgene expression even for a tumor with a relatively low PKCα activity. Thus the LPEI-peptide conjugate has high potential as a nanocarrier for cancer-targeted gene therapy.
Collapse
Affiliation(s)
- Riki Toita
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Toita R, Mori T, Naritomi Y, Kang JH, Shiosaki S, Niidome T, Katayama Y. Fluorometric detection of protein kinase Cα activity based on phosphorylation-induced dissociation of a polyion complex. Anal Biochem 2012; 424:130-6. [DOI: 10.1016/j.ab.2012.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
|
23
|
Tsuchiya A, Asai D, Kang JH, Mori T, Niidome T, Katayama Y. Correlation between phosphorylation ratios by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and radioactivities by radioactive assay. Anal Biochem 2012; 421:773-5. [DOI: 10.1016/j.ab.2011.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 08/19/2011] [Indexed: 01/01/2023]
|
24
|
Kang JH, Asai D, Tsuchiya A, Mori T, Niidome T, Katayama Y. Peptide substrates for Rho-associated kinase 2 (Rho-kinase 2/ROCK2). PLoS One 2011; 6:e22699. [PMID: 21818369 PMCID: PMC3144920 DOI: 10.1371/journal.pone.0022699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
Peptide substrates sensitive for a certain protein kinase could be important for new-drug development and to understand the mechanism of diseases. Rho-associated kinase (Rho-kinase/ROCK) is a serine/threonine kinase, and plays an important part in cardiovascular disease, migration and invasion of tumor cells, and in neurological disorders. The purpose of this study was to find substrates with high affinity and sensitivity for ROCK2. We synthesized 136 peptide substrates from protein substrates for ROCK2 with different lengths and charged peptides. Incorporation of (32)P [counts per minute (CPM)] for each peptide substrate was determined by the radiolabel assay using [γ-(32)P]ATP. When the top five peptide substrates showing high CPMs (R4, R22, R133, R134, and R135) were phosphorylated by other enzymes (PKA, PKCα, and ERK1), R22, R133, and R135 displayed the highest CPM level for ROCK2 compared with other enzymes, whereas R4 and R134 showed similar CPM levels for ROCK2 and PKCα. We hypothesize that R22, R133, and R135 can be useful peptide substrates for ROCK2.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Daisuke Asai
- Department of Microbiology St. Marianna University School of Medicine, Kawasaki, Japan
| | - Akira Tsuchiya
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | - Takuro Niidome
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Koga H, Toita R, Mori T, Tomiyama T, Kang JH, Niidome T, Katayama Y. Fluorescent Nanoparticles Consisting of Lipopeptides and Fluorescein-Modified Polyanions for Monitoring of Protein Kinase Activity. Bioconjug Chem 2011; 22:1526-34. [DOI: 10.1021/bc200066w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Yoshiki Katayama
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
26
|
Tomiyama T, Toita R, Kang JH, Asai D, Shiosaki S, Mori T, Niidome T, Katayama Y. Tumor therapy by gene regulation system responding to cellular signal. J Control Release 2010; 148:101-105. [DOI: 10.1016/j.jconrel.2010.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/03/2010] [Accepted: 08/13/2010] [Indexed: 12/21/2022]
|
27
|
Kang JH, Oishi J, Kim JH, Ijuin M, Toita R, Jun B, Asai D, Mori T, Niidome T, Tanizawa K, Kuroda S, Katayama Y. Hepatoma-targeted gene delivery using a tumor cell–specific gene regulation system combined with a human liver cell–specific bionanocapsule. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:583-9. [DOI: 10.1016/j.nano.2010.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 12/10/2009] [Accepted: 01/15/2010] [Indexed: 01/04/2023]
|
28
|
Kang JH, Toita R, Katayama Y. Bio and nanotechnological strategies for tumor-targeted gene therapy. Biotechnol Adv 2010; 28:757-63. [PMID: 20541598 DOI: 10.1016/j.biotechadv.2010.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 01/15/2023]
Abstract
Gene therapy is a new medical approach for the treatment of tumors. For safe and efficient gene therapy, therapeutic genes need to be delivered efficiently into the target tumor cells. Development of gene delivery systems to specifically recognize and target tumor cells and to distinguish them from normal cells, especially in the same tissue or organ, is one of the most important issues regarding the present gene delivery methodologies. The enhanced permeability and retention (EPR) effect using the characteristics of angiogenic tumor blood vessels, as well as gene delivery systems recognizing hyperactivated receptors or intracellular signals, is broadly applied to tumor-targeted gene therapy. In addition, bacterial vectors can be a useful means for targeting hypoxic or anoxic regions of a tumor.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | |
Collapse
|
29
|
Kang JH, Asami Y, Murata M, Kitazaki H, Sadanaga N, Tokunaga E, Shiotani S, Okada S, Maehara Y, Niidome T. Gold nanoparticle-based colorimetric assay for cancer diagnosis. Biosens Bioelectron 2010; 25:1869-74. [DOI: 10.1016/j.bios.2009.12.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
30
|
Kang JH, Niidome T, Katayama Y. Role of estrogenic compounds (diethylstibestrol, 17beta-estradiol, and bisphenol A) in the phosphorylation of substrate by protein kinase Calpha. J Biochem Mol Toxicol 2010; 23:318-23. [PMID: 19827035 DOI: 10.1002/jbt.20294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Estrogenic compounds can activate protein kinase C (PKC), which is a calcium and phospholipid-dependent serine/threonine kinase. In the present study, we investigated the role of 17beta-estradiol (E2), diethylstibestrol (DES), and bisphenol A (BPA) in the phosphorylation of substrate by PKCalpha using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The level of phosphorylated peptide was low in the absence of phosphatidylserine (PS). Moreover, reduction of phosphorylation ratios was identified in the presence of diacylglycerol (DAG) and Ca(2+) or PS and Ca(2+) after adding E2, DES, and BPA. However, no change in phosphorylation ratios was found in the presence of DAG and PS. Addition of E2, DES, and BPA also had no influence on the phosphorylation reaction of substrate by cell or tissue lysate samples. Our study suggests that E2, DES, and BPA can bind to the C2 domain of PKCalpha but have no effects on the phosphorylation reaction of substrates in the presence of DAG and PS.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan.
| | | | | |
Collapse
|
31
|
Cellular signal-specific peptide substrate is essential for the gene delivery system responding to cellular signals. Bioorg Med Chem Lett 2009; 19:6082-6. [DOI: 10.1016/j.bmcl.2009.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 11/24/2022]
|
32
|
Kang JH, Asai D, Toita R, Kitazaki H, Katayama Y. Plasma protein kinase C (PKC)alpha as a biomarker for the diagnosis of cancers. Carcinogenesis 2009; 30:1927-31. [PMID: 19710177 DOI: 10.1093/carcin/bgp210] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Protein kinase C (PKC)alpha plays a key role in the differentiation, proliferation and apoptosis of cancer cells, and its activity is higher in cancer cells than in normal cells. In the present study, we investigated the existence of activated PKCalpha in plasma and its possibility for cancer diagnosis. Plasma samples were prepared from xenograft mouse models of cancer and from normal mice. Phosphorylation ratios for a PKCalpha-specific peptide substrate (Alphatomega) were analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry and activated PKCalpha was identified by western blot analysis. Increased levels of activated PKCalpha were found in the plasma of cancer-bearing mice (U87, A549, A431, HuH-7 and B16 melanoma) compared with the levels found in control mice. Phosphorylation ratios for peptide substrate increased with an increase in tumor size. Moreover, the addition of Ro-31-7549, a highly specific inhibitor of PKCalpha, produced a concentration-dependent reduction of phosphorylation ratios, whereas the non-PKCalpha inhibitors, rottlerin and H-89, did not significantly effect phosphorylation ratios. In addition, the level of activated PKCalpha decreased after cancer resection but increased if the cancer recurred. From these results, we suggest that (i) activated PKCalpha in plasma can be a useful biomarker for the diagnosis of cancers and (ii) the level of activated PKCalpha can be monitored to assess the recurrence of cancer after surgical removal. To our knowledge, this is the first report demonstrating the existence of activated PKCalpha in plasma and its possibility for cancer diagnosis.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| | | | | | | | | |
Collapse
|
33
|
Tomiyama T, Kang JH, Toita R, Niidome T, Katayama Y. Protein kinase Calpha-responsive polymeric carrier: its application for gene delivery into human cancers. Cancer Sci 2009; 100:1532-6. [PMID: 19459855 PMCID: PMC11159447 DOI: 10.1111/j.1349-7006.2009.01198.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
For cancer-targeting gene delivery, we applied a protein kinase C (PKC)alpha-responsive polymeric carrier to human cancers (U-87 MG [human glioblastoma-astrocytoma, epithelial-like cell line] and A549 [human lung adenocarcinoma epithelial cell line]). Two polymers, one a PKCalpha-responsive polymer (PPC[S]) containing the phosphorylation site serine, and the other a negative control polymer (PPC[A]), in which the serine was substituted with alanine, were synthesized. No cytotoxicity of the polymer was identified. When the complexes were transfected into cancer cells or tissues in which PKCalpha was hyper-activated, the luciferase expression from the PPC(S)/plasmid (pDNA) complex was higher than that from the PPC(A)/pDNA complex. These results show that the phosphorylation of complex by PKCalpha in cancer cells leads to high gene expression and that our system can be used as a human cancer cell-targeting gene delivery system.
Collapse
Affiliation(s)
- Tetsuro Tomiyama
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
34
|
Toita R, Kang JH, Kim JH, Tomiyama T, Mori T, Niidome T, Jun B, Katayama Y. Protein kinase C alpha-specific peptide substrate graft-type copolymer for cancer cell-specific gene regulation systems. J Control Release 2009; 139:133-9. [PMID: 19545594 DOI: 10.1016/j.jconrel.2009.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/04/2009] [Accepted: 06/13/2009] [Indexed: 12/11/2022]
Abstract
We recently proposed a novel gene regulation system responding to specifically and abnormally activated intracellular enzymes in diseased cells. In the present study, we focused on protein kinase C (PKC)alpha, which is hyper-activated in most tumor cells, as a trigger for transgene regulation. We prepared cationic copolymers comprising hydrophilic and neutral polymers in main chains and cationic peptide substrates with different contents in side chains. Our copolymer with high peptide content (>3 mol%) condensed with pDNA more weakly than with poly(L-lysine) (pLL) having a similar molecular weight, but gene suppression was nearly identical to that of pLL, probably due to the steric hindrance of the main chains in our copolymer. Steric hindrance of the main chains barely affected the phosphorylation reaction of the pendant peptide. In cell and mouse experiments, higher gene expression was observed in complexes of pDNA with copolymers pended PKC alpha-specific substrate peptide than that in complexes with negative copolymers pended peptide substituted phosphorylation site of serine residues with alanine. These results indicate that our system can recognize intracellular PKC alpha as a trigger to regulate transgene expression, and may be useful for tumor gene therapy.
Collapse
Affiliation(s)
- Riki Toita
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Asai D, Kang JH, Toita R, Tsuchiya A, Niidome T, Nakashima H, Katayama Y. Regulation of Transgene Expression in Tumor Cells by Exploiting Endogenous Intracellular Signals. NANOSCALE RESEARCH LETTERS 2008; 4:229-233. [PMID: 20592962 PMCID: PMC2893789 DOI: 10.1007/s11671-008-9230-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/02/2008] [Indexed: 05/29/2023]
Abstract
Recently, we have proposed a novel strategy for a cell-specific gene therapy system based on responses to intracellular signals. In this system, an intracellular signal that is specifically and abnormally activated in the diseased cells is used for the activation of transgene expression. In this study, we used protein kinase C (PKC)alpha as a trigger to activate transgene expression. We prepared a PKCalpha-responsive polymer conjugate [PPC(S)] and a negative control conjugate [PPC(A)], in which the phosphorylation site serine (Ser) was replaced with alanine (Ala). The phosphorylation for polymer/DNA complexes was determined with a radiolabel assay using [gamma-(32)P]ATP. PPC(S)/DNA complexes were phosphorylated by the addition of PKCalpha, but no phosphorylation of the PPC(A)/DNA complex was observed. Moreover, after microinjection of polymer/GFP-encoding DNA complexes into HepG2 cells at cation/anion (C/A) ratios of 0.5 to 2.0, significant expression of GFP was observed in all cases using PPC(S)/DNA complexes, but no GFP expression was observed in the negative control PPC(A)/DNA complex-microinjected cells at C/A ratios of 1.0 and 2.0. On the other hand, GFP expression from PPC(S)/DNA complexes was completely suppressed in cells pretreated with PKCalpha inhibitor (Ro31-7549). These results suggest that our gene regulation system can be used for tumor cell-specific expression of a transgene in response to PKCalpha activity.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
| | - Jeong-Hun Kang
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Riki Toita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Akira Tsuchiya
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takuro Niidome
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
| | - Yoshiki Katayama
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
36
|
Kang JH, Asai D, Kim JH, Mori T, Toita R, Tomiyama T, Asami Y, Oishi J, Sato YT, Niidome T, Jun B, Nakashima H, Katayama Y. Design of polymeric carriers for cancer-specific gene targeting: utilization of abnormal protein kinase Calpha activation in cancer cells. J Am Chem Soc 2008; 130:14906-7. [PMID: 18928283 DOI: 10.1021/ja805364s] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We succeeded in cancer cell specific gene expression by using a polyplex responsive to protein kinase Calpha, which is activated in various types of cancer cells.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oishi J, Asami Y, Mori T, Kang JH, Niidome T, Katayama Y. Colorimetric Enzymatic Activity Assay Based on Noncrosslinking Aggregation of Gold Nanoparticles Induced by Adsorption of Substrate Peptides. Biomacromolecules 2008; 9:2301-8. [DOI: 10.1021/bm800192d] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Oishi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and CREST, Japan Science and Technology Corporation, Kawaguchi, 332-0012, Japan
| | - Yoji Asami
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and CREST, Japan Science and Technology Corporation, Kawaguchi, 332-0012, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and CREST, Japan Science and Technology Corporation, Kawaguchi, 332-0012, Japan
| | - Jeong-Hun Kang
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and CREST, Japan Science and Technology Corporation, Kawaguchi, 332-0012, Japan
| | - Takuro Niidome
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and CREST, Japan Science and Technology Corporation, Kawaguchi, 332-0012, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and CREST, Japan Science and Technology Corporation, Kawaguchi, 332-0012, Japan
| |
Collapse
|
38
|
Kang JH, Kuramoto M, Tsuchiya A, Toita R, Asai D, Sato YT, Mori T, Niidome T, Katayama Y. Letter: correlation between phosphorylation ratios by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis and enzyme kinetics. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2008; 14:261-265. [PMID: 18756024 DOI: 10.1255/ejms.916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To identify the correlation between the phosphorylation ratios by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF MS) analysis and enzyme kinetics (Km, Vmax, and Vmax/Km) is important to understand whether MALDI-TOF MS can be applied for monitoring the properties of peptides that are substrates of protein kinases. The correlation between phosphorylation ratios and enzyme kinetics was examined using peptides for protein kinase C (PKC) and for 60 kDa phosphoprotein, encoded by the cellular sarcoma gene (c-Src). Phosphorylation ratios, analyzed by MALDI-ToF MS, showed higher correlation coefficient (r = or > +0.7) for Vmax/Km compared with that (r = or < -/+0.6) for Km or Vmax. For ion modes, a higher correlation coefficient between phosphorylation ratios and Vmax/Km was identified in the positive mode (r = or > +0.7) compared to that in the negative mode (r = or < +0.5). These results suggest that MALDI-ToF MS is a useful tool to evaluate Vmax/Km of peptides for protein kinases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|